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One revisits the standard saddle-point method based on conjugate duality for solving convex minimiza-
tion problems. Our aim is to reduce or remove unnecessary topological restrictions on the constraint
set. Dual equalities and characterizations of the minimizers are obtained with weak or without con-
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1. Introduction

An “extension� of the saddle-point method for solving a convex minimization problem
is investigated. It is shown how to implement the standard saddle-point method in such
a way that topological restrictions on the constraint sets (the constraint qualifications)
may essentially be removed. With this aim in view, one works with topologies asso-
ciated with gauge functionals of sets which are close to the level sets of the objective
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function. These well-suited topologies partly reflect the geometry of the problem.
At some point, one has to compute an extended dual problem. This is the price to pay
for implementing this approach.
The method is based on conjugate duality as developed by R. T. Rockafellar in [13].
Dual equalities and characterizations of the minimizers are obtained with weak or with-
out constraint qualification.
This paper is a companion of [10] and [11] where this extended saddle-point method
is applied to the Monge-Kantorovich optimal transport problem and the minimization
of entropy functionals.

An abstract convex problem and related questions

Let U be a vector space, V = U∗ its algebraic dual space, Φ a (−∞,+∞]-valued convex
function on U and Φ∗ its convex conjugate for the duality 〈U ,V〉. Let Y be another
vector space, X = Y∗ its algebraic dual space and T : V → X is a linear operator. We
consider the convex minimization problem

minimize Φ∗(v) subject to Tv ∈ C, v ∈ V, (P )

where C is a convex subset of X . As is well known, Fenchel’s duality leads to the dual
problem

maximize inf
x∈C

〈y, x〉 − Φ(T ∗y), y ∈ Y, (D)

where T ∗ is the adjoint of T.

Questions 1.1. The usual questions related to (P ) and (D) are

• the dual equality: Does inf(P ) = sup(D) hold?

• the primal attainment: Does there exist a solution v to (P )? What about the
minimizing sequences?

• the dual attainment: Does there exist a solution ȳ to (D)?

• the representation of the primal solutions: Find an identity of the type: v ∈
∂Φ(T ∗ȳ).

In the case where the constraint set C = {x} is reduced to a single point, the value
sup(D) of the dual problem is

Λ∗(x) := sup
y∈Y

{〈y, x〉 − Φ(T ∗y)}, x ∈ X

which is the convex conjugate of Λ(y) := Φ(T ∗y), y ∈ Y.
We are going to answer the above questions in terms of some extension Φ of Φ under
the weak constraint qualification

C ∩ dom ∂X ∗Λ∗ 6= ∅, (1)

where dom ∂X ∗Λ∗ = {x ∈ X ; ∂X ∗Λ∗(x) 6= ∅} is the subset of all vectors in X at which Λ∗

admits a nonempty subdifferential with respect to the algebraic dual pairing 〈X ,X ∗〉
with X ∗ the algebraic dual space of X . Note that by the geometric version of Hahn-
Banach theorem, the intrinsic core of domΛ∗: icordomΛ∗, is included in dom ∂X ∗Λ∗.
Hence, a useful criterion to get (1) is

C ∩ icordomΛ∗ 6= ∅. (2)
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The drawback of such a general approach is that one has to compute the extension
Φ. In specific examples, this might be a difficult task. In the case of the Monge-
Kantorovich problem [10] it is immediate, but it requires some work in the case of
entropy minimization [11].

The restriction (2) is very weak since the intrinsic core is the notion of interior which
gives the largest possible set. As C ∩ domΛ∗ = ∅ implies that (P ) has no solution,
the only case where the problem remains open when icordomΛ∗ is nonempty is the
situation where C and domΛ∗ are tangent to each other. This is used in [11] to obtain
general results for convex integral functionals. The representation of their minimizers,
see (24), are obtained under the constraint qualification (2) which is much weaker than
the usual constraint qualification:

intC ∩ domΛ∗ 6= ∅ (3)

where intC is the interior of C with respect to some topology which is not directly
connected to the “geometry� of Λ∗. In particular, intC must be nonempty; this is a
considerable restriction.
In [8, 9], Combari, Laghdir and Thibault answered Questions 1.1 under the qualification
condition that R+[C − domΛ∗] is a closed subspace, which is also weaker than (3).

The Monge-Kantorovich optimal transport problem provides an interesting case where
the specifications of the constraints never stand in icordomΛ∗, see [10], so that (2) is
useless and (1) is the right assumption to be used.

The strategy

A usual way to prove the dual attainment and obtain some representation of the primal
solutions is to require that the constraint is qualified: a property which allows us to
separate the convex constraint set T−1C and the level sets of the objective function Φ∗.
The strategy of this article is different: one chooses suitable topologies so that the level
sets have nonempty interiors. This also allows us to apply Hahn-Banach theorem, but
this time the constraint set is not required to have a nonempty interior. We take the
rule not to introduce arbitrary topological assumptions since (P ) is expressed without
any topological notion. Because of the convexity of the problem, one takes advantage
of geometric easy properties: the topologies to be considered later are associated with
seminorms which are gauges of level sets of the convex functions Φ and Φ∗. They are
useful tools to work with the geometry of (P ).
It appears that when the constraints are infinite-dimensional one can choose several
different spaces Y without modifying the value and the solutions of (P ). Consequently,
for a small space Y the dual attainment is not the rule. As a consequence, we are
facing the problem of finding an extension of (D) which admits solutions in generic

cases and such that the representation of the primal solution is v ∈ ∂Φ(T ∗ȳ) where Φ
is some extension of Φ.
We are going to

• use the standard saddle-point approach to convex problems based on conjugate
duality as developed by Rockafellar in [13],

• work with topologies which reflect some of the geometric structure of the objective
function.



324 C. Léonard / Convex Minimization Problems

These made-to-measure topologies are associated with the gauges of the level sets of Φ
and Φ∗.

Outline of the paper

The results are stated without proof in Section 2. Their proofs are postponed to Section
5. Examples are introduced in Section 3 where we consider the Monge-Kantorovich
transport and entropy minimization problems. These problems are investigated in
[10, 11].

Notation

Let X and Y be topological vector spaces. The algebraic dual space of X is X∗, the
topological dual space of X is X ′. The topology of X weakened by Y is σ(X, Y ) and
one writes 〈X, Y 〉 to specify that X and Y are in separating duality.
Let f : X → [−∞,+∞] be an extended-real-valued function. Its convex conjugate with
respect to 〈X, Y 〉 is f ∗(y) = supx∈X{〈x, y〉−f(x)} ∈ [−∞,+∞], y ∈ Y. Its subdifferen-
tial at x with respect to 〈X, Y 〉 is ∂Y f(x) = {y ∈ Y ; f(x+ ξ) ≥ f(x)+ 〈y, ξ〉,∀ξ ∈ X}.
If no confusion occurs, one writes ∂f(x).
One defines the level sets of f by {f ≤ a}, a ∈ R. The function f is lower semicontin-
uous if and only is all its level sets are closed. One says that f is inf-compact if all its
level sets are compact.
The lower semicontinuous regularization of f is denoted by ls f.
The intrinsic core of a subset A of a vector space is icorA = {x ∈ A;∀x′ ∈ affA,∃t >
0, [x, x+ t(x′ − x)[⊂ A} where affA is the affine space spanned by A. icordom f is the
intrinsic core of the effective domain of f dom f = {x ∈ X; f(x) < ∞}.
The indicator function of a subset A of X is defined by

ιA(x) =

{
0, if x ∈ A,

+∞, otherwise,
x ∈ X. (4)

The support function of A ⊂ X is ι∗A(y) = supx∈A〈x, y〉, y ∈ Y.

2. Statements of the results

The dual equality and the primal attainment are stated in Theorem 2.1; the dual
attainment and the dual representation of the minimizers are stated in Theorems 2.2
and 2.3. Their proofs are postponed to Section 5.

2.1. Basic diagram

Let Uo be a vector space, Vo = U∗
o its algebraic dual space, Φo a (−∞,+∞]-valued

convex function on Uo and Φ∗
o its convex conjugate for the duality 〈Uo,Vo〉:

Φ∗
o(v) := sup

u∈Uo

{〈u, v〉 − Φo(u)}, v ∈ Vo.

Let Yo be another vector space, Xo = Y∗
o its algebraic dual space and To : Vo → Xo be

a linear operator. We consider the convex minimization problem

minimize Φ∗
o(v) subject to Tov ∈ Co, v ∈ Vo (Po)
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where Co is a convex subset of Xo.
It is useful to define the constraint operator To by means of its adjoint T ∗

o : Yo → V∗
o

as follows. For all v ∈ Vo,

〈y, Tov〉Yo,Xo
= 〈T ∗

o y, v〉V∗
o ,Vo

, ∀y ∈ Yo.

We shall assume that the restriction

T ∗
o (Yo) ⊂ Uo (5)

holds, where Uo is identified with a subspace of V∗
o = U∗∗

o . It follows that the diagram

〈
Uo , Vo

〉

T ∗
o

x
yTo〈

Yo , Xo

〉

Diagram 0.

is meaningful.

2.2. Assumptions

Let us give the list of our main hypotheses.

