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1. Introduction

In [12], Milman gave a scheme of defining moduli which can be used as tools for study-
ing geometry of Banach spaces. For instance they were used to characterize uniform
convexity (see [4]), uniform smoothness (see [2]) and multi-dimensional counterparts
of these properties (see [8, 10]). Infinite-dimensional Milman’s moduli turned out to
be related to the Kadec–Klee property (see [7]), nearly uniform convexity and nearly
uniform smoothness (see [14]). They were successfully applied to some problems of
nonlinear analysis, including differentiation of mappings on Banach spaces (see [5, 6])
and metric fixed point problems (see [7, 15]).

In this paper we study local versions of some Milman’s moduli. In particular we show
that a two-dimensional Milman’s modulus is in a sense equivalent to the standard
modulus of smoothness. This is a quantitative version of a result obtained in [2]. We
also establish an inequality between local Milman’s moduli corresponding to finite-
dimensional and infinite-dimensional smoothness. As a tool we use a formula obtained
in [7] which describes the latter modulus in terms of weakly null nets. In this paper
we give an analogous formula for the modulus corresponding to infinite-dimensional
convexity. An inequality between an infinite-dimensional Milman’s modulus of convex-
ity and the standard modulus of convexity was obtained in [6]. We give an example
showing that its local version is not true.

2. Preliminaries

We consider only real Banach spaces. Given such space X, by BX and SX we denote
its closed unit ball and unit sphere, respectively. Assuming that dimX > k, by Bk
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we denote the family of all k-dimensional subspaces of X. The family of all closed
subspaces of X with finite codimension is denoted by B0. In this case we assume that
dimX = ∞. The local versions of Milman’s moduli are defined in the following way.
Given x ∈ SX and ǫ ≥ 0, we put

β̃k
X(ǫ, x) = sup

E∈Bk

inf
y∈SE

‖x+ ǫy‖ − 1, δ̃kX(ǫ, x) = inf
E∈Bk

sup
y∈SE

‖x+ ǫy‖ − 1

and

β̃X(ǫ, x) = sup
E∈B0

inf
y∈SE

‖x+ ǫy‖ − 1, δ̃X(ǫ, x) = inf
E∈B0

sup
y∈SE

‖x+ ǫy‖ − 1.

The reader should be aware that also different notation can be found in the literature.

Let Φ be any of these moduli seen as a function of ǫ. Then Φ is a nonnegative func-
tion satisfying Lipschitz condition with constant 1 and Φ(ǫ)/ǫ is nondecreasing in the
interval (0,+∞) (see [12, 11]). If 1 < p < ∞, then

β̃lp(ǫ, x) = δ̃lp(ǫ, x) = (1 + ǫp)
1

p − 1

for every x ∈ Slp and ǫ ≥ 0.

Let us recall that the modulus δ̃kX is related to k-uniform convexity (see [9]) and β̃k
X is

related to k-uniform smoothness, which is the dual property (see [10]). The correspon-
dence is reversed when passing to infinite-dimensional geometric properties. Namely,
β̃X is related to nearly uniform convexity while δ̃X is related to nearly uniform smooth-
ness (see [11]).

3. Two-dimensional moduli

Let X be a Banach space, x ∈ SX and ǫ ≥ 0. Clearly,

β̃1
X(ǫ, x) = sup

y∈SX

min{‖x+ ǫy‖, ‖x− ǫy‖} − 1

and we put
β1
X(ǫ) = sup

z∈SX

β̃1
X(ǫ, z).

We also set

ρ̃X(ǫ, x) = sup
y∈SX

1

2
(‖x+ ǫy‖+ ‖x− ǫy‖)− 1.

Then the formula
ρX(ǫ) = sup

z∈SX

ρ̃X(ǫ, z)

gives us the standard modulus of smoothness (see [9]). Milman [12] claimed that the
moduli ρX and β1

X coincide. Examples given in [4] and [1] show that this is not true
in general. However, Banaś [2] proved that a Banach space X is uniformly smooth if
and only if

lim
t→0

β1
X(t)

t
= 0,
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so β1
X can be seen as a modulus of smoothness.

We will establish quantitative relations between ρX and β1
X . For this purpose we need

the following lemma, which is a modification of a result due to Phelps [13].

