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1. Introduction

Let X and Y be topological spaces and let F : X → Y be a multifunction. Our aim
is to show that, under suitable hypotheses, openness of F at a point is equivalent to
near openness of F at that point.

To begin with, we recall some basic definitions. The multifunction F is said to be
open if for every open subset U of X the subset F (U) of Y is open. This is a complex
property, which can be analyzed through a simplex one. The multifunction F is said
to be open at a point (x, y) ∈ graph(F ) if for every neighborhood U of x the set F (U)
is a neighborhood of y. Accordingly, F is open if and only if F is open at every
point (x, y) ∈ graph(F ). A twin simplex property can be constructed by replacing the
set F (U) with its closure. In the following, S stands for the closure of any subset
of a topological space. The multifunction F is said to be nearly open at a point

(x, y) ∈ graph(F ) if for every neighborhood U of x the set F (U) is a neighborhood
of y. A twin complex property can be synthesized through the twin simplex one.
The multifunction F is said to be nearly open if F is nearly open at every point
(x, y) ∈ graph(F ).

Obviously, if F is open at a point, then F is nearly open at that point. Therefore, if F
is open, then F is nearly open. In the literature, there are many results which derive
openness of F from near openness of F . In fact, most of them derive openness of F
at a point from near openness of F at that point as well as at sufficiently many other
points (see [13, p. 145, Theorem 4] and the references therein). However, if X and Y

are quite general topological vector spaces, and F has a convex graph, then openness
of F at a point is derived only from near openness of F at that point (see [12, p. 439,
Lemma 3], cf. [11, p. 132, Theorem 1]). In this paper, we derive further results of
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this type (see Section 3). The forms of our results require some drastic assumptions
(see [5, p. 214, Note]) on the domain of F , namely local compactness if X and Y are
topological spaces and X is regular or local boundedness if X and Y are locally convex
topological vector spaces and X is semi-reflexive, but do not require convexity of the
graph of F in the latter setting.

Our results are corollaries of some basic lemmas (see Section 2), which have a neighbor-
hood free substratum. To describe the matter, we rephrase openness and near openness
at a point (x, y) by using no matter which bases U and V for the neighborhood systems
of the points x and y respectively: F is open at (x, y) if and only if for every U ∈ U
there exists V ∈ V such that

V ⊆ F (U); (1)

F is nearly open at (x, y) if and only if for every U ∈ U there exists V ∈ V such that

V ⊆ F (U). (2)

Obviously, near openness at a point implies openness at that point if, for example,
inclusion (2) implies inclusion (1) for sufficiently many pairs (U, V ) of neighborhoods.
Now, consider a pair (U, V ) of sets which are not necessarily neighborhoods and note
that inclusion (2) does imply inclusion (1) if

V ∩ F (U) ⊆ F (U). (3)

In view of the basic lemmas, inclusion (3) holds if

(U × V ) ∩ graph(F ) ⊆ graph(F ) (4)

and if some additional assumptions are satisfied. Note parenthetically that, if F has
a locally closed graph, then inclusion (4) holds for sufficiently many pairs (U, V ) of
neighborhoods. One of the additional assumptions mentioned above states that

U ∩ domain(F ) ⊆ U, (5)

but the basic lemmas do not involve inclusion (5). Note finally that the topological
basic Lemma 2.1 (cf. [5, p. 203, Chapter 6, Problem A]) is the frame of the reflexive
basic Lemma 2.2 (cf. [11, p. 131, Lemma 1 b)]).

A counterexample (see Section 4) illustrates the necessity of some assumptions of our
openness results. A final counterexample shows that openness of a multifunction at a
point may not imply near openness at any other point, even if that multifunction has
a closed graph.

2. Basic lemmas.

Let U ⊆ X and V ⊆ Y . Further, consider the inclusion

V ∩ F (U) ⊆ F
(

U ∩ domain(F )
)

(6)

and note (6) and (5) imply (3). Finally, consider the inclusion
(

U ∩ domain(F )× V
)

∩ graph(F ) ⊆ graph(F ), (7)

and note (4) and (5) imply (7).
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Lemma 2.1 (Kelley). Let U ∩ domain(F ) be relatively compact. Then inclusion (7)
implies inclusion (6).

Proof. Let the inclusion (7) hold, let v ∈ V ∩F (U), and let A = U ∩ domain(F ). We
have to show that v ∈ F (A). Since F (U) = F (U ∩ domain(F )) ⊆ F (A), it follows
v ∈ F (A). Consider the family Q of neighborhoods Q of the point v and note the
family of sets {A ∩ F−1(Q);Q ∈ Q} is a filter base in the compact set A, hence there
exits a point u ∈ A such that

u ∈
⋂

Q∈Q

A ∩ F−1(Q).