(HΦ) 1. Φo : Uo → [0,+∞] is σ(Uo,Vo)-lower semicontinuous, convex and Φo(0) = 0.
2. ∀u ∈ Uo,∃α > 0,Φo(αu) < ∞.
3. ∀u ∈ Uo, u 6= 0,∃t ∈ R,Φo(tu) > 0.

(HT ) 1. T ∗
o (Yo) ⊂ Uo.

2. ker T ∗
o = {0}.

(HC) C := Co ∩ X is a convex σ(X ,Y)-closed subset of X .

The definitions of the vector spaces X and Y which appear in the last assumption are
stated below in Subsection 2.3. For the moment, let us only say that if Co is convex
and σ(Xo,Yo)-closed, then (HC) holds.

Comments about the assumptions.

- By construction, Φ∗
o is a convex σ(Vo,Uo)-lower semicontinuous function, even if

Φo doesn’t satisfy (HΦ1). Assuming this property of Φo is not a restriction.

- The assumption (HΦ1) also expresses that Φo achieves its minimum at u = 0 and
that Φo(0) = 0. This is a practical normalization requirement which will allow us
to build a gauge functional associated with Φo. Moreover, (HΦ1) implies that Φ∗

o

also shares this property. Gauge functionals related to Φ∗
o will also appear later.

- With any convex function Φ̃ satisfying (HΦ2), one can associate a function Φo sat-

isfying (HΦ1) in the following manner. Because of (HΦ2), one has 0 ∈ icordom Φ̃

and hence there exists vo ∈ Vo such that vo ∈ ∂Φ̃(0). Then, the lower semicontin-

uous convex regularization Φo of u ∈ Uo 7→ Φ̃(u) − 〈vo, u〉 − Φ̃(0), satisfies (HΦ1)

and Φ̃∗(v) = Φ∗
o(v − vo)− Φ̃(0), v ∈ Vo.
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- The hypothesis (HΦ3) is not a restriction. Indeed, assuming (HΦ1), let us suppose
that there exists a direction uo 6= 0 such that Φo(tuo) = 0 for all real t. Then any
v ∈ Vo such that 〈v, uo〉 6= 0 satisfies Φ∗

o(v) ≥ supt∈R t〈v, uo〉 = +∞ and cannot be
a solution to (P ).

- The hypothesis (HT2) is not a restriction either: If y1 − y2 ∈ ker T ∗
o , we have

〈Tov, y1〉 = 〈Tov, y2〉, for all v ∈ Vo. In other words, the spaces Yo and Yo/ker T
∗
o

both specify the same constraint sets {v ∈ Vo;Tov = x}.

The effective assumptions are the following ones.

- The specific form of the objective function Φ∗
o as a convex conjugate makes it a

convex σ(Vo,Uo)-lower semicontinuous function.

- (HΦ2) and (HC) are geometric restrictions.

- (HT1) is a regularity assumption on To.

2.3. Variants of (P ) and (D)

These variants are expressed below in terms of new spaces and functions. Let us first
introduce them.

The norms | · |Φ and | · |Λ

Let Φ±(u) = max(Φo(u),Φo(−u)). By (HΦ1) and (HΦ2), {u ∈ Uo; Φ±(u) ≤ 1} is a
convex absorbing balanced set. Hence its gauge functional which is defined for all
u ∈ Uo by |u|Φ := inf{α > 0; Φ±(u/α)) ≤ 1} is a seminorm. Thanks to hypothesis
(HΦ3), it is a norm.
Taking (HT1) into account, one can define

Λo(y) := Φo(T
∗
o y), y ∈ Yo. (6)

Let Λ±(y) = max(Λo(y),Λo(−y)). The gauge functional on Yo of the set {y ∈ Yo; Λ±(y)
≤ 1} is |y|Λ := inf{α > 0; Λ±(y/α) ≤ 1}, y ∈ Yo. Thanks to (HΦ) and (HT ), it is a
norm and

|y|Λ = |T ∗
o y|Φ, y ∈ Yo. (7)

The spaces

Let

U be the | · |Φ-completion of Uo and let

V := (Uo, | · |Φ)
′ be the topological dual space of (Uo, | · |Φ).

Of course, we have (U , | · |Φ)
′ ∼= V ⊂ Vo where any v in V is identified with its restriction

to Uo. Similarly, we introduce

Y the | · |Λ-completion of Yo and

X := (Yo, | · |Λ)
′ the topological dual space of (Yo, | · |Λ).

We have (Y , | · |Λ)
′ ∼= X ⊂ Xo where any x in Y ′ is identified with its restriction to Yo.

We also have to consider the algebraic dual spaces V∗ and X ∗ of V and X .
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The operators T and T ∗

It will be proved in Lemma 4.5 that

ToV ⊂ X . (8)

Let us denote T the restriction of To to V ⊂ Vo. By (8), we have T : V → X . Let us
define its adjoint T ∗ : X ∗ → V∗ for all ω ∈ X ∗ by:

〈v, T ∗ω〉V,V∗ = 〈Tv, ω〉X ,X ∗ , ∀v ∈ V.

This definition is meaningful, thanks to (8). It will be proved in Lemma 4.5 that

T ∗Y ⊂ U . (9)

We have the inclusions Yo ⊂ Y ⊂ X ∗. The adjoint operator T ∗
o is the restriction of T ∗

to Yo.

Some modifications of Φo and Λo

We introduce the following modifications of Φo:

Φ(u) := sup
v∈V

{〈u, v〉 − Φ∗
o(v)}, u ∈ U

Φ(ζ) := sup
v∈V

{〈v, ζ〉 − Φ∗(v)}, ζ ∈ V∗.

They are respectively σ(U ,V) and σ(V∗,V)-lower semicontinuous convex functions. It

is immediate to see that the restriction of Φ to U is Φ. As V = U ′, Φ is also the
| · |Φ-lower semicontinuous convex regularization of Φo. The function Φ is the extension
which appears in the introductory Section 1. We also introduce

Λ(y) := Φ(T ∗y), y ∈ Y

Λ(ω) := Φ(T ∗ω), ω ∈ X ∗

which look like the definition (6). Note that thanks to (9), the first equality is mean-

ingful. Because of the previous remarks, the restriction of Λ to Y is Λ.

The optimization problems

Let Φ∗
o and Φ∗ be the convex conjugates of Φo and Φ with respect to the dual pairings

〈Uo,Vo〉 and 〈U ,V〉:

Φ∗
o(v) := sup

u∈Uo

{〈u, v〉 − Φo(u)}, v ∈ Vo

Φ∗(v) := sup
u∈U

{〈u, v〉 − Φ(u)}, v ∈ V

and Λ∗
o,Λ

∗ be the convex conjugates of Λo,Λ with respect to the dual pairings 〈Yo,Xo〉
and 〈Y ,X〉:

Λ∗
o(x) := sup

y∈Yo

{〈y, x〉 − Λo(y)}, x ∈ Xo

Λ∗(x) := sup
y∈Y

{〈y, x〉 − Λ(y)}, x ∈ X .
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Finally, denote C = Co ∩ X .
The optimization problems to be considered are:

minimize Φ∗
o(v) subject to Tov ∈ Co, v ∈ Vo (Po)

minimize Φ∗(v) subject to Tv ∈ C, v ∈ V (P )

minimize Λ∗(x) subject to x ∈ C, x ∈ X (PX )

maximize inf
x∈Co

〈y, x〉 − Λo(y), y ∈ Yo (Do)

maximize inf
x∈C

〈y, x〉 − Λ(y), y ∈ Y (D)

maximize inf
x∈C

〈x, ω〉 − Λ(ω), ω ∈ X ∗. (D)

2.4. Statements

We are now ready to give answers to the Questions 1.1 related to (P ) and (D).

Theorem 2.1 (Primal attainment and dual equality). Assume that (HΦ) and
(HT ) hold.

(a) For all x in Xo, we have the simple dual equality

inf{Φ∗
o(v); v ∈ Vo, Tov = x} = Λ∗

o(x) ∈ [0,∞]. (10)

Moreover, in restriction to X , Λ∗
o = Λ∗ and Λ∗ is σ(X ,Y)-inf-compact.

(b) The problems (Po) and (P ) are equivalent: they have the same solutions and
inf(Po) = inf(P ) ∈ [0,∞].

(c) If Co is convex and σ(Xo,Yo)-closed, we have the dual equality

inf(Po) = sup(Do) ∈ [0,∞].

Assume that (HΦ), (HT ) and (HC) hold.

(d) We have the dual equalities

inf(Po) = inf(P ) = sup(D) = sup(D) = inf
x∈Co

Λ∗
o(x) = inf

x∈C
Λ∗(x) ∈ [0,∞]. (11)

(e) If in addition inf(Po) < ∞, then (Po) is attained in V . Moreover, any minimizing
sequence of (Po) has σ(V ,U)-cluster points and every such cluster point solves
(Po).

(f) Let v ∈ V be a solution to (P ), then x := Tov is a solution to (PX ) and inf(P ) =
Φ∗(v) = Λ∗

o(x).

Theorem 2.2 (Dual attainment and representation. Interior convex con-
straint). Assume that (HΦ), (HT ) and (HC) hold.