Lemma 3.1. Let X be a Banach space with dimX ≥ 2. If numbers a, b ∈ R and

functionals x∗, y∗ ∈ X∗ satisfy the following conditions: 1 − a ≤ ‖x∗‖ ≤ 1, ‖y∗‖ = 1,
‖x∗ + y∗‖ > b, ‖x∗ − y∗‖ > b, then there exists y ∈ kerx∗ ∩ SX such that |y∗(y)| > b−a

2
.

Proof. The conclusion obviously holds if a > b. Let us therefore assume that there
exist numbers a ≤ b and functionals x∗, y∗ ∈ X∗ such that 1− a ≤ ‖x∗‖ ≤ 1, ‖y∗‖ = 1,
‖x∗ + y∗‖ > b, ‖x∗ − y∗‖ > b and |y∗(y)| ≤ 1

2
(b − a) for every y ∈ kerx∗ ∩ SX . By

the Hahn–Banach theorem there is z∗ ∈ X∗ such that z∗(y) = y∗(y) for all y ∈ kerx∗

and ‖z∗‖ ≤ 1
2
(b− a). Since (y∗ − z∗)(y) = 0 for all y ∈ kerx∗, y∗ − z∗ = αx∗ for some

α ∈ R. Observe that

|1− |α|‖x∗‖| = |‖y∗‖ − ‖y∗ − z∗‖| ≤ ‖z∗‖ ≤
b− a

2
.

If α ≥ 0, then

‖x∗ − y∗‖ = ‖(1− α)x∗ − z∗‖ ≤ |1− α|‖x∗‖+ ‖z∗‖

≤ |1− α‖x∗‖|+ |‖x∗‖ − 1|+ ‖z∗‖ ≤ b.

If in turn α ≤ 0, then

‖x∗ + y∗‖ = ‖(1 + α)x∗ + z∗‖ ≤ |1 + α|‖x∗‖+ ‖z∗‖

≤ |1 + α‖x∗‖|+ |‖x∗‖ − 1|+ ‖z∗‖ ≤ b.

This shows that ‖x∗−y∗‖ ≤ b or ‖x∗+y∗‖ ≤ b which contradicts our assumptions.

Corollary 3.2. Let X be a Banach space with 2 ≤ dimX < ∞. If numbers a, b ∈ R

and functionals x∗, y∗ ∈ X∗ satisfy the following conditions: 1− a ≤ ‖x∗‖ ≤ 1, ‖y∗‖ =
1, ‖x∗ + y∗‖ ≥ b, ‖x∗ − y∗‖ ≥ b, then there is y ∈ kerx∗ ∩ SX such that |y∗(y)| ≥ b−a

2
.

Theorem 3.3. Let X be a Banach space. For every x ∈ SX , ǫ ≥ 0 and t ≥ 0 the

following inequalities hold:

ρ̃X(ǫ, x) ≥ β̃1
X(ǫ, x), (1)

β̃1
X(tǫ, x) ≥

(
2 +

t

2
+

tǫ

2

)
ρ̃X(ǫ, x)− ǫ

(
2 +

tǫ

2

)
. (2)

Proof. Inequality (1) is obvious. To establish estimate (2) it suffices to consider the
case when X is a two-dimensional space. Let x ∈ SX and t ≥ 0. Inequality (2)
obviously holds if ǫ = 0. Assume therefore that ǫ > 0. Then there exists z ∈ SX such
that

1

2
(‖x+ ǫz‖+ ‖x− ǫz‖)− 1 = ρ̃X(ǫ, x).

We find u∗, v∗ ∈ SX∗ so that u∗(x+ ǫz) = ‖x+ ǫz‖ and v∗(x− ǫz) = ‖x− ǫz‖. Then

2 + 2ρ̃X(ǫ, x) = u∗(x+ ǫz) + v∗(x− ǫz)

= (u∗ + v∗)(x) + ǫ(u∗ − v∗)(z).
(3)
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Since (u∗ + v∗)(x) ≤ ‖u∗ + v∗‖ ≤ 2,

‖u∗ − v∗‖ ≥ (u∗ − v∗)(z) ≥
2ρ̃X(ǫ, x)

ǫ
.

Applying the inequality ǫ(u∗ − v∗)(z) ≤ ǫ‖u∗ − v∗‖ ≤ 2ǫ, from (3) we obtain

‖u∗ + v∗‖ ≥ (u∗ + v∗)(x) ≥ 2 + 2ρ̃X(ǫ, x)− 2ǫ.

