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1. Introduction

Let X and Y be topological spaces and let F': X — Y be a multifunction. Our aim
is to show that, under suitable hypotheses, openness of F' at a point is equivalent to
near openness of F' at that point.

To begin with, we recall some basic definitions. The multifunction F' is said to be
open if for every open subset U of X the subset F'(U) of Y is open. This is a complex
property, which can be analyzed through a simplex one. The multifunction F' is said
to be open at a point (z,y) € graph(F) if for every neighborhood U of x the set F'(U)
is a neighborhood of y. Accordingly, F' is open if and only if F' is open at every
point (x,y) € graph(F'). A twin simplex property can be constructed by replacing the
set F(U) with its closure. In the following, S stands for the closure of any subset
of a topological space. The multifunction F' is said to be nearly open at a point
(x,y) € graph(F) if for every neighborhood U of z the set F'(U) is a neighborhood
of y. A twin complex property can be synthesized through the twin simplex one.
The multifunction F' is said to be nearly open if F is nearly open at every point

(x,y) € graph(F).

Obviously, if F'is open at a point, then F'is nearly open at that point. Therefore, if F
is open, then F'is nearly open. In the literature, there are many results which derive
openness of F' from near openness of F. In fact, most of them derive openness of F'
at a point from near openness of F' at that point as well as at sufficiently many other
points (see [13, p. 145, Theorem 4] and the references therein). However, if X and Y
are quite general topological vector spaces, and F' has a convex graph, then openness
of F' at a point is derived only from near openness of F' at that point (see [12, p. 439,
Lemma 3|, cf. [11, p. 132, Theorem 1]). In this paper, we derive further results of
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this type (see Section 3). The forms of our results require some drastic assumptions
(see [5, p. 214, Note]) on the domain of F', namely local compactness if X and Y are
topological spaces and X is regular or local boundedness if X and Y are locally convex
topological vector spaces and X is semi-reflexive, but do not require convexity of the
graph of F' in the latter setting.

Our results are corollaries of some basic lemmas (see Section 2), which have a neighbor-
hood free substratum. To describe the matter, we rephrase openness and near openness
at a point (x,y) by using no matter which bases U and V for the neighborhood systems
of the points = and y respectively: F' is open at (z,y) if and only if for every U € U
there exists V' € V such that

VS FU); (1)
F is nearly open at (z,y) if and only if for every U € U there exists V' € V such that
V C F(U). (2)

Obviously, near openness at a point implies openness at that point if, for example,
inclusion (2) implies inclusion (1) for sufficiently many pairs (U, V') of neighborhoods.
Now, consider a pair (U, V) of sets which are not necessarily neighborhoods and note
that inclusion (2) does imply inclusion (1) if

VNEU)CFU). (3)

In view of the basic lemmas, inclusion (3) holds if
(U x V)N graph(F) C graph(F) (4)

and if some additional assumptions are satisfied. Note parenthetically that, if F' has
a locally closed graph, then inclusion (4) holds for sufficiently many pairs (U, V') of
neighborhoods. One of the additional assumptions mentioned above states that

U Ndomain(F) C U, (5)

but the basic lemmas do not involve inclusion (5). Note finally that the topological
basic Lemma 2.1 (cf. [5, p. 203, Chapter 6, Problem A]) is the frame of the reflexive
basic Lemma 2.2 (cf. [11, p. 131, Lemma 1 b)]).

A counterexample (see Section 4) illustrates the necessity of some assumptions of our
openness results. A final counterexample shows that openness of a multifunction at a
point may not imply near openness at any other point, even if that multifunction has
a closed graph.

2. Basic lemmas.

Let U C X and V C Y. Further, consider the inclusion

VAFU)CF (U A domain(F)) (6)

and note (6) and (5) imply (3). Finally, consider the inclusion

(U N domain(F") x V) N graph(F') C graph(F), (7)

and note (4) and (5) imply (7).
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Lemma 2.1 (Kelley). Let U Ndomain(F) be relatively compact. Then inclusion (7)
implies inclusion (6).

Proof. Let the inclusion (7) hold, let v € V N F(U), and let A = U N domain(F'). We
have to show that v € F(A). Since F(U) = F(U N domain(F)) C F(A), it follows
v € W Consider the family Q of neighborhoods () of the point v and note the
family of sets {AN F~1(Q);Q € Q} is a filter base in the compact set A, hence there

exits a point u € A such that

ue (JANF(Q).