Now, consider the family P of neighborhoods P of the point u and note that for every
P ∈ P as well as for every Q ∈ Q the set P ∩ F−1(Q) is nonempty, that is, the set
(P × Q) ∩ graph(F ) is nonempty, hence (u, v) ∈ graph(F ). Since (u, v) ∈ A × V , it
follows from inclusion (7) that (u, v) ∈ graph(F ), hence v ∈ F (A).

In view of Lemma 2.1, if F has a closed graph and U is compact, then F (U) is closed
(see [5, p. 203, Chapter 6, Problem A]).

The “topological space� result above is the frame of the “locally convex topological
vector space� result below.

In the following, F−1 stands for the inverse of F , that is, x ∈ F−1(y) if and only if
y ∈ F (x). Moreover, one hypotheses below states that F−1 maps the convex subsets
of the vector space Y to convex subsets of the vector space X. Obviously, if F has a
convex graph, then both F maps the convex subsets of X to convex subsets of Y and
F−1 maps the convex subsets of Y to convex subsets of X, but the converse implication
may fail. A counterexample is provided by the multifunction F : R → R given through
F (x) = {x3}.

Recall that a locally convex topological vector space X is semi-reflexive (see [1, p. 87,
Définition 3] and [2, IV, p. 16, Définition 2]; cf. [4, p. 508], [6, p. 189], [7, p. 298], and [10,
p. 72]) if and only if each bounded subset ofX is weakly relatively compact (see [1, p. 88,
Théorème 1] and [2, IV, p. 16, Théorème 1]; cf. [4, p. 508, 8.4.2 Theorem], [6, p. 190,
20.1 Criterion for Semi-Reflexiveness], [7, p. 299, (1)], and [10, p. 72, Proposition 4]).

Lemma 2.2 (Robinson). Let X and Y be separated, locally convex topological vector

spaces, let X be semi-reflexive, and let F−1 map the convex subsets of Y to convex

subsets of X. Let U be convex and let U ∩ domain(F ) be bounded. Then inclusion (7)
implies inclusion (6)

The proof of Lemma 2.2 depends on Lemma 2.1 above and on Proposition 2.3 below.

Denote by Xw the vector space X endowed with the weak topology, denote by S
Xw×Y

the (Xw × Y )-closure of any subset S of the vector space X × Y , and note the obvious

inclusion S ⊆ S
Xw×Y

can be improved to the equality S = S
Xw×Y

if S is convex. The
equality still holds if S = graph(F ) and F−1 maps the convex subsets of Y to convex
subsets of X.
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Proposition 2.3. Let X and Y be locally convex topological vector spaces, and let F−1

map the convex subsets of Y to convex subsets of X. Then graph(F ) = graph(F )
Xw×Y

.

Proof. We have to show that, if (p, q) ∈ graph(F )
Xw×Y

, then (p, q) ∈ graph(F ).
Assume, by contradiction, that (p, q) 6∈ graph(F ). Then there exist anX-neighborhood
P of p and an Y -neighborhood Q of q such that (P × Q) ∩ graph(F ) = ∅, that is,
P ∩ F−1(Q) = ∅. We can suppose, taking smaller P and Q if necessary, that P is
X-open, and both P and Q are convex. Since the set Q is convex, so is the set F−1(Q),
hence there exist a linear X-continuous function ξ : X → R and a real number ρ such
that ξ(α) < ρ ≤ ξ(β) whenever α ∈ P and β ∈ F−1(Q) (see [3, p. 642]). Denote by Π
the set of all points α ∈ X such that ξ(α) < ρ. Clearly, (Π×Q) ∩ graph(F ) = ∅, that
is, Π∩F−1(Q) = ∅. Since ξ is also Xw-continuous, it follows Π is an Xw-neighborhood

of the point p, hence (p, q) 6∈ graph(F )
Xw×Y

, a contradiction.

Proof of Lemma 2.2. Let the inclusion (7) hold. Denote by S
Xw

the Xw-closure
of any subset S of the vector space X. Since domain(F ) = F−1(Y ), it follows U ∩
domain(F ) is convex, hence

U ∩ domain(F ) = U ∩ domain(F )
Xw

,

and the bounded, Xw-closed set U ∩ domain(F )
Xw

is Xw-compact In view of Proposi-
tion 2.3,

(

U ∩ domain(F )
Xw

× V
)

∩ graph(F )
Xw×Y

⊆ graph(F ).

In view of Lemma 2.1,

V ∩ F (U) ⊆ F
(

U ∩ domain(F )
Xw
)

,

and the inclusion (6) holds.

In view of Lemma 2.2, if F has a closed graph, if F−1 maps convex subsets of Y

to convex subsets of X, and U is convex, bounded, and closed, then F (U) is closed.
Accordingly, if F has a closed graph and a bounded domain, and if F−1 maps con-
vex subsets of Y to convex subsets of X, then range(F ) is closed (cf. [11, p. 131,
Lemma 1 b)], where F has a convex graph).