But v∗(x) ≤ 1, so

u∗(x) ≥ 1 + 2ρ̃X(ǫ, x)− 2ǫ

and similarly,

v∗(x) ≥ 1 + 2ρ̃X(ǫ, x)− 2ǫ.

Observe that assumptions of Corollary 3.2 are fulfilled with x∗ = 1
2
(u∗ + v∗), y∗ = u∗,

a = ǫ− ρ̃X(ǫ, x) and b = 1
ǫ
ρ̃X(ǫ, x). Indeed, since

2 ≥ ‖u∗ − v∗‖ ≥
2ρ̃X (ǫ, x)

ǫ
,

we get

1 ≥
ρ̃X (ǫ, x)

ǫ
.

Thus

‖x∗ + y∗‖ =

∥∥∥∥2u
∗ +

1

2
(v∗ − u∗)

∥∥∥∥ ≥ 2 ‖u∗‖ −
1

2
‖v∗ − u∗‖ ≥ 1 ≥

ρ̃X (ǫ, x)

ǫ
.

Applying Corollary 3.2, we therefore obtain y ∈ SX such that (u∗+v∗)(y) = 0, |u∗(y)| ≥
1
2ǫ
ρ̃X(ǫ, x) −

1
2
(ǫ − ρ̃X(ǫ, x)). Since u∗(y) = −v∗(y), either u∗(y) ≥ 0 or v∗(y) ≥ 0.

Assume that u∗(y) ≥ 0. Then

‖x+ tǫy‖ ≥ u∗(x+ tǫy) = u∗(x) + tǫu∗(y)

≥ 1 +

(
2 +

t

2
+

tǫ

2

)
ρ̃X(ǫ, x)− ǫ

(
2 +

tǫ

2

)
.

Similarly,

‖x− tǫy‖ ≥ v∗(x− tǫy) = v∗(x)− tǫv∗(y) = v∗(x) + tǫu∗(y)

≥ 1 +

(
2 +

t

2
+

tǫ

2

)
ρ̃X(ǫ, x)− ǫ

(
2 +

tǫ

2

)
.

Hence

β̃1
X(tǫ, x) ≥

(
2 +

t

2
+

tǫ

2

)
ρ̃X(ǫ, x)− ǫ

(
2 +

tǫ

2

)
.

The case when v∗(y) ≥ 0 is similar.
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Corollary 3.4. Let X be a Banach space. Then

ρX(ǫ) ≥ β1
X(ǫ),

β1
X(tǫ) ≥

(
2 +

t

2
+

tǫ

2

)
ρX(ǫ)− ǫ

(
2 +

tǫ

2

)
.

for every ǫ ≥ 0, t ≥ 0.

From (2) we see that

β̃1
X(tǫ, x)

tǫ
≥

1

2

ρ̃X(ǫ, x)

ǫ
−

2

t
−

ǫ

2
.

for every t > 0 and ǫ > 0. This and (1) give us the following corollary.

Corollary 3.5. Let X be a Banach space. Then

lim
ǫ→0

ρ̃X(ǫ, x)

ǫ
≥ lim

ǫ→0

β̃1
X(ǫ, x)

ǫ
≥

1

2
lim
ǫ→0

ρ̃X(ǫ, x)

ǫ
.

for every x ∈ SX and

lim
ǫ→0

ρX(ǫ)

ǫ
≥ lim

ǫ→0

β1
X(ǫ)

ǫ
≥

1

2
lim
ǫ→0

ρX(ǫ)

ǫ
.

4. Multi-dimensional moduli

In [7], it was shown that

δ̃X(ǫ, x) = sup

{
lim sup

α∈A
‖x+ ǫyα‖ − 1

}
(4)

for every ǫ ≥ 0, where the supremum is taken over all weakly null nets (yα)α∈A in BX .
Let X be a Banach space such that the set N1 of all weakly null nets (xα)α∈A in SX

is nonempty. It is easy to see that the supremum in formula (4) can be taken over all
nets from N1 as well.

In some cases this formula is more suitable than the original one. In particular, it
shows that δ̃X(ǫ, x) is a convex function of ǫ. Using the idea from [7], we will establish

an analogous formula for the modulus β̃X . In the proof we will apply the following
lemma.