QeQ

Now, consider the family P of neighborhoods P of the point v and note that for every
P € P as well as for every Q € Q the set P N F~1(Q) is nonempty, that is, the set
(P x @) N graph(F') is nonempty, hence (u,v) € graph(F'). Since (u,v) € A x V, it
follows from inclusion (7) that (u,v) € graph(F’), hence v € F(A). O

In view of Lemma 2.1, if F' has a closed graph and U is compact, then F'(U) is closed
(see [5, p. 203, Chapter 6, Problem A]).

The “topological space” result above is the frame of the “locally convex topological
vector space” result below.

In the following, F~! stands for the inverse of F, that is, z € F~'(y) if and only if
y € F(x). Moreover, one hypotheses below states that F~! maps the convex subsets
of the vector space Y to convex subsets of the vector space X. Obviously, if F' has a
convex graph, then both F' maps the convex subsets of X to convex subsets of Y and
F~1 maps the convex subsets of Y to convex subsets of X, but the converse implication
may fail. A counterexample is provided by the multifunction F' : R — R given through
F(x) = {=°}.

Recall that a locally convex topological vector space X is semi-reflexive (see [1, p. 87,
Définition 3] and [2, IV, p. 16, Définition 2]; cf. [4, p. 508], [6, p. 189], [7, p. 298], and [10,
p. 72]) if and only if each bounded subset of X is weakly relatively compact (see [1, p. 88,
Théoreme 1] and [2, IV, p. 16, Théoreme 1]; cf. [4, p. 508, 8.4.2 Theorem]|, [6, p. 190,
20.1 Criterion for Semi-Reflexiveness|, [7, p. 299, (1)], and [10, p. 72, Proposition 4]).

Lemma 2.2 (Robinson). Let X andY be separated, locally convez topological vector
spaces, let X be semi-reflevive, and let F~' map the convex subsets of Y to convex
subsets of X. Let U be conver and let U N domain(F') be bounded. Then inclusion (7)
implies inclusion (6)

The proof of Lemma 2.2 depends on Lemma 2.1 above and on Proposition 2.3 below.
Denote by X* the vector space X endowed with the weak topology, denote by R

the (X" x Y')-closure of any subset S of the vector space X x Y, and note the obvious

inclusion S C SV can be improved to the equality S = VY4 S is convex. The
equality still holds if S = graph(F) and F~! maps the convex subsets of ¥ to convex
subsets of X.
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Proposition 2.3. Let X andY be locally convex topological vector spaces, and let F~1
XvxY

map the convez subsets of Y to convex subsets of X. Then graph(F') = graph(F)
Proof. We have to show that, if (p,q) € graph(F)XwXY, then (p,q) € graph(F).
Assume, by contradiction, that (p, q) & graph(F’). Then there exist an X-neighborhood
P of p and an Y-neighborhood @ of ¢ such that (P x @) N graph(F) = (), that is,
PN F1Q) = 0. We can suppose, taking smaller P and @ if necessary, that P is
X-open, and both P and Q are convex. Since the set Q) is convex, so is the set F~1(Q),
hence there exist a linear X-continuous function £ : X — R and a real number p such
that &(a) < p < &(B) whenever « € P and 8 € F~1(Q) (see [3, p. 642]). Denote by II
the set of all points o € X such that &(a) < p. Clearly, (II x Q) Ngraph(F) = 0, that

is, INF~1(Q) = 0. Since £ is also X“-continuous, it follows IT is an X “-neighborhood
of the point p, hence (p, q) & graph(F)X XY, a contradiction. O

Proof of Lemma 2.2. Let the inclusion (7) hold. Denote by 5" the X*-closure
of any subset S of the vector space X. Since domain(F) = F~1(Y), it follows U N
domain(F’) is convex, hence

U Ndomain(F) =U N domain(F)Xw,

w

and the bounded, X*-closed set U N domain(F')  is X"-compact In view of Proposi-
tion 2.3,

XWX

(U N domain(F)Xw X V> N graph(F) v C graph(F).

In view of Lemma 2.1,

VAFU) CF <U A domain(F)Xw> ,
and the inclusion (6) holds. O

In view of Lemma 2.2, if ' has a closed graph, if F~! maps convex subsets of ¥
to convex subsets of X, and U is convex, bounded, and closed, then F(U) is closed.
Accordingly, if F' has a closed graph and a bounded domain, and if F'~! maps con-
vex subsets of Y to convex subsets of X, then range(F') is closed (cf. [11, p. 131,
Lemma 1 b)], where F' has a convex graph).

