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Let (T,A) be an arbitrary measurable space and f an integrand defined on T ×R
n such that f (t, ·) is

quasiconvex and lower semicontinuous. Here, convexity is present by the level set mapping. We show
that the normality property of the integrand in the sense of Rockafellar ([10], [11]) can be characterized
by the normality of the level set mapping, and that normality is preserved for quasiconvex conjugates.
Finally we obtain for the integral If (x (·)) =

∫
T
f (t, x (t)) dµ (t) the equality (in appropriate topology)

between the lower semicontinuous regularization and the second quasiconvex conjugate.
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1. Introduction

In many areas of applied mathematics, one has to deal with integrals of the form

If (x (·)) =

∫

T

f (t, x (t)) dµ (t) , (1)

where T is an arbitrary nonempty set equipped with a σ − field A and a measure µ,
f : T × R

n → R = R ∪ {±∞} is a measurable integrand and x (·) is a measurable
R

n-valued functions on T .

Classically only finite Carathéodory-type integrands f (·, ·) were considered (i.e., f (·, x)
measurable and f (t, ·) continuous). However, generally in applications f (t, ·) is discon-
tinuous. Moreover, in convex situation (f (t, ·) convex), Rockafellar [10], [11] initiated
the notion of "normal integrand", which proved to be a very fruitful concept for the
study of If (·). Since the theory of convex conjugacy plays a prominent role in this
framework, we are interested in generalizing it to quasiconvex situation.

It is known [9] that one can use (as the convex analysis approach) the approximation
of functionals from below by so called c-affine functions. Thus, quasiconvex regular-
ization and the generalized biconjugate have geometrical intepretations as generalized
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Minkowski and Fenchel-Moreau theorems (Section 3). It is obvious that If (·) is convex
if so is f (t, ·), but unfortunately, even if f (t, ·) is quasiconvex, If (·) is not necessarily
quasiconvex, for example if one takes the function f : R+ ×R → R given by f (t, a) =
−e−ta2 and the function If : C (R+;R) → R such that If (x (·)) =

∫
R+

f (t, x (t)) dt.

It is obvious that for all t ∈ R+, f (t, ·) is quasiconvex but If is not quasiconvex on
C (R+;R), since for x1 (·) , x2 (·) given by x1 (t) = 1, x2 (t) = −1 for all t ∈ R+ and for
λ = 1

2
we get, (1− λ)x1 (·) + λx2 (·) ≡ 0 /∈ dom If .

However, quasiconvex conjugacy was considered by Barron and Liu [1] in the calculus
of variation in L∞ space, for functionals of the form

I (x (·)) = ess sup
0≤t≤T

f (t, x (t) , x′ (t)) ,

i.e.,
I (x (·)) = ‖f (·, x (·) , x′ (·))‖L∞[0,T ] .

They have established identity between the lower semicontinous (lsc for short) regu-
larization and the second quasiconvex conjugate (bi-q-conjugate for short), i.e.,

I∗∗q (x (·)) =
∥∥f ∗∗

q (·, x (·) , x′ (·))
∥∥
L∞[0,T ]

where I∗∗q (resp. f ∗∗
q ) is the bi-q-conjugate of If (resp. f).

Our aim is to establish similar results for Lp variational problem. We give a short
introduction to measurable closed-valued mappings and its applications to normal in-
tegrands (Section 2). Then, we consider a normal integrand and we show that the
quasiconvex conjugate and bi-q-conjugate are also normal integrand (Section 4). In
Section 5, we prove the identity between the lsc regularization of If and its bi-q-
conjugacy.

2. Preliminaries

Definition 2.1. 1) A set-valued mapping Γ from T to R
n is denoted by Γ : T ⇉ R

n

where
domΓ = {t ∈ T : Γ (t) 6= ∅} ,

gphΓ = {(t, x) : x ∈ Γ (t)} ,

are respectively the domain and the graph of Γ.

2) Γ is said to be measurable if for every open set O ⊂ R
n the set Γ−1 (O) =

{t ∈ T : Γ (t) ∩O 6= ∅} is measurable, i.e., Γ−1 (O) ∈ A.

Remark 2.2. domΓ is measurable since, domΓ = Γ−1 (Rn) .

For a comprehensive treatment of measurable set-valued mappings, we refer the reader
to the classical texts (Castaing and Valadier [2], Rockafellar [11]).