(1) For any v ∈ V and ω̄ ∈ X ∗,





(a) T v ∈ C

(b) 〈ω̄, T v〉 ≤ 〈ω̄, x〉 for all x ∈ C

(c) v ∈ ∂VΦ(T
∗ω̄)

(12)
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is equivalent to {
v is a solution to (Po) and

ω̄ is a solution to (D).

(2) Suppose that in addition the interior constraint qualification

Co ∩ icor (TodomΦ∗
o) 6= ∅ (13)

is satisfied. Then, the primal problem (Po) is attained in V and the dual problem

(D) is attained in X ∗.

Note that (13) is equivalent to Co ∩ icordomΛ∗
o 6= ∅.

As can be seen in [10], the Monge-Kantorovich problem provides an example where no
constraint is interior. In order to solve it, we are going to consider the more general
situation (1) where the constraint is said to be a subgradient constraint. This means
that x belongs to

dom ∂X ∗Λ∗
o = {x ∈ X ; ∂X ∗Λ∗

o(x) 6= ∅}, where

∂X ∗Λ∗
o(x) = {ω ∈ X ∗; Λ∗

o(x
′) ≥ Λ∗

o(x) + 〈x′ − x, ω〉,∀x′ ∈ X}.

Two new optimization problems to be considered are

minimize Φ∗
o(v) subject to Tov = x, v ∈ Vo (P x)

maximize 〈x, ω〉 − Λ(ω), ω ∈ X ∗ (D
x
)

where x ∈ Xo. This corresponds to the simplified case where Co is reduced to the single
point x.

Theorem 2.3 (Dual attainment and representation. Subgradient affine con-
straint). Let us assume that (HΦ) and (HT ) hold.

(1) For any v ∈ V and ω̄ ∈ X ∗,

{
(a) T v = x

(b) v ∈ ∂VΦ(T
∗ω̄)

(14)

is equivalent to {
v is a solution to (P x) and

ω̄ is a solution to (D
x
).

(2) Suppose that in addition the subgradient constraint qualification

x ∈ dom ∂X ∗Λ∗
o, (15)

is satisfied. Then, the primal problem (P x) is attained in V , and the dual problem

(D
x
) is attained in X ∗.

It is well-known that the representation formula (12(c)) or (14(b)):

v ∈ ∂VΦ(T
∗ω̄) (16)



330 C. Léonard / Convex Minimization Problems

is equivalent to
T ∗ω̄ ∈ ∂V∗Φ∗(v)

and also equivalent to Fenchel’s identity

Φ∗(v) + Φ(T ∗ω̄) = 〈ω̄, T v〉 = Λ∗(x) + Λ(ω̄). (17)

Formula (16) can be made a little more precise by means of the following regularity
result.

Theorem 2.4. Assume that (HΦ), (HT ) and (HC) hold. Any solution ω̄ of (D) or

(D
x
) shares the following properties

(a) ω̄ is in the σ(X ∗,X )-closure of domΛ;

(b) T ∗ω̄ is in the σ(V∗,V)-closure of T ∗(domΛ).

If in addition the level sets of Φ : {Φ ≤ a}, a ∈ R, are | · |Φ-bounded, then

(a′ ) ω̄ is in Y ′′. More precisely, it is in the σ(Y ′′,X )-closure of domΛ;

(b ′ ) T ∗ω̄ is in U ′′. More precisely, it is in the σ(U ′′,V)-closure of T ∗(domΛ)

where Y ′′ and U ′′ are the topological bidual spaces of (Y , | · |Λ) and (U , | · |Φ). This
occurs when Φ, and therefore Φ∗, is an even function.

3. Examples

The abstract results of Section 2 are exemplified by means of the Monge-Kantorovich
optimal transport problem and the problem of minimizing entropy functionals on con-
vex sets.

3.1. The Monge-Kantorovich optimal transport problem

Denote PA, PB and PAB the sets of all probability measures on the spaces A, B and
A×B. Let c : A×B → [0,∞) a nonnegative (cost) function and two probability
measures µ ∈ PA and ν ∈ PB on A and B. The Monge-Kantorovich problem is

minimize π ∈ PAB 7→

∫

A×B

c(a, b)π(dadb) subject to π ∈ P (µ, ν) (MK)

where P (µ, ν) is the set of all π ∈ PAB with prescribed marginals πA = µ on A and
πB = ν on B. Any solution of (MK) is called an optimal plan. For a general account
on this active field of research, see Villani’s books [15, 16].
Without going into the details, let us indicate how this problem enters the present
framework. Assume that A and B are topological spaces and denote CA, CB and CAB

the spaces of all continuous bounded functions on A, B and A×B. The function Φo is
defined on the space Uo = CAB by

Φo(u) = ι{u≤c}, u ∈ CAB

see (4). The marginal constraint π ∈ P (µ, ν) is obtained by choosing Yo = CA × CB

and
T ∗
o (f, g) = f ⊕ g, f ∈ CA, g ∈ CB
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with
f ⊕ g(a, b) := f(a) + g(b), a ∈ A, b ∈ B,

see Section 3.3 below. This gives Λo(f, g) = ι{f⊕g≤c} and the dual equality (10) is the
well-known Kantorovich dual equality

inf

{∫

A×B

c(a, b)π(dadb);π ∈ P (µ, ν)

}

= sup

{∫

A

f(a)µ(da) +

∫

B

g(b) ν(db); f ∈ CA, g ∈ CB : f ⊕ g ≤ c

}
.

In [10], cost functions c which may take infinite values are considered and Theorem
2.3 is used to derive a necessary condition of optimality, yielding a new result on this
well-known problem.

3.2. Entropy minimization

The problem is sketched in this section and studied in further details in [11].

Entropy

Let R be a positive measure on a space Z and take a [0,∞]-valued jointly measurable
function γ∗ on Z × R such that γ∗(z, ·) := γ∗

z is convex and lower semicontinuous for
all z ∈ Z. Denote MZ the space of all signed measures Q on Z. The entropy functional
to be considered is defined by

I(Q) =

{∫
Z
γ∗
z (

dQ

dR
(z))R(dz) if Q ≺ R,

+∞ otherwise,
Q ∈ MZ (18)

where Q ≺ R means that Q is absolutely continuous with respect to R. Assume that
for each z there exists a unique m(z) which minimizes γ∗

z with γ∗
z (m(z)) = 0. Then, I

is [0,∞]-valued, its unique minimizer is mR and I(mR) = 0.
As for each z, γ∗

z is lower semicontinuous convex, it is the convex conjugate of some
lower semicontinuous convex function γz. Defining

λ(z, s) = γ(z, s)−m(z)s, z ∈ Z, s ∈ R,

one sees that for R-a.e. z, λz is a nonnegative convex function and it vanishes at 0. A
favorable choice for Uo is the space of all measurable functions u on Z such that

∫

Z

λ(z, αu(z))R(dz) < ∞, for all α ∈ R. (19)

With
λ⋄(z, s) = max[λ(z, s), λ(z,−s)] ∈ [0,∞], z ∈ Z, s ∈ R,

(19) is equivalent to u belongs to

Uo = Eλ⋄
:=

{
u;

∫

Z

λ⋄(z, αu(z))R(dz) < ∞,∀α > 0

}
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the “small� Orlicz space associated with the Young function λ⋄. Taking

Φo(u) =

∫

Z

λz(u(z))R(dz) ∈ [0,∞], u ∈ Eλ⋄
(20)

leads to
I(Q) = Φ∗

o(Q−mR), Q ∈ MZ . (21)

This identity is a consequence of general results of Rockafellar on conjugate duality for
integral functionals [12]. Moreover, the effective domain of I is included in the space

Mλ⋄

Z :=

{
Q ∈ MZ ;

∫

Z

|u| d|Q| < ∞, ∀u ∈ Eλ⋄

}
.

Constraint

In order to define the constraint, take Xo a vector space and a function θ : Z → Xo.
One wants to give some meaning to the formal constraint

∫
Z
θ dQ = x with Q ∈ Mλ⋄

Z

and x ∈ Xo. Suppose that Xo is the algebraic dual space of some vector space Yo and
define for all y ∈ Yo,

T ∗
o y(z) := 〈y, θ(z)〉Yo,Xo

, z ∈ Z. (22)

Assuming that
T ∗
o y ∈ Eλ⋄

, ∀y ∈ Yo

allows us to define the constraint operator

ToQ :=

∫

Z

θ dQ, Q ∈ Mλ⋄

Z

by 〈
y,

∫

Z

θ dQ

〉

Yo,Xo

=

∫

Z

〈y, θ(z)〉Yo,Xo
Q(dz), ∀y ∈ Yo.

Minimization problem

The entropy minimization problem to be considered is

minimize I(Q) subject to

∫

Z

θ dQ ∈ Co, Q ∈ Mλ⋄

Z ,

where Co is a convex subset of Xo.