Lemma 4.1. Let X be a Banach space and E be a closed subspace of X with codimen-

sion k. Then there exist vectors x1, . . . , xk ∈ SX and functionals x∗
1, . . . , x

∗
k ∈ X∗ such

that E =
⋂k

i=1 kerx
∗
i , x

∗
i (xi) = 1 for every i = 1, . . . , k and x∗

i (xj) = 0 for i 6= j.

Proof. There exist vectors y1, . . . , yk in X/E and functionals f ∗
1 , . . . , f

∗
k ∈ (X/E)∗

which satisfy the following condition

f ∗
i (yj) =

{
0 if i 6= j,

1 if i = j.
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But the space (X/E)∗ is canonically isometric to E⊥ = {x∗ ∈ X∗ : x∗(x) = 0 for every
x ∈ E}, so there exist functionals y∗1, . . . , y

∗
k ∈ E⊥ such that ‖y∗i ‖ = ‖f ∗

i ‖ and f ∗
i (yj) =

y∗i (x) for every x ∈ yj (see [3, Theorem 2.7]). We take vectors u1 ∈ y1, . . . , uk ∈ yk and
put xi =

1
‖ui‖

ui, x
∗
i = ‖ui‖y

∗
i for i = 1, . . . , k. Since the subspace E is closed, we have

E = (E⊥)⊥ =
{
x ∈ X : x∗(x) = 0 for every x∗ ∈ E⊥

}

(see [3, p. 55]). But dimE⊥ = k, so E⊥ = span{x∗
1, . . . , x

∗
k}. This yields (E⊥)⊥ =⋂k

i=1 kerx
∗
i . The remaining conditions are obvious.

Theorem 4.2. Let X be a Banach space, x ∈ SX and ǫ ≥ 0. Then

β̃X(ǫ, x) = inf

{
lim sup

α∈A
‖x+ ǫyα‖ − 1 : (yα)α∈A ∈ N1

}
. (5)

Proof. Given ǫ ≥ 0, we first show that

β̃X(ǫ, x) ≥ inf
(yα)α∈A∈N1

lim sup
α∈A

‖x+ ǫyα‖ − 1. (6)

In B0 we define an order as follows: E1 ≤ E2 if and only if E2 ⊂ E1. It is easy to see
that B0 is a directed set. Let us fix γ > 0. For each E ∈ B0 we find yE ∈ SE so that

‖x+ ǫyE‖ − 1 ≤ β̃X(ǫ, x) + γ.

We have (yE)E∈B0 ∈ N1. Indeed, considering any x∗ ∈ SX∗ , we have x∗(yE) = 0,
provided that E ≥ kerx∗. In consequence the net (yE)E∈B0 is weakly null.

We obtain

β̃X(ǫ, x) + γ ≥ sup
E∈B0

‖x+ ǫyE‖ − 1 ≥ inf
(yα)α∈A∈N1

lim sup
α∈A

‖x+ ǫyα‖ − 1.

Since γ > 0 is arbitrary, this gives us inequality (6).

For the opposite inequality we fix γ ∈ (0, 1) and choose E ∈ B0 so that

‖x+ ǫy‖ − 1 ≥ β̃X(ǫ, x)− γ

for each y ∈ SE. Let k = codimE. Applying Lemma 4.1, we find z1, . . . , zk ∈ SX and
z∗1 , . . . , z

∗
k ∈ X∗ satisfying the conditions E =

⋂k

i=1 ker z
∗
i , z

∗
i (zi) = 1 for i = 1, . . . , k

and z∗i (zj) = 0 for i, j = 1, . . . , k, i 6= j. Now we consider an arbitrary net (xα)α∈A ∈
N1. We put

yα = xα −
k∑

i=1

z∗i (xα)zi.

There exists α0 ∈ A such that |z∗i (xα)| ≤
γ

2k
(i = 1, . . . , k) whenever α ≥ α0. Let us fix

α ≥ α0. We obtain
∥∥∥∥yα −

yα
‖yα‖

∥∥∥∥ = |1− ‖yα‖| = |‖xα‖ − ‖yα‖|

≤ ‖xα − yα‖ =

∥∥∥∥∥

k∑

i=1

z∗i (xα)zi

∥∥∥∥∥ ≤
γ

2
.
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Note that z∗i (yα) = 0 for i = 1, . . . , k, so 1
‖yα‖

yα ∈ SE, and in consequence

∥∥∥∥x+ ǫ
yα

‖yα‖

∥∥∥∥− 1 ≥ β̃X(ǫ, x)− γ

for each yα. Since

‖x+ ǫxα‖ − 1 ≥

∥∥∥∥x+ ǫ
yα

‖yα‖

∥∥∥∥− 1− ǫ

∥∥∥∥xα −
yα

‖yα‖

∥∥∥∥

≥ β̃X(ǫ, x)− γ − ǫ

(
‖xα − yα‖+

∥∥∥∥yα −
yα

‖yα‖

∥∥∥∥
)