A counterexample shows that, even if F' has a convex graph, closeness of F(U) may
fail if X is not reflexive. Define F: ['(N) — R through

graph(F) = {(:{;,le_lx(z)> ;X € ll(N)},

=1

let U be the closed unit ball in I}(N), and note F(U) = (=1, +1).

(
Another counterexample shows that closeness of range(F') may fail if domain(F') is not
bounded. Define F' : R — R through graph(F) = {(z,y);z > 0,2y > 1}, and note
domain(F") = range(F') = (0, +00).
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3. Locally closed graph results.

First, recall that local relative compactness of the set domain(F') means that for ev-
ery point z € domain(F') there exists a neighborhood U of x such that the set
U N domain(F') is relatively compact. Further, recall that local closeness of the set
graph(F') means that for every point (z,y) € graph(F') there exists a neighborhood W

of (z,y) such that the set W N graph(F) is closed. In the following I/ stands for the
interior of W. Since

W Ngraph(F) C W N graph(F)

whenever W C X xY, it follows local closeness of the graph of F' implies that for every
point (z,y) € graph(F') there exists a neighborhood W of (z,y) such that

W N graph(F) C graph(F).

The converse implication holds too in case X x Y is a regular topological space, that
is, both X and Y are regular topological spaces.

Theorem 3.1. Let X and Y be topological spaces, let X be reqular, and let the multi-
function F' have a locally closed graph and a locally relatively compact domain. If F is
nearly open at a point, then F' is also open at that point.

Proof. Let F' be nearly open at the point (z,y) € graph(F'). Since F has a locally
closed graph, it follows there exist a neighborhood U* of x and a neighborhood V* of
y such that

(U* x V*)Nngraph(F) C graph(F).

Since domain(F) is locally relatively compact, we can suppose (taking a smaller U* if
necessary) that the set domain(F)NU* is relatively compact. Further, denote by U the
family of all closed neighborhoods U of x such that U C U*, denote by V the family
of all neighborhoods V' of y such that V' C V* and note U and V are bases for the
neighborhood systems of the points x (recall X is regular) and y respectively. Now, it
is easy to prove openness of F' at (z,y). Let U € U. Since F' is nearly open at (z,y),
it follows there exists V' € V such that the inclusion (2) holds. In view of Lemma 2.1,
the inclusion (1) holds too, and openness of F' at (z,y) follows. O

The next result concerns the locally convex topological vector spaces X and Y. Recall
that local boundedness of the set domain(F') means that for every point x € domain(F’)
there exists a neighborhood U of = such that the set U N domain(F") is bounded.
Obviously, F' does have a locally bounded domain if X is a normed space.

Theorem 3.2. Let X and Y be separated, locally convex topological vector spaces, let
X be semi-reflexive, let F~1 map the convex subsets of Y to convex subsets of X, and
let F' have a locally closed graph and a locally bounded domain. If F' is nearly open at
a point, then F' is also open at that point.

Proof. Let F' be nearly open at the point (x,y) € graph(F'). Since F' has a locally
closed graph, it follows there exist a neighborhood U* of x and a neighborhood V* of
y such that

(U* x V*) N graph(F) C graph(F).
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Since domain(F') is locally bounded, we can suppose (taking a smaller U* if necessary)
that the set domain(F) N U* is bounded. Further, denote by U the family of all
closed, convex neighborhoods U of x such that U C U*, denote by V the family of
all convex neighborhoods V' of y such that V' C V* and note U and V are bases for
the neighborhood systems of the points x and y respectively. Now, it is easy to prove
openness of F at (z,y). Let U € U. Since F is nearly open at (z,y), it follows there
exists V' € V such that the inclusion (2) holds. In view of Lemma 2.2, the inclusion (1)
holds too, and openness of F' at (z,y) follows. O

4. Counterexamples.

The counterexample below shows that Theorem 3.1 may fail is /' does not have a
locally relatively compact domain, whereas Theorem 3.2 may fail if £~! does not map
the convex subsets of Y to convex subsets of X.