It is clear that the "integrand" f : T × R
n → R is a crucial element in the expression

of integral functionals of the form (1) and the cornerstone will be the measurability of
the set-valued mappings Ef : T ⇉ R

n × R and Df : T ⇉ R
n given by

Ef (t) = epi f (t, .) = {(x, α) ∈ R
n × R : f (t, x) ≤ α} .
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and
Df (t) = dom f (t, ·) = {x ∈ R

n : f (t, x) < ∞} .

Let us recall that:

Definition 2.3. A function f : T × R
n → R is said to be a normal integrand if its

epigraphical mapping Ef : T ⇉ R
n × R is measurable with closed-values.

The basic consequences of normality is given by the following theorem.

Theorem 2.4 ([12], Proposition 14.28). For any normal integrand f : T × R
n →

R, the following holds:

(1) Df : T ⇉ R
n is measurable.

(2) f (t, ·) lsc, and for any measurable function x (·) , f (·, x (·)) is measurable.

Remark 2.5. Note that an integrand f such that f (t, ·) is lsc and f (·, x (·)) measur-
able, is not necessarily normal, as is shown in ([12], page 661).

Our aim in quasiconvex setting being to retain the notions which are the closest to
the corresponding notion in the convex area, it will be useful to recall some principal
convex results in the following subsection.

2.1. Convexity and conjugacy

Theorem 2.6 (Castaing representation, [10]). Let f : T × R
n → R be such that,

for every t ∈ T , the function f (t, ·) is lsc and convex. Then f is a normal integrand

if and only if there is a sequence
{
xk
}
k∈N

of measurable functions xk : T → R
n such

that:

(a) for each k ∈ N, t 7→ f
(
t, xk (t)

)
is measurable;

(b) for each t ∈ T ,
{
xk (t) : k ∈ N

}
∩Df (t) is dense in Df (t).

Remark 2.7. We know that if f (t, ·) is convex then f (t, ·) is continuous on intDf (t).
Then every lsc convex integrand is a normal integrand when intDf (t) 6= ?.

Recall that the conjugate f ∗ and biconjugate f ∗∗ of a normal integrand f : T×R
n → R

are given by the Legendre-Fenchel transform of f (t, ·) and f ∗ (t, ·), i.e.,

f ∗ (t, x∗) = sup
x∈Rn

{〈x, x∗〉 − f (t, x)} , (2)

f ∗∗ (t, x) = sup
x∗∈Rn

{〈x, x∗〉 − f ∗ (t, x∗)} . (3)

We know by [13] that for any function f : T ×R
n → R, such that f (t, ·) is proper, one

has for every fixed t in T the following:

i) f ∗∗ (t, ·) ≤ f (t, ·) and

ii) f ∗∗ (t, ·) = f (t, ·) if and only if f (t, ·) is convex and lsc.

By fc (t, ·) we denote the greatest convex lsc function majorized by f (t, ·).

Proposition 2.8 ([13]). For any function f : T×R
n → R, such that f (t, ·) is proper,

one has for any t ∈ T
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i)

fc (t, x) = inf {λ ∈ R : (x, λ) ∈ co epi f (t, x)} ∀x ∈ R
n, (4)

where co designates the convex closure operation.

ii)

f ∗∗ (t, ·) = fc (t, ·) . (5)

Theorem 2.9 ([10]). If f : T × R
n → R is a normal integrand, then f ∗ and f ∗∗ are

normal integrands.

3. Quasiconvexity, regularization and conjugacy

3.1. Quasiconvexity

For an introduction to quasiconvex analysis we refer to [6]. Let X be a Banach space.
We recall that a function f : X → R is quasiconvex if for all λ ∈ [0, 1] and x1, x2 ∈ X
one has

f ((1− λ)x1 + λx2) ≤ max (f (x1) , f (x2)) .

Considering the Level set mapping defined as levf : R ⇉ X

levf (λ) = {x ∈ X : f (x) ≤ λ} , (6)

it is not difficult to see that f is quasiconvex if and only if the set-valued mapping levf
is with convex values.

Let us recall according to [4], that any function f : Rn → R can be represented as
follows

f (x) = inf {λ ∈ R : x ∈ levf (λ)} . (7)

Definition 3.1 ([4]). Let be f : X → R.

1) We call the lsc hull function of f (lsc regularization) the function f : X → R, given
by

f (x) = inf
{
λ ∈ R : x ∈ levf (λ)

}
, (8)

where A is the closure of the subset A.