≥ β̃X(ǫ, x)− γ − ǫγ,

we conclude that lim supα∈A ‖x+ ǫxα‖ − 1 ≥ β̃X(ǫ, x)− γ − ǫγ. As γ and (xα)α∈A are
arbitrary, we obtain the desired inequality.

Remark 4.3. Due to the fact that each bounded net of real numbers has a convergent
subsequence it is easy to check that in (4) and (5) “lim sup� can be replaced with
“lim inf�. Moreover, for some spaces nets can be replaced by sequences in these formulas
(see [11]).

In [6], it was shown that

sup
x∈SX

δ̃X(ǫ, x) ≤ 2ρX(ǫ)

for every ǫ ∈ (0, 1). Relation between δ̃X and β̃k
X is described by the following theorem.

Theorem 4.4. Let X be a Banach space, k ∈ N, ǫ ≥ 0 and x ∈ SX . Then

δ̃X

( ǫ

2k
, x
)
≤ β̃k

X(ǫ, x).

Proof. Clearly, it suffices to consider only the case when δ̃X
(

ǫ
2k
, x
)
> 0. We take

γ ∈

(
0,

1

3ǫ
δ̃X

( ǫ

2k
, x
))

.

In view of formula (4) and the last remark we can find a net (yα)α∈A ∈ N1 so that

lim inf
α∈A

∥∥∥x+
ǫ

2k
yα

∥∥∥− 1 > δ̃X

( ǫ

2k
, x
)
− γǫ.

By the Hahn–Banach theorem there exist x∗ ∈ SX∗ such that x∗(x) = 1 and a net
(y∗α)α∈A ⊂ SX∗ satisfying for each α ∈ A the condition y∗α

(
x + ǫ

2k
yα
)
=
∥∥x + ǫ

2k
yα
∥∥.

Applying the Alaoglu theorem, we find a subnet (y∗α)α∈B weakly∗ convergent to some
y∗ ∈ X∗ and next a subnet (yα)α∈C of the net (yα)α∈B such that |y∗(yα)| ≤

γ

2
for all

α ∈ C.
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There exists η ∈ C such that

inf
α∈C,α≥η

∥∥∥x+
ǫ

2k
yα

∥∥∥ > lim inf
α∈A

∥∥∥x+
ǫ

2k
yα

∥∥∥− γǫ.

Consequently,

inf
α∈C,α≥η

∥∥∥x+
ǫ

2k
yα

∥∥∥ > δ̃X

( ǫ

2k
, x
)
+ 1− 2γǫ > 1 + γǫ. (7)

By induction, we find vectors yα1
, . . . , yα2k

and functionals y∗α1
, . . . , y∗α2k

, where αi ∈ C,
αi ≥ η for i = 1, . . . , 2k, satisfying conditions yαi

/∈ span{yα1
, . . . , yαi−1

} for i =
2, . . . , 2k and |(y∗αi

− y∗)(yαj
)| ≤ γ

2
for i 6= j.

We set α1 = η. Assume that we have already constructed α1, . . . , αi−1. There exists µ ∈
C such that yα /∈ span{yα1

, . . . , yαi−1
} for all α ≥ µ. Otherwise, finitely dimensional

space span{yα1
, . . . , yαi−1

} would contain a subnet of (yα)α∈C , which is impossible,
because (yα)α∈C tends weakly to zero, but none of its subnets converges strongly to
zero. Since (yα)α∈C is a weakly null net and (y∗α − y∗)α∈C is a weakly∗ null net, there
exists αi ∈ C such that αi ≥ µ, |(y∗αj

− y∗)(yαi
)| ≤ γ

2
and |(y∗αi

− y∗)(yαj
)| ≤ γ

2
for each

j = 1, . . . , i− 1.