Results

Applying the abstract results of the present paper, in [11] are obtained the following
results. Let Γ∗(x) = supy∈Yo

{〈y, x〉−
∫
Z
γz(〈y, θ(z)〉)R(dz)}, x ∈ Xo. The dual equality

is inf{I(Q);Q ∈ Mλ⋄

Z ,
∫
Z
θ dQ ∈ Co} = infCo

Γ∗ and under the assumption

Co ∩ icordomΓ∗ 6= ∅, (23)

the characterization of the minimizer Q̂ is as follows. Defining x
M
=

∫
Z
θ dQ̂ in the weak

sense with respect to the duality 〈Yo,Xo〉, Q̂ is a minimizer if and only if there exists
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some linear form ȳ on Xo such that 〈ȳ, θ(·)〉 is measurable,
∫
Z
λ⋄(z, αo〈ȳ, θ(z)〉)R(dz) <

∞ for some αo > 0 and




(a) x ∈ Co ∩ domΓ∗

(b) 〈ȳ, x〉 ≤ 〈ȳ, x〉,∀x ∈ Co ∩ domΓ∗

(c) Q̂(dz) = γ′
z(〈ȳ, θ(z)〉)R(dz).

(24)

where γ′
z(s) =

∂
∂s
γ(z, s).

Remark 3.1. A usual form of constraint qualification required for this representation
is intCo ∩ domΓ∗ 6= ∅ where intCo is the interior of Co with respect to some topology
which is not directly connected to the “geometry� of Γ∗. In particular, intCo must
be nonempty; this is a considerable restriction. The constraint qualification Co ∩
icordomΓ∗ 6= ∅ is much weaker.

Literature about entropy minimization

Entropy minimization problems appear in many areas of applied mathematics and
sciences. The literature about the minimization of entropy functionals under convex
constraints is considerable: many papers are concerned with an engineering approach,
working on the implementation of numerical procedures in specific situations. In fact,
entropy minimization is a popular method to solve ill-posed inverse problems.
Surprisingly, rigorous general results on this topic are quite recent. Let us cite, among
others, the main contribution of Borwein and Lewis: [1, 2, 3, 4, 5, 6] together with the
paper [14] by Teboulle and Vajda. In these papers, topological constraint qualifications
are required: it is assumed that the constraints stand in some topological interior of
the domain of I. Such restrictions are removed in [11].

3.3. Some examples of constraints

Let us consider the two standard constraints which are the moment constraints and
the marginal constraints.

Moment constraints

Let θ = (θk)1≤k≤K be a measurable function from Z to Xo = R
K . The moment con-

straint is defined by ∫

Z

θ dQ =

(∫

Z

θk dQ

)

1≤k≤K

∈ R
K ,

for each Q ∈ MZ which integrates all the real valued measurable functions θk.

Marginal constraints

Let Z = A×B be a product space, MAB be the space of all bounded signed measures
on A×B and UAB be the space of all measurable bounded functions u on A×B. Denote
vA = v(· × B) and vB = v(A × ·) the marginal measures of v ∈ MAB. The constraint
of prescribed marginal measures is specified by

∫

A×B

θ dv = (vA, vB) ∈ MA ×MB, v ∈ MAB
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where MA and MB are the spaces of all bounded signed measures on A and B. The
function θ which gives the marginal constraint is

θ(a, b) = (δa, δb), a ∈ A, b ∈ B

where δa is the Dirac measure at a. Indeed, (vA, vB) =
∫
A×B

(δa, δb) v(dadb).
More precisely, let UA, UB be the spaces of measurable functions on A and B and take
Yo = UA × UB and Xo = U∗

A × U∗
B. Then, θ is a measurable function from Z = A×B

to Xo = U∗
A × U∗

B. It is easy to see that the adjoint of the marginal operator

Tov = (vA, vB) ∈ U∗
A × U∗

B, v ∈ Vo = U∗
AB

where 〈f, vA〉 := 〈f ⊗ 1, v〉 and 〈g, vB〉 := 〈1⊗ g, v〉 for all f ∈ UA and g ∈ UB, is given
by

T ∗
o (f, g) = f ⊕ g ∈ UAB, f ∈ UA, g ∈ UB (25)

where f ⊕ g(a, b) := f(a) + g(b), a ∈ A, b ∈ B.

4. Preliminary results

In this section, one introduces notation and proves preliminary technical results for the
proofs of the results of Section 2.

4.1. The saddle-point method (for fixing notation)

We are going to apply the general results of the Lagrangian approach to the minimiza-
tion problem (Po). To quote easily and precisely some well-known results of convex
minimization while proving our results, we give a short overview of the approach to con-
vex minimization problems by means of conjugate duality as developed in Rockafellar’s
monograph [13].

Let A be a vector space and f : A → [−∞,+∞] an extended-real-valued convex
function. We consider the following convex minimization problem

minimize f(a), a ∈ A. (P)

Let Q be another vector space. The perturbation of the objective function f is a
function F : A×Q → [−∞,+∞] such that for q = 0 ∈ Q, F (·, 0) = f(·). The problem
(P) is imbedded in a parameterized family of minimization problems

minimize F (a, q), a ∈ A. (Pq)

The value function of (Pq)q∈Q is

ϕ(q) := inf(Pq) = inf
a∈A

F (a, q) ∈ [−∞,+∞], q ∈ Q.

Let us assume that the perturbation is chosen such that

F is jointly convex on A×Q. (26)

Then, (Pq)q∈Q is a family of convex minimization problems and the value function ϕ
is convex.
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Let B be a vector space in dual pairing with Q. This means that B and Q are locally
convex topological vector spaces in separating duality such that their topological dual
spaces B′ and Q′ satisfy B′ = Q and Q′ = B up to some isomorphisms. The Lagrangian
associated with the perturbation F and the duality 〈B,Q〉 is

K(a, b) := inf
q∈Q

{〈b, q〉+ F (a, q)}, a ∈ A, b ∈ B. (27)

Under (26), K is a convex-concave function. Assuming in addition that F is chosen
such that

q 7→ F (a, q) is a closed convex function for any a ∈ A, (28)

one can reverse the conjugate duality relation (27) to obtain

F (a, q) = sup
b∈B

{K(a, b)− 〈b, q〉}, ∀a ∈ A, q ∈ Q. (29)

Recall that for a convex function to be closed, it is enough that it is lower semicontin-
uous and it doesn’t take the value −∞.

Introducing another vector space P in separating duality with A we define the function

G(b, p) := inf
a∈A

{K(a, b)− 〈a, p〉}, b ∈ B, p ∈ P. (30)

This formula is analogous to (29). Going on symmetrically, one interprets G as the
concave perturbation of the objective concave function

g(b) := G(b, 0), b ∈ B

associated with the concave maximization problem

maximize g(b), b ∈ B (D)

which is the dual problem of (P). It is imbedded in the family of concave maximization
problems (Dp)p∈P

maximize G(b, p), b ∈ B (Dp)

whose value function is
γ(p) := sup

b∈B
G(b, p), p ∈ P.

Since G is jointly concave, γ is also concave. We have the following diagram

γ(p) f(a)〈
P , A

〉

G(b, p) K(a, b) F (a, q)〈
B , Q

〉

g(b) ϕ(q)

The concave conjugate of the function f with respect to the dual pairing 〈Y,X〉 is

f ∗(y) = infx{〈y, x〉 − f(x)} and its superdifferential at x is ∂̂f(x) = {y ∈ Y ; f(x′) ≤
f(x) + 〈y, x′ − x〉}.
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Theorem 4.1. We assume that 〈P,A〉 and 〈B,Q〉 are topological dual pairings.

(a) We have sup(D) = ϕ∗∗(0). Hence, the dual equality inf(P) = sup(D) holds if and
only if ϕ(0) = ϕ∗∗(0).

(b) In particular,

• F is jointly convex
• ϕ is lower semicontinuous at 0
• sup(D) > −∞



 ⇒ inf(P) = sup(D).

(c) If the dual equality holds, then

argmax g = −∂ϕ(0).

Let us assume in addition that (26) and (28) are satisfied.

(a′ ) We have inf(P) = γ∗∗(0). Hence, the dual equality inf(P) = sup(D) holds if and
only if γ(0) = γ∗∗(0).

(b ′ ) In particular,

• γ is upper semicontinuous at 0
• inf(P) < +∞

}
⇒ inf(P) = sup(D).

(c ′ ) If the dual equality holds, then

argmin f = −∂̂γ(0).

Definition 4.2 (Saddle-point). One says that (ā, b̄) ∈ A × B is a saddle-point of
the function K if

K(ā, b) ≤ K(ā, b̄) ≤ K(a, b̄), ∀a ∈ A, b ∈ B.

Theorem 4.3 (Saddle-point theorem and KKT relations). The following state-
ments are equivalent.

(1) The point (ā, b̄) is a saddle-point of the Lagrangian K.

(2) f(ā) ≤ g(b̄).

(3) The following three statements hold
(a) we have the dual equality: sup(D) = inf(P),
(b) ā is a solution to the primal problem (P) and
(c) b̄ is a solution to the dual problem (D).

In this situation, one also gets

sup(D) = inf(P) = K(ā, b̄) = f(ā) = g(b̄). (31)

Moreover, (ā, b̄) is a saddle-point of K if and only if it satisfies

∂aK(ā, b̄) ∋ 0 (32)

∂̂bK(ā, b̄) ∋ 0 (33)

where the subscript a or b indicates the unfixed variable.
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4.2. Gauge functionals associated with a convex function

The following result is probably well-known, but since I didn’t find a reference for it,
I give its short proof.