First, recall that, if X and Y are metric spaces, then openness of F' at (z,y) means
that for every € > 0 there exists § > 0 such that

B(y,9) € (B(z,¢)), (8)

whereas near openness of F' at (x,y) means that for every e > 0 there exists 6 > 0 such
that
B(y,6) € F(B(z,¢)). (9)

Here, B(c,r) stands for the open ball with center ¢ and radius r.

Further, consider the set @ of rational numbers and consider the Hilbert space (?(Q),
which can be identified with the familiar space I?(V).

Further, let the multifunction F : [?(Q) — R be defined through the equality

graph(F) = {(q - K¢, 9); ¢ € Q}.

Here, x,(¢') stands for the “rational” Kronecker symbol, namely x,(¢') = 0 if ¢’ # g,
whereas r,(¢') = 11if ¢ = ¢q.

Clearly, r, € I*(Q), ||ky]l = 1, and moreover, ||q1 - Kg — @2 - kgl = V@ > + |g2]? if
@1 # q2. Accordingly, the set graph(F) is closed because all of its points are isolated

points except for its point (0,0) which is an accumulation point. Moreover, F' is nearly
open at (0,0), but not open at (0,0) because F(Bjp)(0,€)) = Q N Br(0,¢). Here,
By(c, r) stands for the open ball in the corresponding metric space M.

Finally, note B(0, ¢) Ndomain(F) is not relatively compact for any ¢ > 0, whereas F~!
does not map the convex subsets of R to convex subsets of I(Q).

A related counterexample shows that openness of a multifunction at a point may not
imply near openness at any other point, even if that multifunction has a closed graph.

Let the multifunction F : [>(R) — R be defined through the equality

graph(F) = {(r - k,,r);r € R}.
This time &, (r") stands for the “real” Kronecker symbol. Namely «,.(r") = 0 if 7’ # r,
whereas k,(r') = 1 if v’ = r. Clearly, k, € [>(R) and ||s,|| = 1. The set graph(F) is

closed because all of its points are isolated points except for its point (0,0) which is an
accumulation point. Moreover, F' is open at (0,0) because F'(Bp(r)(0,€)) = Br(0,€).
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5. Relation to earlier work.

In case of Theorem 3.1, if F' does not have a locally relatively compact domain, then
a restrictive near openness of F' implies the corresponding openness of F, namely
local uniform near openness implies local uniform openness, provided that X and Y
are metric spaces, X is complete, and F' has a locally closed graph (see [13, p. 145,
Theorem 4]).

Recall the “local uniform” terminology in [13, pp. 144, 145], which expound on the
“uniform” terminology in [9, p. 505, Theorem 2.1]: F' is said to be uniformly open
on a set W C graph(F) if for every ¢ > 0 there exists 6 > 0 such that for every
(x,y) € W there holds the inclusion (8); F' is said to be locally uniformly open if
for every (z,y) € graph(F') there exists a neighborhood W of (z,y) such that F' is
uniformly open on the set W N graph(F'). Analogously: F' is said to be uniformly
nearly open on a set W C graph(F) if for every € > 0 there exists 6 > 0 such that for
every (x,y) € W there holds the inclusion (9); F is said to be locally uniformly nearly
open if for every (x,y) € graph(F') there exists a neighborhood W of (z,y) such that
F' is uniformly nearly open on the set W N graph(F').

The basic lemma from which there follows the local uniform result above, essentially
states that (see [13, p. 146, Theorem 7]) a metric version of the topological inclusion (4),
namely

(B(x,¢) x B(y, 8)) N graph(F) C graph(F),

implies a family of metric versions of the topological inclusion (3), namely for every
¢ € (0,¢) there holds the inclusion

B(y,d) N F(B(z,€)) C F(B(x,¢)),

provided that for every ¢ € (0,¢) and for every &' € (0,6) the multifunction F' is
uniformly nearly open on the set

(B(z,€) x B(y,d")) N graph(F).

An elementary counterexample, namely
graph(F) = {(r,r) € R |r| <1}, (z,y) = (0,0), (&,6) = (1,1),

shows that uniform near openness on each of the (€¢,4’)-sets above does not imply
uniform near openness on the set

(B(x,€) x B(y,0)) N graph(F),
whereas the ¢’-inclusions above do not imply the inclusion

B(y,8) NF(B(z,¢)) C F(B(x,¢)).

The skeletal similarities and differences exhibited by these results are setting for the
question whether there is some unifying result underlying all of them (see [8, p. 452]).
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