For such yα1
, . . . , yα2k

and y∗α1
, . . . , y∗α2k

we have

|y∗αi
(yαj

)| ≤ |(y∗αi
− y∗)(yαj

)|+ |y∗(yαj
)| ≤ γ, (8)

whenever i 6= j. For i ∈ {1, . . . , k} we put xi =
1
2
(yα2i

− yα2i−1
). Vectors x1, . . . , xk are

linearly independent, so the subspace E = span{x1, . . . , xk} has dimension k. Observe
that for arbitrary a1, . . . , ak ∈ R we have

∥∥∥∥∥

k∑

i=1

aixi

∥∥∥∥∥ ≤
k∑

i=1

|ai|‖xi‖ ≤ k max
i∈{1,...,k}

|ai|.

Any two norms in a finite dimensional space are equivalent, so we obtain a constant
c > 0 such that

max
i∈{1,...,k}

|ai| ≤ c

∥∥∥∥∥

k∑

i=1

aixi

∥∥∥∥∥ .

Consider the set

M =

{
k∑

i=1

aixi : (ai) ∈ R
k,

1

k
≤ max

i∈{1,...,k}
|ai| ≤ c

}
.

If
∥∥∑k

i=1 aixi

∥∥ = 1, then 1
k
≤ maxi∈{1,...,k} |ai| ≤ c, so SE ⊂ M . We have

β̃k
X(ǫ, x) ≥ inf

y∈SE

‖x+ ǫy‖ − 1 ≥ inf
y∈M

‖x+ ǫy‖ − 1. (9)

Obviously, M is a compact set and therefore in the last expression the infimum is
achieved for some y0 =

∑k

i=1 aixi ∈ M . Putting m = maxi∈{1,...,k} |ai|, we find i0 ∈
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{1, . . . , k} such that |ai0| = m. If ai0 = m, then using (8), we get

∥∥∥x+
ǫ

km
y0

∥∥∥ =

∥∥∥∥∥x+
ǫ

2k

k∑

i=1

ai
m
(yα2i

− yα2i−1
)

∥∥∥∥∥

≥ y∗α2i0

(
x+

ǫ

2k

k∑

i=1

ai
m
(yα2i

− yα2i−1
)

)

= y∗α2i0
(x) +

ǫ

2k

k∑

i=1

ai
m
(y∗α2i0

(yα2i
)− y∗α2i0

(yα2i−1
))

≥ y∗α2i0
(x) +

ǫ

2k
y∗α2i0

(yα2i0
)− γǫ

= ‖x+
ǫ

2k
yα2i0

‖ − γǫ > 1.

(10)

If αi0 = −m, then in the above calculation we substitute y∗α2i0−1
for y∗α2i0

. In this case
we obtain the inequality

∥∥∥x+
ǫ

km
y0

∥∥∥ ≥
∥∥∥x+

ǫ

2k
yα2i0−1

∥∥∥− γǫ > 1. (11)

Since
∥∥x+ ǫ

km
y0
∥∥ > 1 and km ≥ 1,

∥∥∥x+
ǫ

km
y0

∥∥∥ ≤
1

km
‖x+ ǫy0‖+

(
1−

1

km

)
‖x‖ ≤ ‖x+ ǫy0‖

Thus
inf
y∈M

‖x+ ǫy‖ ≥
∥∥∥x+

ǫ

km
y0

∥∥∥ . (12)

From (9), (10), (11) and (12) we therefore obtain

β̃k
X(ǫ, x) ≥ min

{∥∥∥x+
ǫ

2k
yα2i0

∥∥∥ ,
∥∥∥x+

ǫ

2k
yα2i0−1

∥∥∥
}
− 1− γǫ

≥ inf
α∈C,α≥η

∥∥∥x+
ǫ

2k
yα

∥∥∥− 1− γǫ.

In view of (7) this shows that

β̃k
X(ǫ, x) ≥ δ̃X

( ǫ

2k
, x
)
− 3γǫ.

Passing to the limit with γ → 0, we obtain the desired inequality.