Let θ : S → [0,∞] be an extended nonnegative convex function on a vector space S,
such that θ(0) = 0. Let S∗ be the algebraic dual space of S and θ∗ the convex conjugate
of θ:

θ∗(r) := sup
s∈S

{〈r, s〉 − θ(s)}, r ∈ S∗.

It is easy to show that θ∗ : S∗ → [0,∞] and θ∗(0) = 0. We denote Cθ := {θ ≤ 1} and
Cθ∗ := {θ∗ ≤ 1} the unit level sets of θ and θ∗. The gauge functionals to be considered
are

jθ(s) := inf{α > 0; s ∈ αCθ} = inf{α > 0; θ(s/α) ≤ 1} ∈ [0,∞], s ∈ S.

jθ∗(r) := inf{α > 0; r ∈ αCθ∗} = inf{α > 0; θ∗(r/α) ≤ 1} ∈ [0,∞], r ∈ S∗.

As 0 belongs to Cθ and Cθ∗ , one easily proves that jθ and jθ∗ are positively homogeneous.
Similarly, as Cθ and Cθ∗ are convex sets, jθ and jθ∗ are convex functions.

Proposition 4.4. For all r ∈ S∗, we have

1

2
jθ∗(r) ≤ ι∗Cθ

(r) := sup
s∈Cθ

〈r, s〉 ≤ 2jθ∗(r).

We also have
cone dom θ∗ = dom jθ∗ = dom ι∗Cθ

where cone dom θ∗ is the convex cone (with vertex 0) generated by dom θ∗.

Proof. • Let us first show that ι∗Cθ
(r) ≤ 2jθ∗(r) for all r ∈ S∗. For all s ∈ Cθ and

α > jθ∗(r), we have 〈r, s〉 = 〈r/α, s〉α ≤ [θ(s) + θ∗(r/α)]α ≤ (1 + 1)α. Then, optimize
both sides of this inequality.

• Let us show that jθ∗(r) ≤ 2ι∗Cθ
(r). If ι∗Cθ

(r) = ∞, there is nothing to prove. So, let
us suppose that ι∗Cθ

(r) < ∞. As 0 ∈ Cθ, we have ι∗Cθ
(r) ≥ 0.

First case: ι∗Cθ
(r) > 0. For all s ∈ S and ǫ > 0, we have s/[jθ(s) + ǫ] ∈ Cθ. It fol-

lows that 〈r/ι∗Cθ
(r), s〉 = 〈r, s/[jθ(s) + ǫ]〉 jθ(s)+ǫ

ι∗
Cθ

(r)
≤ ι∗Cθ

(r) jθ(s)+ǫ

ι∗
Cθ

(r)
= jθ(s) + ǫ. Therefore,

〈r/ι∗Cθ
(r), s〉 ≤ jθ(s), for all s ∈ S.

If s doesn’t belong to Cθ, then jθ(s) ≤ θ(s). This follows from the the assumptions
on θ: convex function such that θ(0) = 0 = min θ and the positive homogene-
ity of jθ. Otherwise, if s belongs to Cθ, we have jθ(s) ≤ 1. Hence, 〈r/ι∗Cθ

(r), s〉 ≤
max(1, θ(s)),∀s ∈ S. On the other hand, there exists so ∈ S such that θ∗(r/[2ι∗Cθ

(r)]) ≤
〈r/[2ι∗Cθ

(r)], so〉−θ(so)+1/2. The last two inequalities provide us with θ∗(r/[2ι∗Cθ
(r)]) ≤

1
2
max(1, θ(so))− θ(so) +

1
2
≤ 1 since θ(so) ≥ 0. We have proved that jθ∗(r) ≤ 2ι∗Cθ

(r).

Second case: ι∗Cθ
(r) = 0. We have 〈r, s〉 ≤ 0 for all s ∈ Cθ. As dom θ is a subset of

the cone generated by Cθ, we also have for all t > 0 and s ∈ dom θ, 〈tr, s〉 ≤ 0. Hence
〈tr, s〉 − θ(s) ≤ 0 for all s ∈ S and θ∗(tr) ≤ 0, for all t ≥ 0. As θ∗ ≥ 0, we have
θ∗(tr) = 0, for all t ≥ 0. It follows that jθ∗(r) = 0. This completes the proof of the
equivalence of jθ∗ and ι∗Cθ

.
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• Finally, this equivalence implies that dom jθ∗ = dom ι∗Cθ
and as θ∗(0) = 0 we have

0 ∈ dom θ∗ which implies that cone dom θ∗ = dom jθ∗ .

4.3. Preliminary technical results

Recall that |u|Φ = inf{α > 0; Φ±(u/α) ≤ 1} with Φ±(u) = max(Φo(u),Φo(−u)). Its
associated dual uniform norm is

|v|∗Φ := sup
u,|u|Φ≤1

|〈u, v〉|, v ∈ V.

The topological dual space of (V , | · |∗Φ) is denoted by U ′′: the bidual space of (U , | · |Φ).
Similarly, recall that |y|Λ = inf{α > 0; Λ±(y/α)≤ 1} with Λ±(y) =max(Λo(y),Λo(−y)).
Its associated dual uniform norm is

|x|∗Λ := sup
y,|y|Λ≤1

|〈y, x〉|, x ∈ X .

The topological dual space of (X , | · |∗Λ) is denoted by Y ′′: the bidual space of (Y , | · |Λ).

Lemma 4.5. Let us assume (HΦ) and (HT ). Then the following assertions hold true:

(a) domΦ∗
o ⊂ V and domΛ∗

o ⊂ X .

(b) To(domΦ∗
o) ⊂ domΛ∗

o and ToV ⊂ X .

(c) To is σ(Vo,Uo)-σ(Xo,Yo)-continuous.

(d) T ∗ : X ∗ → V∗ is σ(X ∗,X )-σ(V∗,V)-continuous.

(e) T : V → X is | · |∗Φ-| · |
∗
Λ-continuous.

(f) T ∗Y ′′ ⊂ U ′′ where Y ′′ and U ′′ are the topological bidual spaces of Y and U .

(g) T ∗Y ⊂ U and T ∗ : Y → U is σ(Y ,X )-σ(U ,V)-continuous.

(h) T : V → X is σ(V ,U)-σ(X ,Y)-continuous.

Proof. • Proof of (a). For all v ∈ Vo and α > 0, Fenchel’s inequality yields: 〈u, v〉 =
α〈v, u/α〉 ≤ [Φo(u/α) + Φ∗

o(v)]α, for all u ∈ Uo. Hence, for any α > |u|Φ, 〈u, v〉 ≤
[1 + Φ∗

o(v)]α. It follows that 〈u, v〉 ≤ [1 + Φ∗
o(v)]|u|Φ. Considering −u instead of u, one

gets
|〈u, v〉| ≤ [1 + Φ∗

o(v)]|u|Φ, ∀u ∈ Uo, v ∈ Vo. (34)

It follows that domΦ∗
o ⊂ V. One proves domΛ∗

o ⊂ X similarly.

• Proof of (b). It is easy to show that Λ∗
o(Tov) ≤ Φ∗

o(v), for all v ∈ Vo. It follows
immediately that To(domΦ∗

o) ⊂ domΛ∗
o.

Let us consider | · |Φ∗
±
and | · |Λ∗

±
the gauge functionals of the level sets {Φ∗

± ≤ 1} and

{Λ∗
± ≤ 1}. As above,

Λ∗
±(Tov) ≤ Φ∗

±(v), ∀v ∈ Vo. (35)

Therefore, To(domΦ∗
±) ⊂ domΛ∗

±. On the other hand, by Proposition 4.4, the linear
space spanned by domΦ∗

± is dom | · |Φ∗
±
and the linear space spanned by domΛ∗

± is

dom | · |Λ∗
±
. But, dom | · |Φ∗

±
= dom | · |∗Φ = V and dom | · |Λ∗

±
= dom | · |∗Λ = X by

Proposition 4.4 again. Hence, ToV ⊂ X .

• Proof of (c). To prove that To is continuous, one has to show that for any y ∈ Yo,
v ∈ Vo 7→ 〈y, Tov〉 ∈ R is continuous. We get v 7→ 〈y, Tov〉 = 〈T ∗

o y, v〉 which is
continuous since (HT1) gives T

∗
o y ∈ Uo.
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• Proof of (d). It is a direct consequence of ToV ⊂ X . See the proof of (c).

• Proof of (e). We know by Proposition 4.4 that | · |Φ∗
±
∼ | · |∗Φ and | · |Λ∗

±
∼ | · |∗Λ

are equivalent norms on V and X respectively. For all v ∈ V, |Tv|∗Λ ≤ 2|Tv|Λ∗
±

=

2 inf{α > 0; Λ∗
±(Tv/α) ≤ 1} ≤ 2 inf{α > 0; Φ∗

±(v/α) ≤ 1}. This last inequality follows
from (35). Going on, we get |Tv|∗Λ ≤ 2|v|Φ∗

±
≤ 4|v|∗Φ, which proves that T shares the

desired continuity property with ‖T‖ ≤ 4.