2) We call the lsc quasiconvex hull function of f (lsc quasiconvex regularization) the
function fq : X → R defined by

fq (x) = inf {λ ∈ R : x ∈ co levf (λ)} . (9)

Then, the following characterization holds.

Proposition 3.2 ([4]). For any function f : X → R, the function fq is the greatest

lsc quasiconvex function majorized by f , and its Level set mapping satisfies the equality

levfq (λ) =
⋂

β>λ

co levf (β) ∀λ ∈ R. (10)
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3.2. Quasiconvex conjugacy

Following Moreau [8] we know that, for a Banach space Y and a function c : X ×Y →
R (said coupling fuction), we can define the c-conjugate and the bi-c-conjugate of
functional f : X → R as follows:

f c : y ∈ Y 7→ f c (y) = sup
x∈X

{c (x, y)− f (x)} (11)

f cc : x ∈ X 7−→ f cc (x) = sup
y∈Y

{c (x, y)− f c (y)} . (12)

Since we are dealing with extended real valued functions we use the conventions +∞+
(−∞) = −∞+(+∞) = +∞−(+∞) = −∞−(−∞) = −∞. Several coupling functions
were discussed in the literature, motivated by various aims see, e.g., [14], [7] and [9].

For our part and following [6], we shall be concerned with the coupling function given
by

c (x, (x∗, r)) = cr (〈x, x
∗〉) ,

where 〈, 〉 is the duality pairing between X and X∗ and

cr (t) =

{
r if t > r

−∞ otherwise.
(13)

Formulas (11) and (12) become:

f c (x∗, r) = sup
x∈X

{cr (〈x, x
∗〉)− f (x)} (14)

and

f cc (x) = sup
(x∗,r)∈X∗×R

{cr (〈x, x
∗〉)− f c (x∗, r)} . (15)

As a consequence of Corollary 4.2, [7] and Corollary 1.4, [5] the following proposition
establishes, for bi-quasiconvex operation, a result in the line of Proposition 2.8.

Proposition 3.3 ([7]). For any function f : X → R, we have

f cc = fq.

4. Level sets, integrands and normality

The main properties of convex normal integrand f are consequences of the closure,
measurability and convexity of the epigraphical mapping Ef : T ⇉ R

n × R. Let us
recall some essential results about the mapping Ef .

Theorem 4.1 ([12], Theorem 14.8). Let f : T × R
n ⇉ R

1) The implication (a) ⇒ (b) holds for the following properties:

(a) Ef : T ⇉ R
n × R is with closed-valued and measurable i.e., f is normal.

(b) gphE is an A⊗ B (X)-measurable subset of T ×X.

2) When the σ−field A is µ−complete, these two properties are equivalent.
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This section is devoted to integrands functions f (·, ·) such that f (t, ·) is quasi-convex,
then the level-set mapping will be crucial in the analysis.

Theorem 4.2 ([12], Proposition 14.32). For a normal integrand f : T × R
n → R

and any α ∈ R, the level-set mapping

t 7→ levf(t,·) (α) = {x ∈ R
n : f (t, x) ≤ α}

is closed-valued and measurable.

Actually the converse holds whenever the σ-field is µ-complete.

Proposition 4.3. Assume that the the σ−field A is µ−complete. Then a lsc integrand

f : T × X → R is normal if and only if for each α ∈ R the level set mapping t 7→
levf(t,.) (α) is measurable.

Proof. It is sufficient to show the measurability of Ef . From Theorem 4.1, the sets

gphlevf(.,.) (α) =
{
(t, x) ∈ T × R

n : x ∈ levf(.,.) (α)
}

= {(t, x) ∈ T × R
n : f (t, x) ≤ α}

are A⊗B (X)-measurable for all α ∈ R. This implies that f is A⊗B (X)-measurable

and so is f̂ where
f̂ (t, x, α) = f (t, x)− α

which leads to the measurability of

gphEf =
{
(t, x, α) : f̂ (t, x, α) ≤ 0

}
.

Theorem 4.1 works and the measurability ofEf follows. The proof is then complete.

Remark 4.4. Let x (·) be a measurable function then the integrand g : (t, x∗) ∈
T × X∗ 7−→ g (t, x∗) = 〈x (t) , x∗〉 is of Carathéodory but the integrand h : (t, x∗) ∈
T × X∗ 7−→ h (t, x∗) = cr (〈x (t) , x

∗〉) is not. This is the crucial difference between
convex and quasiconvex cases.

The following results will be useful to generalize Theorem 2.9 to quasiconvex setting.