Let X be a Banach space. By δX we denote the standard modulus of convexity of X,
i.e.,

δX(ǫ) = inf
{
1−

∥∥∥
x+ y

2

∥∥∥ : x, y ∈ SX , ‖x− y‖ ≥ ǫ
}

where ǫ ∈ [0, 2]. In [6], it was shown that

δX(ǫ) ≤ βX(ǫ) = inf
x∈SX

β̃X(ǫ, x)
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for every ǫ ∈ (0, 1). Figiel [4] obtained the following formula

δ̃1X

(
ǫ

2(1− δX(ǫ))

)
=

δX(ǫ)

1− δX(ǫ)

for all ǫ ∈ [0, 2). It follows that

δX(ǫ) = (1− δX(ǫ)) δ̃
1
X

(
ǫ

2(1− δX(ǫ))

)
≥ δ̃1X

( ǫ
2

)
,

which gives us the estimate

βX(ǫ) ≥ δ̃1X

( ǫ
2

)

for every ǫ ∈ (0, 1). In contrast to Theorem 4.4, the local version of this estimate is
not true, as the following example shows.

Example 4.5. Let X = c0 be endowed with the norm

‖(xn)‖1 = max

{
sup
n∈N

|x1 − xn|, sup
n∈N

|xn|

}
.

The norm ‖·‖1 is equivalent to the standard norm of c0. We claim that there exists

x ∈ X such that β̃X(1, x) = 0 and δ̃1X(ǫ, x) ≥
ǫ
2
for all ǫ > 0. In this case the following

formula holds

β̃X(ǫ, x) = inf

{
lim sup
n→∞

‖x+ ǫyn‖ − 1

}

where the infimum is taken over all weakly null sequences (yn) in SX (see [11]).

Let (en) be the standard basis of c0. The sequence (en) is weakly null, ‖en‖1 = 1 for
every n ∈ N and ‖e1 + en‖1 = 1 for n > 1. Therefore

β̃X(1, e1) ≤ lim sup
n→∞

‖e1 + en‖1 − 1 = 0,

which shows that β̃X(1, e1) = 0.

Let ǫ > 0 and z = (ζn) ∈ SX . In the case when |ζ1| ≥
1
2
we have

max{‖e1 + ǫz‖1, ‖e1 − ǫz‖1} ≥ max{|1 + ǫζ1|, |1− ǫζ1|} ≥ 1 +
ǫ

2
.

Otherwise |ζ1 − ζk| ≥
1
2
for some k > 1 and

max{‖e1 + ǫz‖1, ‖e1 − ǫz‖1} ≥ max{|1 + ǫζ1 − ǫζk|, |1− ǫζ1 + ǫζk|} ≥ 1 +
ǫ

2
.

Thus
max{‖e1 + ǫz‖1, ‖e1 − ǫz‖1} − 1 ≥

ǫ

2
.

This shows that

δ̃1X(ǫ, e1) = inf
y∈SX

max{‖e1 + ǫy‖1, ‖e1 − ǫy‖1} − 1 ≥
ǫ

2
.
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tiability of Lipschitz mappings between infinite-dimensional Banach spaces, Proc. Lond.
Math. Soc., III. Ser. 84 (2002) 711–746.

[7] W. Kaczor, S. Prus: Asymptotical smoothness and its applications, Bull. Austral. Math.
Soc. 66 (2002) 405–418.

[8] P. K. Lin: k-Uniform rotundity is equivalent to k-uniform convexity, J. Math. Anal.
Appl. 132 (1988) 349–355.

[9] J. Lindenstrauss: On the modulus of smoothness and divergent series in Banach spaces,
Mich. Math. J. 10 (1963) 241–252.

[10] E. Maluta, S. Prus: Banach spaces which are dual to k-uniformly convex spaces, J. Math.
Anal. Appl. 209 (1997) 479–491.

[11] E. Maluta, S. Prus, M. Szczepanik: On Milman’s moduli for Banach spaces, Abstr. Appl.
Anal. 6 (2001) 115–129.

[12] V. D. Milman: Geometric theory of Banach spaces. II: Geometry of the unit sphere,
Russ. Math. Surv. 26 (1971) 79–163; transl. from Usp. Mat. Nauk 26 (1971) 73–149.

[13] R. R. Phelps: A representation theorem for bounded convex sets, Proc. Amer. Math.
Soc. 11 (1960) 976–983.

[14] S. Prus: Geometrical background of metric fixed point theory, in: Handbook of Metric
Fixed Point Theory, W. A. Kirk, B. Sims (eds.), Kluwer, Dordrecht (2001) 93–132.

[15] S. Prus, M. Szczepanik: Nearly uniformly noncreasy Banach spaces, J. Math. Anal.
Appl. 307 (2005) 255–273.