• Proof of (f). Let us take ω ∈ Y ′′. For all v ∈ V, |〈T ∗ω, v〉V∗,V | = |〈ω, Tv〉Y ′′,X |
≤ ‖ω‖Y ′′|Tv|∗Λ ≤ ‖ω‖Y ′′‖T‖|v|∗Φ where ‖T‖ < ∞, thanks to (e). Hence, T ∗ω stands in
U ′′.

• Proof of (g). Take y ∈ Y. Let us show that T ∗y is the strong limit of a sequence in
Uo. Indeed, there exists a sequence (yn) in Yo such that limn→∞ yn = y in (Y , | · |Λ).
Hence, for all v ∈ V, |〈T ∗yn − T ∗y, v〉V∗,V | = |〈yn − y, Tv〉Y,X | ≤ ‖T‖|yn − y|Λ|v|

∗
Φ and

supv∈V,|v|∗
Φ
≤1 |〈T

∗yn − T ∗y, v〉| ≤ ‖T‖|yn − y|Λ tends to 0 as n tends to infinity, where

T ∗yn belongs to Uo for all n ≥ 1 by (HT1). Consequently, T
∗y ∈ U .

The continuity statement now follows from (d).

• Proof of (h). By (b), T maps V into X and because of (g): T ∗Y ⊂ U . Hence, for all
y ∈ Y , v 7→ 〈Tv, y〉X ,Y = 〈v, T ∗y〉V,U is σ(V ,U)-continuous. This completes the proof
of Lemma 4.5.

Recall that Φ∗
o, Λ

∗
o and Λ∗ are the convex conjugates of Φo, Λo and Λ for the dual

pairings 〈Uo,Vo〉, 〈Yo,Xo〉 and 〈Y ,X〉.

Lemma 4.6. Under the hypotheses (HΦ) and (HT ), we have

(a) Φo = Φ on Uo;

(b) Λo = Λ on Yo;

(c) Φ∗
o = Φ∗ on V .

Proof. (a) follows directly from Lemma 4.5(a) and the assumption that Φo is lower
semicontinuous and convex. (b) follows from (a).
Let us show (c). As Uo is a dense subspace of U , we obtain that Φ is the convex σ(U ,V)-
lower semicontinuous regularization of Φo+ιUo

where ιUo
is the convex indicator function

of Uo. Since the convex conjugate of a function and the convex conjugate of its convex
lower semicontinuous regularization match, this implies that Φ∗

o = Φ∗ on V .

Lemma 4.7. Under the hypothesis (HΦ),

(a) Φ∗
o is σ(Vo,Uo)-inf-compact and

(b) Φ∗ is σ(V ,U)-inf-compact.

Proof. • Proof of (b). Recall that we already obtained at (34) that |〈u, v〉| ≤ [1 +
Φ∗

o(v)]|u|Φ, for all u ∈ Uo and v ∈ Vo. By completion, one deduces that for all v ∈ V
and u ∈ U , |〈u, v〉| ≤ [1+Φ∗(v)]|u|Φ (Φ∗

o = Φ∗ on V , Lemma 4.6(c).) Hence, Φ∗(v) ≤ A
implies that |v|∗Φ ≤ A + 1. Therefore, the level set {Φ∗ ≤ A} is relatively σ(V ,U)-
compact.
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By construction, Φ∗ is σ(V ,U)-lower semicontinuous. Hence, {Φ∗ ≤ A} is σ(V ,U)-
closed and σ(V ,U)-compact.

• Proof of (a). As Φ∗
o = Φ∗ on V (Lemma 4.6(c)), domΦ∗

o ⊂ V (Lemma 4.5(a)) and
Uo ⊂ U , it follows from the σ(V ,U)-inf-compactness of Φ∗ that Φ∗

o is σ(Vo,Uo)-inf-
compact.

5. Proofs of the results of Section 2

The results of Section 2 are a summing up of Proposition 5.2, Lemma 5.3 , Proposition
5.4, Corollary 5.5, Lemma 5.6, Proposition 5.7, Corollary 5.8, Proposition 5.10 and
Proposition 5.12.

5.1. A first dual equality

In this section we only consider the basic spaces Uo,Vo,Yo and Xo. Let us begin by
recalling Section 4.1 with 〈P,A〉 = 〈Uo,Vo〉 and 〈B,Q〉 = 〈Yo,Xo〉 and the topologies
are the weak topologies σ(Vo,Uo), σ(Uo,Vo), σ(Xo,Yo) and σ(Yo,Xo). The function to
be minimized is f(v) = Φ∗

o(v) + ιCo
(Tov), v ∈ Vo. The perturbation F of f is Fenchel’s

one:
F0(v, x) = Φ∗

o(v) + ιCo
(Tov + x), v ∈ Vo, x ∈ Xo.

We assume (HT1): T
∗
oYo ⊂ Uo, so that the duality diagram is

〈
Uo , Vo

〉

T ∗
o

x
yTo〈

Yo , Xo

〉

Diagram 0.

The analogue of F for the dual problem is

G0(y, u) := inf
v,x

{〈y, x〉 − 〈u, v〉+ F0(v, x)}

= inf
x∈Co

〈y, x〉 − Φo(T
∗
o y + u), y ∈ Yo, u ∈ Uo.

The corresponding value functions are

ϕ0(x) = inf{Φ∗
o(v); v ∈ Vo : Tov ∈ Co − x}, x ∈ Xo

γ0(u) = sup
y∈Yo

{ inf
x∈Co

〈y, x〉 − Φo(T
∗
o y + u)}, u ∈ Uo.

The primal and dual problems are (Po) and (Do).

Lemma 5.1. Assuming (HΦ) and (HT1), if Co is a σ(Xo,Yo)-closed convex set, F0 is
jointly lower semicontinuous convex on Vo ×Xo.

Proof. As To is linear continuous (Lemma 4.5(c)) and Co is closed convex, {(v, x);Tov+
x ∈ Co} is closed convex in Vo × Xo. As Φ

∗
o is lower semicontinuous convex on Vo, its

epigraph is closed convex in Vo×R. It follows that epiF0 = (Xo×epi Φ∗
o)∩[{(x, v);Tov+
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x ∈ Co} × R] is closed convex, which implies that F0 is convex and closed. As it is
nowhere equal to −∞ (since infF0 ≥ inf Φ∗

o > −∞), F0 is also a lower semicontinuous
convex function.

Therefore, assuming that Co is a σ(Xo,Yo)-closed convex set, one can apply the general
theory of Section 4.1 since the perturbation function F0 satisfies the assumptions (26)
and (28).

Proposition 5.2. Let us assume that (HΦ) and (HT ) hold. If Co is convex and
σ(Xo,Yo)-closed, we have the dual equality

inf(Po) = sup(Do) ∈ [0,∞]. (36)

In particular, for all x in Xo, we have the simple dual equality

inf{Φ∗
o(v); v ∈ Vo, Tov = x} = Λ∗

o(x) ∈ [0,∞]. (37)

Proof. The identity (37) is a special case of (36) with Co = {x}.
To prove (36), we consider separately the cases where inf(Po) < +∞ and inf(Po) = +∞.

Case where inf(Po) < +∞. Thanks to Theorem 4.1(b ′ ), it is enough to prove that γ0
is upper semicontinuous at u = 0. We are going to prove that γ0 is continuous at u = 0.
Indeed, for all u ∈ Uo,

−γ0(u) = inf
y
{Φo(T

∗
o y + u)− inf

x∈Co

〈y, x〉} ≤ Φo(u)

where the inequality is obtained by taking y = 0. The norm | · |Φ is designed so that Φo

is bounded above on a | · |Φ-neighbourhood of zero. By the previous inequality, so is
the convex function −γ0. Therefore, −γ0 is | · |Φ-continuous on icordom (−γ0) ∋ 0. As
it is convex and V = (Uo, | · |Φ)

′, it is also σ(Uo,V)-lower semicontinuous and a fortiori
σ(Uo,Vo)-lower semicontinuous at 0, since V ⊂ Vo.

Case where inf(Po) = +∞. Note that sup(Do) ≥ −Φo(0) = 0 > −∞, so that we can
apply Theorem 4.1(b). It is enough to prove that

lsϕ0(0) = +∞

in the situation where ϕ0(0) = inf(Po) = +∞. Recall that lsϕ0 is the lower semicontin-
uous regularization of ϕ0: we have lsϕ0(0) = supW∈N (0) inf{Φ

∗
o(v); v : Tov ∈ Co +W}

where N (0) is the set of all the σ(Xo,Yo)-open neighbourhoods of 0 ∈ Xo. Now, we
prove ad absurdum that lsϕ0(0) = +∞. Suppose that lsϕ0(0) < +∞. Let ǫ > 0.
By the above equality of lsϕ0(0), for all W ∈ N (0), there exists v ∈ Vo such that
Tov ∈ Co +W and Φ∗

o(v) ≤ lsϕ0(0) + ǫ. This implies that

To({Φ
∗
o ≤ lsϕ0(0) + ǫ}) ∩ (Co +W ) 6= ∅, ∀W ∈ N (0). (38)

On the other hand, inf(Po) = +∞ is equivalent to: To(domΦ∗
o) ∩ Co = ∅ and we have

a fortiori
To({Φ

∗
o ≤ lsϕ0(0) + ǫ}) ∩ Co = ∅.
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As Φ∗
o is inf-compact (Lemma 4.7(a)) and To is continuous (Lemma 4.5(c)), To({Φ

∗
o ≤

lsϕ0(0) + ǫ}) is a σ(Xo,Yo)-compact subset of Xo. Clearly, it is also convex. But
Co is assumed to be closed and convex, so that by Hahn-Banach theorem, Co and
To({Φ

∗
o ≤ lsϕ0(0) + ǫ}) are strictly separated. This contradicts (38), considering open

neighbourhoods W of the origin in (38) which are open half-spaces. Consequently,
lsϕ0(0) = +∞. This completes the proof of the proposition.