Proposition 4.5 ([11]). Let h be an integrand on T × R
n of the form

h (t, x) = φ (t, g (t, x)) (16)

such that:

1) g: T × R
n → R is a normal integrand.

2) φ is a normal integrand on T × R with φ (t, ·) for every t ∈ T nondecreasing.

Then f is normal.

Proposition 4.6. Let f : T × R
n → R be a normal integrand. Then f c (., ., r) is

normal for every fixed r.
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Proof. domEf = {t ∈ T : f (t, ·) 6= +∞} is measurable. Then for (xn, αn)n∈N a Cas-
taing representation of Ef , we have

Ef (t) = ∪n∈N {(xn (t) , αn (t))} t ∈ domEf a.e.

For every n ∈ N and r ∈ R we define gnr : T ×X∗ → R such that

gnr (t, x
∗) =

{
cr (〈x

n (t) , x∗〉)− αn (t) t ∈ domEf

−∞ t ∈ T \ domEf .

By formula (14) and the density of Castaing representation we have

f c (t, x∗, r) = sup
n∈N

gnr (t, x
∗, r) (17)

for every fixed r, so f c (·, ·, r) will be normal if each gnr is normal on domEf i.e.,
(t, x∗) 7→ cr (〈x

n (t) , x∗〉) is normal. We can see that the function cr defined by relation
(13) is lsc and nondecreasing, hence for h (t, x∗) = cr (〈x

n (t) , x∗〉) Proposition 4.5
works with φ (t, α) = cr (α) and g (t, x∗) = 〈xn (t) , x∗〉. The normality of gnr follows
from above and that of f c ((·, ·) , r) from ([12], Proposition 14.11). For t ∈ T \ domEf ,
we have f (t, x) = +∞ for all x and consequently f c ((t, x∗) , r) = −∞ for any x∗,
i.e., that epi f c ((t, ·) , r) ≡ R

n × R, thus epi f c ((·, ·) , r) is measurable with respect to
T \ domEf . Hence epi f c ((·, ·) , r) is measurable on T and the proof is complete.

Proposition 4.7. Assume that the σ-field A is µ-complete. If f : T × R
n → R is a

normal integrand, then so is f cc.

Proof. If f is lsc and quasiconvex we have f cc = f (Proposition 3.3) and there is
nothing to prove. If f is any normal integrand then, ∀α ∈ R, levf(t,·) (α) is measurable,
therefore by ([12], Proposition 14.12) co levf(t,·) (α) is measurable, and by relation (10)
levfq(t,·) (α) =

⋂
β>α co levf(t,·) (β) =

⋂
β>α
β∈Q

co levf(t,·) (β) is measurable. Proposition 4.4

leads to the normality of f cc.

5. Quasiconvex-regularization as bi-q-conjugacy

We are going to prove that quasiconvex regularization procedure and bi-q-conjugacy
are the same when the integrand are positive functional defined on Ω×R

n, where Ω is
an open bounded set of Rm. We consider the space Lp

n (Ω), 1 ≤ p < ∞, that we provide
with the weak topology σ (Lp, Lq) where 1

p
+ 1

q
= 1. The functional If is defined now

from Lp
n (Ω) to R+. We shall use the approximation procedure described in [5]. We

recall that:

1) let’s consider a family (αk)1≤k≤τ , τ ∈ N, αk ≥ 0 ∀k, and
∑τ

k=1 αk = 1.

2) For i ∈ N, we denote Ki the set of the pavements of Ω whose edges are parallel to
the coordinates axis and length 2−i, and whose vertices have coordinates multiples of
2−i.

In other words, K ∈ Ki if:

K = Πm
j=1[mj2

−i, (mj + 1) 2−i] ⊂ Ω, where mj ∈ Z.



66 A. Amir, H. Mokhtar-Kharroubi / Normality and Quasiconvex Integrands

3) For Bi =
⋃

K∈Ki
K, we have:

Bi ⊂ Bi+1 ⊂ Ω, Ω =
∞⋃

i=1

Bi and µ (Ω) = lim
i→∞

µ (Bi) .

4) For i fixed, we will divide Bi into τ subsets Bk
i , 1 ≤ k ≤ τ , corresponding to

the τ numbers αk as follows: we cut out each pavement K ∈ Ki in τ sections Kk,
perpendicularly to the first coordinates axis, the thickness of the Kth section being
αk · 2

−i.