A counterexample shows that, even if F has a convex graph, closeness of F (U) may
fail if X is not reflexive. Define F : l1(N) → R through

graph(F ) =

{(

x,

∞
∑

i=1

i

i+ 1
x(i)

)

;x ∈ l1(N)

}

,

let U be the closed unit ball in l1(N), and note F (U) = (−1,+1).

Another counterexample shows that closeness of range(F ) may fail if domain(F ) is not
bounded. Define F : R → R through graph(F ) = {(x, y);x > 0, xy ≥ 1}, and note
domain(F ) = range(F ) = (0,+∞).
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3. Locally closed graph results.

First, recall that local relative compactness of the set domain(F ) means that for ev-
ery point x ∈ domain(F ) there exists a neighborhood U of x such that the set
U ∩ domain(F ) is relatively compact. Further, recall that local closeness of the set
graph(F ) means that for every point (x, y) ∈ graph(F ) there exists a neighborhood W

of (x, y) such that the set W ∩ graph(F ) is closed. In the following
◦

W stands for the
interior of W . Since

◦

W ∩graph(F ) ⊆ W ∩ graph(F )

whenever W ⊆ X×Y , it follows local closeness of the graph of F implies that for every
point (x, y) ∈ graph(F ) there exists a neighborhood W of (x, y) such that

W ∩ graph(F ) ⊆ graph(F ).

The converse implication holds too in case X × Y is a regular topological space, that
is, both X and Y are regular topological spaces.

Theorem 3.1. Let X and Y be topological spaces, let X be regular, and let the multi-

function F have a locally closed graph and a locally relatively compact domain. If F is

nearly open at a point, then F is also open at that point.

Proof. Let F be nearly open at the point (x, y) ∈ graph(F ). Since F has a locally
closed graph, it follows there exist a neighborhood U∗ of x and a neighborhood V ∗ of
y such that

(U∗ × V ∗) ∩ graph(F ) ⊆ graph(F ).

Since domain(F ) is locally relatively compact, we can suppose (taking a smaller U∗ if
necessary) that the set domain(F )∩U∗ is relatively compact. Further, denote by U the
family of all closed neighborhoods U of x such that U ⊆ U∗, denote by V the family
of all neighborhoods V of y such that V ⊆ V ∗, and note U and V are bases for the
neighborhood systems of the points x (recall X is regular) and y respectively. Now, it
is easy to prove openness of F at (x, y). Let U ∈ U . Since F is nearly open at (x, y),
it follows there exists V ∈ V such that the inclusion (2) holds. In view of Lemma 2.1,
the inclusion (1) holds too, and openness of F at (x, y) follows.

The next result concerns the locally convex topological vector spaces X and Y . Recall
that local boundedness of the set domain(F ) means that for every point x ∈ domain(F )
there exists a neighborhood U of x such that the set U ∩ domain(F ) is bounded.
Obviously, F does have a locally bounded domain if X is a normed space.

Theorem 3.2. Let X and Y be separated, locally convex topological vector spaces, let

X be semi-reflexive, let F−1 map the convex subsets of Y to convex subsets of X, and

let F have a locally closed graph and a locally bounded domain. If F is nearly open at

a point, then F is also open at that point.

Proof. Let F be nearly open at the point (x, y) ∈ graph(F ). Since F has a locally
closed graph, it follows there exist a neighborhood U∗ of x and a neighborhood V ∗ of
y such that

(U∗ × V ∗) ∩ graph(F ) ⊆ graph(F ).
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Since domain(F ) is locally bounded, we can suppose (taking a smaller U∗ if necessary)
that the set domain(F ) ∩ U∗ is bounded. Further, denote by U the family of all
closed, convex neighborhoods U of x such that U ⊆ U∗, denote by V the family of
all convex neighborhoods V of y such that V ⊆ V ∗, and note U and V are bases for
the neighborhood systems of the points x and y respectively. Now, it is easy to prove
openness of F at (x, y). Let U ∈ U . Since F is nearly open at (x, y), it follows there
exists V ∈ V such that the inclusion (2) holds. In view of Lemma 2.2, the inclusion (1)
holds too, and openness of F at (x, y) follows.

4. Counterexamples.

The counterexample below shows that Theorem 3.1 may fail is F does not have a
locally relatively compact domain, whereas Theorem 3.2 may fail if F−1 does not map
the convex subsets of Y to convex subsets of X.