5.2. Primal attainment and dual equality

We are going to consider the following duality diagram, see Section 2.3:

〈
U , V

〉

T ∗
x

yT〈
Y , X

〉

Diagram 1.

Note that the inclusions TV ⊂ X and T ∗Y ⊂ U which are stated in Lemma 4.5 are
necessary to validate this diagram.
Let F1, G1 and γ1 be the analogues of F0, G0 and γ0. Denoting ϕ1 the primal value
function, we obtain

F1(v, x) = Φ∗(v) + ιC(Tv + x), v ∈ V, x ∈ X

G1(y, u) = inf
x∈C

〈y, x〉 − Φ(T ∗y + u), y ∈ Y, u ∈ U

ϕ1(x) = inf{Φ∗(v); v ∈ V : Tv ∈ C − x}, x ∈ X

γ1(u) = sup
y∈Y

{ inf
x∈C

〈y, x〉 − Φ(T ∗y + u)}, u ∈ U .

It appears that the primal and dual problems are (P ) and (D).

Lemma 5.3. Assuming (HΦ) and (HT ), the problems (Po) and (P ) are equivalent:
they have the same solutions and inf(Po) = inf(P ) ∈ [0,∞].

Proof. It is a direct consequence of domΦ∗
o ⊂ V, ToV ⊂ X and Φ∗

o = Φ∗ on V , see
Lemma 4.5(a), (b) and Lemma 4.6(c).

Proposition 5.4 (Primal attainment and dual equality). Assume that (HΦ) and
(HT ) hold.

(a) For all x in X , we have the simple dual equality

inf{Φ∗
o(v); v ∈ Vo, Tov = x} = Λ∗(x) ∈ [0,∞]. (39)

Assume that in addition (HC) holds.

(b) We have the dual equalities

inf(Po) = sup(D) ∈ [0,∞] (40)

inf(Po) = inf(P ) = inf
x∈C

Λ∗(x) ∈ [0,∞]. (41)
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(c) If in addition inf(Po) < ∞, then (Po) is attained in V .

(d) Let v ∈ V be a solution to (P ), then x := T v is a solution to (PX ) and inf(P ) =
Φ∗(v) = Λ∗(x).

Proof. • We begin with the proof of (40). As inf(Po) = inf(P ) by Lemma 5.3, we
have to show that inf(P ) = sup(D). We consider separately the cases where inf(P ) <
+∞ and inf(P ) = +∞.

Case where inf(P ) < +∞. Because of (HC), F1 is jointly convex and F1(v, ·) is σ(X ,Y)-
lower semicontinuous convex for all v ∈ V. As T ∗Y ⊂ U (Lemma 4.5), one can apply
the approach of Section 4.1 to the duality Diagram 1. Therefore, by Theorem 4.1(b ′ ),
the dual equality holds if γ1 is σ(U ,V)-upper semicontinuous at 0. As in the proof of
Proposition 5.2, we have −γ1(u) ≤ Φ(u), for all u ∈ U . But Φ is the σ(U ,V)-lower
semicontinuous regularization of Φo + ιUo

on U and Φo is bounded above by 1 on the
ball {u ∈ Uo; |u|Φ < 1}. As V = (U , | · |Φ)

′, Φ is also the | · |Φ-regularization of Φo + ιUo
.

Therefore, Φ is bounded above by 1 on {u ∈ U ; |u|Φ < 1}, since {u ∈ Uo; |u|Φ < 1}
is | · |Φ-dense in {u ∈ U ; |u|Φ < 1}. As −γ1(≤ Φ) is convex and bounded above on
a | · |Φ-neighbourhood of 0, it is | · |Φ-continuous on icordom (−γ1) ∋ 0. Hence, it is
σ(U ,V)-lower semicontinuous at 0.

Case where inf(P ) = +∞. This proof is a transcription of the second part of the proof
of Proposition 5.2, replacing To by T, Co by C, all the subscripts 0 by 1 and using
the preliminary results: Φ∗ is inf-compact (Lemma 4.7) and T is weakly continuous
(Lemma 4.5(h)). This completes the proof of (40).

• The identity (39) is simply (40) with C = {x}.

• Let us prove (c). By Lemma 4.5(h), T is σ(V ,U)-σ(X ,Y)-continuous. Since C
is σ(X ,Y)-closed, {v ∈ V;Tv ∈ C} is σ(V ,U)-closed. As Φ∗ is σ(V ,U)-inf-compact
(Lemma 4.7), it achieves its infimum on the closed set {v ∈ V;Tv ∈ C} if inf(P ) =
inf(Po) < ∞.

• Let us prove (41). The dual equality (40) gives us for all xo ∈ C, inf(P ) =
supy∈Y{infx∈C〈y, x〉 − Λ(y)} ≤ supy∈Y{〈xo, y〉 − Λ(y)} = Λ∗(xo). Therefore

inf(P ) ≤ inf
x∈C

Λ∗(x). (42)

In particular, equality holds instead of inequality if inf(P ) = +∞. Suppose now that
inf(P ) < ∞. From statement (c), we already know that there exists v ∈ V such that
x := T v ∈ C and inf(P ) = Φ∗(v). Clearly inf(P ) ≤ inf{Φ∗(v);Tv = x, v ∈ V} ≤ Φ∗(v).
Hence, inf(P ) = inf{Φ∗(v);Tv = x, v ∈ V}. By the simple dual equality (39) we have
inf{Φ∗(v);Tv = x, v ∈ V} = Λ∗(x). Finally, we have obtained inf(P ) = Λ∗(x) with
x ∈ C. Together with (42), this leads us to the desired identity: inf(P ) = infx∈C Λ∗(x).

• Finally, (d) is a by-product of the proof of (41).

Corollary 5.5. We have domΛ∗ ⊂ domΛ∗
o, domΛ∗ ⊂ X and in restriction to X ,

Λ∗
o = Λ∗.

Proof. The first part is already proved in Lemma 4.5(a). The matching Λ∗
o = Λ∗

follows from (37) and (39).
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Lemma 5.6. Under the hypotheses (HΦ) and (HT ), Λ
∗ is σ(X ,Y)-inf-compact.

Proof. By (39): inf{Φ∗(v); v ∈ V, T v = x} = Λ∗(x) for all x ∈ X (note that Φ∗
o = Φ∗

on V by Lemma 4.6(c).) As T is continuous (Lemma 4.5(h)) and Φ∗ is inf-compact
(Lemma 4.7), it follows that Λ∗ is also inf-compact.

5.3. Dual attainment

We now consider the following duality diagram

〈
V , V∗

〉

T
y

xT ∗

〈
X , X ∗

〉

Diagram 2.

where the topologies are the respective weak topologies. The associated perturbation
functions are

F2(v, x) = Φ∗(v) + ιC(Tv + x), v ∈ V, x ∈ X ,

G2(ζ, ω) = inf
x∈C

〈x, ω〉 − Φ(T ∗ω + ζ), ζ ∈ V∗, ω ∈ X ∗

As F2 = F1, the primal problem is (P ) and its value function is ϕ1:

ϕ1(x) = inf
x′∈C−x

Λ∗(x′), x ∈ X (43)

where we used (39). The dual problem is (D).

Proposition 5.7 (Dual attainment). Assume that (HΦ), (HT ) and (HC) hold. Sup-
pose that

Co ∩ icordomΛ∗ 6= ∅. (44)

Then the dual problem (D) is attained in X ∗.

Proof. As F2 = F1, one can apply the approach of Section 4.1 to the duality Diagram
2. Let us denote ϕ∗∗

1 the σ(X ,Y)-lower semicontinuous regularization of ϕ1 and ϕ∗∗
2

its σ(X ,X ∗)-lower semicontinuous regularization. Since X separates Y , the inclusion
Y ⊂ X ∗ holds. It follows that ϕ∗∗

1 (0) ≤ ϕ∗∗
2 (0) ≤ ϕ1(0). But we have (40) which is

ϕ∗∗
1 (0) = ϕ1(0). Therefore, one also obtains ϕ∗∗

2 (0) = ϕ1(0) which is the dual equality

inf(P ) = sup(D) (45)

and one can apply Theorem 4.1(c) which gives

argmax(D) = −∂ϕ1(0). (46)

It remains to show that the value function ϕ1 given at (43) is such that

∂ϕ1(0) 6= ∅. (47)
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As the considered dual pairing 〈X ,X ∗〉 is the saturated algebraic pairing, for (47) to
be satisfied, by the geometric version of Hahn-Banach theorem, it is enough that 0 ∈
icordomϕ1. But this holds provided that the constraint qualification (44) is satisfied.