In other words,

Kk =

[(
m1 +

k−1∑

l=1

αl

)
2−i,

(
m1 +

k∑

l=1

αl

)
2−i

]
× Πm

j=2[mj2
−i, (mj + 1) 2−i]

and

K =
τ⋃

k=1

Kk also αkµ (K) = µ
(
Kk
)
.

5) Let us denote Bk
i =

⋃
K∈Ki

Kk, for i ∈ N and k ∈ {1, ...,m} fixed. Since the

pavements Kk, for K ∈ Ki and 1 ≤ k ≤ m, are not necessarily disjoint, we will
thus call Ni the reunion of the borders of these pavements, which is thus a set of null
measure, and we put N = ∪i∈NNi, which is also of a null measure. Then, for all fixed
i ∈ N , the Bk

i ∩ ∁N , 1 ≤ k ≤ m, are disjointed.

Definition 5.1. For τ ∈ N, u = (u1, ..., uτ ) ∈ [Lp (Ω)]τ and for each i ∈ N, one defines
a measurable mapping Tiu from Ω to R by:

Tiu (t) =

{
uk (t) if t ∈ Bk

i ∩ ∁N,

u1 (t) if t ∈ N ∪
(
Ω− ∪n

k=1B
k
i

)
.

Theorem 5.2 ([5], Corollary IX.1.1 and IX.1.2).

1) The mapping Ti is linear continuous from [Lp (Ω)]τ to Lp (Ω), and we have:

lim
i→∞

Tiu =
τ∑

k=1

αkuk with respect σ (Lp, Lq) .

2) Let f be a function from Ω × R
n with values in R such that the functions t 7→

f (t, uk (t)) belongs to L1 (Ω) for all k.

Then,

lim
i→∞

∫

Ω

f (t, Tiu (t)) dt =
τ∑

k=1

αk

∫

Ω

f (t, uk (t)) dt.



A. Amir, H. Mokhtar-Kharroubi / Normality and Quasiconvex Integrands 67

We are now in position to prove the following main result.

Theorem 5.3. If f : Ω × R
n → R is a positive normal integrand and if Lp

n (Ω) is

provided with the weak topology σ (Lp, Lq), then the bi-q-conjugate of If and its lsc

regularization coincide, i.e.,

Iccf = If .

Proof. From relations (8), (9) and Proposition 3.3 we deduce that:

Iccf ≤ If .

The opposite inequality is equivalent to prove that levIccf (λ) ⊂ levIf (λ) for every

λ ∈ R. Let be u ∈ levIccf (λ). From Proposition 3.3 and relation (10) we have u ∈
⋂

β>λ co levIf (β). Fix any real number β > λ. Hence, for convex neighborhood V of
the origin in σ (Lp, Lq), there exist a family (uk)1≤k≤τ in Lp

n and τ positive numbers αk

with
∑τ

k=1 αk = 1 such that:
∀k, uk ∈ levIf (β) (18)

and

u−
τ∑

k=1

αkuk ∈ V. (19)

Since relation (18) implies If (uk) < ∞ for all k, then, the function f (·, uk (·)) belongs
to L1 for all k. By Theorem 5.1, with u = (u1, ...uτ ) ∈ [Lp (Ω)]τ we are able for each
ε > 0 to take i0 large enough so that Tiu verifies for all i ≥ i0:

Tiu−
τ∑

k=1

αkuk ∈ V (20)

and ∣∣∣∣∣If (Tiu)−
τ∑

k=1

αkIf (uk)

∣∣∣∣∣ ≤ ε. (21)

Combining (19) and (20) we obtain

Tiu− u ∈ 2V

and by (18) and (21) we see that

If (Tiu) ≤ β + ε.

Hence,
Tiu ∈ levIf (β) for all i ≥ i0 and hence u ∈ levIf (β + ε) .

Therefore
u ∈

⋂

β>λ,ε>0

levIf (β + ε) =
⋂

β>λ

levIf (β) = levIf (λ) ,

i.e., Iccf ≥ If and the proof is complete.
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versité de Clermont-Ferrand 2 (1977).

[4] J. P. Crouzeix: Continuity and differentiability properties of quasiconvex functions
on R

n, in: Generalized Concavity in Optimization and Economics (Vancouver, 1980),
S. Schaible, W. T. Ziemba (eds.), Academic Press, New York (1981) 109–130.

[5] I. Ekeland, R. Temam: Analyse Convexe et Problèmes Variationnels, Etudes Mathéma-
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