First, recall that, if X and Y are metric spaces, then openness of F at (x, y) means
that for every ǫ > 0 there exists δ > 0 such that

B(y, δ) ⊆ (B(x, ǫ)), (8)

whereas near openness of F at (x, y) means that for every ǫ > 0 there exists δ > 0 such
that

B(y, δ) ⊆ F (B(x, ǫ)). (9)

Here, B(c, r) stands for the open ball with center c and radius r.

Further, consider the set Q of rational numbers and consider the Hilbert space l2(Q),
which can be identified with the familiar space l2(N).

Further, let the multifunction F : l2(Q) → R be defined through the equality

graph(F ) = {(q · κq, q); q ∈ Q}.

Here, κq(q
′) stands for the “rational� Kronecker symbol, namely κq(q

′) = 0 if q′ 6= q,
whereas κq(q

′) = 1 if q′ = q.

Clearly, κq ∈ l2(Q), ‖κq‖ = 1, and moreover, ‖q1 · κq1 − q2 · κq2‖ =
√

|q1|2 + |q2|2 if
q1 6= q2. Accordingly, the set graph(F ) is closed because all of its points are isolated
points except for its point (0, 0) which is an accumulation point. Moreover, F is nearly
open at (0, 0), but not open at (0, 0) because F (Bl2(Q)(0, ǫ)) = Q ∩ BR(0, ǫ). Here,
BM(c, r) stands for the open ball in the corresponding metric space M .

Finally, note B(0, ǫ)∩domain(F ) is not relatively compact for any ǫ > 0, whereas F−1

does not map the convex subsets of R to convex subsets of l2(Q).

A related counterexample shows that openness of a multifunction at a point may not
imply near openness at any other point, even if that multifunction has a closed graph.

Let the multifunction F : l2(R) → R be defined through the equality

graph(F ) = {(r · κr, r); r ∈ R}.

This time κr(r
′) stands for the “real� Kronecker symbol. Namely κr(r

′) = 0 if r′ 6= r,
whereas κr(r

′) = 1 if r′ = r. Clearly, κr ∈ l2(R) and ‖κr‖ = 1. The set graph(F ) is
closed because all of its points are isolated points except for its point (0, 0) which is an
accumulation point. Moreover, F is open at (0, 0) because F (Bl2(R)(0, ǫ)) = BR(0, ǫ).
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5. Relation to earlier work.

In case of Theorem 3.1, if F does not have a locally relatively compact domain, then
a restrictive near openness of F implies the corresponding openness of F , namely
local uniform near openness implies local uniform openness, provided that X and Y

are metric spaces, X is complete, and F has a locally closed graph (see [13, p. 145,
Theorem 4]).

Recall the “local uniform� terminology in [13, pp. 144, 145], which expound on the
“uniform� terminology in [9, p. 505, Theorem 2.1]: F is said to be uniformly open

on a set W ⊆ graph(F ) if for every ǫ > 0 there exists δ > 0 such that for every
(x, y) ∈ W there holds the inclusion (8); F is said to be locally uniformly open if
for every (x, y) ∈ graph(F ) there exists a neighborhood W of (x, y) such that F is
uniformly open on the set W ∩ graph(F ). Analogously: F is said to be uniformly

nearly open on a set W ⊆ graph(F ) if for every ǫ > 0 there exists δ > 0 such that for
every (x, y) ∈ W there holds the inclusion (9); F is said to be locally uniformly nearly

open if for every (x, y) ∈ graph(F ) there exists a neighborhood W of (x, y) such that
F is uniformly nearly open on the set W ∩ graph(F ).

The basic lemma from which there follows the local uniform result above, essentially
states that (see [13, p. 146, Theorem 7]) a metric version of the topological inclusion (4),
namely

(B(x, ǫ)×B(y, δ)) ∩ graph(F ) ⊆ graph(F ),

implies a family of metric versions of the topological inclusion (3), namely for every
ǫ′ ∈ (0, ǫ) there holds the inclusion

B(y, δ) ∩ F (B(x, ǫ′)) ⊆ F (B(x, ǫ)),

provided that for every ǫ′ ∈ (0, ǫ) and for every δ′ ∈ (0, δ) the multifunction F is
uniformly nearly open on the set

(B(x, ǫ′)×B(y, δ′)) ∩ graph(F ).

An elementary counterexample, namely

graph(F ) = {(r, r) ∈ R2; |r| < 1}, (x, y) = (0, 0), (ǫ, δ) = (1, 1),

shows that uniform near openness on each of the (ǫ′, δ′)-sets above does not imply
uniform near openness on the set

(B(x, ǫ)×B(y, δ)) ∩ graph(F ),

whereas the ǫ′-inclusions above do not imply the inclusion

B(y, δ) ∩ F (B(x, ǫ)) ⊆ F (B(x, ǫ)).

The skeletal similarities and differences exhibited by these results are setting for the
question whether there is some unifying result underlying all of them (see [8, p. 452]).
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