Supposing that inf(Po) < ∞ one knows by Proposition 5.4(d) that (PX ) admits at
least a solution x = T v where v is a solution to (P ). Let us consider the following new
minimization problem

minimize Φ∗(v) subject to Tv = x, v ∈ V. (P x)

Of course v is a solution to (P ) if and only if it is a solution to (P x) where x = T v. Since
our aim is to derive a representation formula for v, it is enough to build our duality
schema upon (P x) rather than upon (P ). The associated perturbation functions are

F x
2 (v, x) = Φ∗(v) + ι{x}(Tv + x), v ∈ V, x ∈ X

Gx
2(ζ, ω) = 〈x, ω〉 − Φ(T ∗ω + ζ), ζ ∈ V∗, ω ∈ X ∗.

As F x
2 is F1 with C = {x}, the primal problem is (P x) and its value function is

ϕx
1(x) = Λ∗(x− x), x ∈ X .

The dual problem is

maximize 〈x, ω〉 − Λ(ω), ω ∈ X ∗. (D
x
)

Corollary 5.8 (Dual attainment). Assume that (HΦ) and (HT ) hold. Suppose that
Co ∩ domΛ∗ 6= ∅. Then, inf(Po) < ∞ and we know (see Proposition 5.4(d)) that (PX )
admits at least a solution. If in addition, there exists a solution x to (PX ) such that

x ∈ dom ∂X ∗Λ∗, (48)

then the dual problem (D
x
) is attained in X ∗.

Proof. Let us specialize Proposition 5.7(d) to the special case where C = {x}. The
dual equality (45) becomes

inf(P x) = sup(D
x
) (49)

and (47) becomes ∂ϕx
1(0) 6= ∅ which is implied by (48).

Remark 5.9. Let us denote the extended-real-valued functions on X ∗

Λ1 := Λ + ιY ,

Λ2 := Λ.

We also denote Λ∗
1, Λ

∗
2 their convex conjugates with respect to 〈X ,X ∗〉 and Λ̃1, Λ̃2 their

convex σ(X ∗,X )-lower semicontinuous regularizations. Clearly,

Λ∗
1 = Λ∗

and the dual equality (49) is
Λ∗

1 = Λ∗
2 (50)
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which implies the identity

Λ̃1 = Λ̃2. (51)

Usual results about convex conjugation tell us that Λ∗
1(x) = supω∈X ∗{〈x, ω〉−Λ̃1(ω)} =

sup(D
x
) and the above supremum is attained at ω̄ if and only if ω̄ ∈ ∂X ∗Λ∗(x). This is

the attainment statement in Corollary 5.8.

5.4. Dual representation of the minimizers

We keep the framework of Diagram 2 and derive the KKT relations in this situation.
The Lagrangian associated with F2 = F1 and Diagram 2 is for any v ∈ V, ω ∈ X ∗,

K2(v, ω) := inf
x∈X

{〈x, ω〉+ Φ∗(v) + ιC(Tv + x)},

= Φ∗(v)− 〈Tv, ω〉+ inf
x∈C

〈x, ω〉.

Proposition 5.10 (Dual representation). Assume that (HΦ), (HT ) and (HC) hold.
For any v ∈ V and ω̄ ∈ X ∗,





(a) T v ∈ Co

(b) 〈ω̄, T v〉 ≤ 〈ω̄, x〉 for all x ∈ C

(c) v ∈ ∂VΦ(T
∗ω̄)

(52)

is equivalent to 



v is a solution to (Po),

ω̄ is a solution to (D) and

the dual equality (40) holds.

(53)

It is well-known that the representation formula (52(c)):

v ∈ ∂VΦ(T
∗ω̄) (54)

is equivalent to
T ∗ω̄ ∈ ∂V∗Φ∗(v)

and also equivalent to Fenchel’s identity

Φ∗(v) + Φ(T ∗ω̄) = 〈ω̄, T v〉. (55)

Proof. This proof is an application of Theorem 4.3. Under the general assumptions
(HΦ), (HT ) and (HC), we have seen in Proposition 5.7 that the dual equalities (45)
and (49) hold true. Hence, (53) is equivalent to (v, ω̄) is a saddle-point. All we have
to do now is to show that (52) is a translation of the KKT relations (32) and (33).
With K2 as above, (32) and (33) are ∂vK2(v, ω̄) ∋ 0 and ∂ω(−K2)(v, ω̄) ∋ 0. Since
−〈Tv, ω〉 is locally weakly upper bounded as a function of ω around ω̄ and as a function
of v around v, one can apply (Rockafellar, [13], Theorem 20) to derive ∂vK2(v, ω̄) =
∂Φ∗(v)−T ∗ω̄ and ∂ω(−K2)(v, ω̄) = ∂(− infx∈C〈x, ·〉)+T v. Therefore the KKT relations
are

T ∗ω̄ ∈ ∂Φ∗(v) (56)

−T v ∈ ∂(ι∗−C)(ω̄) (57)
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where ι∗−C is the convex conjugate of the convex indicator function of −C.
As a convex conjugate, Φ∗ is a lower semicontinuous convex functions. Its convex
conjugate is Φ. Therefore (56) is equivalent to the following equivalent statements

v ∈ ∂Φ(T ∗ω̄)

Φ∗(v) + Φ(T ∗ω̄) = 〈v, T ∗ω̄〉.

Similarly, as a convex conjugate ι∗−C is a lower semicontinuous convex function. Its

convex conjugate is ι−C̄ where C̄ stands for the σ(X ,X ∗)-closure of C. Of course, as C
is σ(X ,Y)-closed by hypothesis (HC), it is a fortiori σ(X ,X ∗)-closed, so that C̄ = C.
Therefore (57) is equivalent to

ιC(T v) + ι∗−C(ω̄) = 〈−T v, ω̄〉. (58)

It follows from (58) that ιC(T v) < ∞ which is equivalent to T v ∈ C.
Now (58) is −〈T v, ω̄〉 = ι∗−C(ω̄) = − infx∈C〈x, ω̄〉 which is 〈T v, ω̄〉 = infx∈C〈x, ω̄〉. This
completes the proof.

Remark 5.11. Thanks to Proposition 5.4(d), (55) leads us to

Λ∗(x) + Λ(ω̄) = 〈x, ω̄〉 (59)

for all x ∈ domΛ∗ and all ω̄ ∈ X ∗ solution to (D
x
). By Fenchel’s inequality: Λ∗

2(x) +

Λ̃2(ω̄) ≥ 〈x, ω̄〉 and the identities (50) and (59), we see that Λ̃2(ω̄) ≥ Λ(ω̄). But, the

reversed inequality always holds true. Therefore, we have Λ̃2(ω̄) = Λ(ω̄). This proves

that Λ = Λ̃2 on domΛ : Λ is σ(X ∗,X )-lower semicontinuous on its effective domain.

Proposition 5.12. Assume that (HΦ), (HT ) and (HC) hold. Any solution ω̄ of (D)

or (D
x
) shares the following properties

(a) ω̄ is in the σ(X ∗,X )-closure of domΛ;

(b) T ∗ω̄ is in the σ(V∗,V)-closures of T ∗(domΛ) and domΦo.

If in addition the level sets of Φ are | · |Φ-bounded, then

(a′ ) ω̄ is in Y ′′. More precisely, it is in the σ(Y ′′,X )-closure of domΛ;

(b ′ ) T ∗ω̄ is in U ′′. More precisely, it is in the σ(U ′′,V)-closures of T ∗(domΛ) and
domΦo

where Y ′′ and U ′′ are the topological bidual spaces of Y and U . This occurs if Φ, and
therefore Φ∗, is an even function.

Proof. • Proof of (a). Because of (59), we have ω̄ ∈ domΛ. As Λ̃2 ≤ Λ and Λ̃1 = Λ̃2

(see (51)), we obtain ω̄ ∈ dom Λ̃1 which implies that ω̄ is in the σ(X ∗,X )-closure of
domΛ.

• Proof of (b). By Lemma 4.5(d), T ∗ is continuous from X ∗ to V∗. It follows from (a)
that T ∗ω̄ is in the σ(V∗,V)-closure of T ∗(domΛ).

On the other hand, T ∗ω̄ ∈ domΦ and Φ is the σ(V∗,V)-lower semicontinuous convex
regularization of Φo. It follows that T

∗ω̄ is in the σ(V∗,V)-closure of domΦo.
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• Proof of (a′ ). Because of (a), ω̄ is the σ(X ∗,X )-limit of a generalized sequence {yα}
in domΛ. Our additional assumption allows us to take {yα} in a | · |Φ-ball: it is an
equicontinuous set. It follows from [7, Cor. of Prop. III.5] that ω̄ is continuous on X .

• Proof of (b ′ ). Similar to (b)’s proof using (a′ ) and Lemma 4.5(f).
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