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1. Introduction

The main idea of this paper is to use Brunn–Minkowski inequalities for quermassin-
tegrals to derive a family of inequalities of Poincaré type on the unit sphere and on
the boundary of convex bodies in the n–dimensional Euclidean space. This type of re-
search was initiated in [4] where the case of the classical Brunn–Minkowski inequality
is considered.

Let K ⊂ R
n be a convex body, i.e. a (non–empty) compact convex set. The quer-

massintegrals of K, denoted by W0(K), W1(K), . . . ,Wn(K), arise naturally in the
polynomial expression of the volume of the outer parallel bodies of K given by the well
known Steiner formula:

Hn(K + tBn) =
n
∑

i=0

ti
(

n

i

)

Wi(K) , t ≥ 0 .

where Bn is the unit ball of Rn, K + tBn = {x + ty : x ∈ K , y ∈ Bn} is the outer
parallel body ofK at distance t ≥ 0 andHn is the volume, i.e., n–dimensional Lebesgue
measure. For a detailed study of quermassintegrals we refer to [11, §4.2]. Some of the
quermassintegrals have familiar geometric meaning: W0(K) is the volume of K, while

∗Supported by EU Project Phenomena in High Dimensions MRTN-CT-2004-511953.

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag
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W1(K) is, up to a dimensional factor, the surface area of K. Each quermassintegral
Wi, i < n, satisfies a Brunn–Minkowski type inequality: for every K and L convex
bodies and for every t ∈ [0, 1] we have

Wk((1− t)K + tL)1/(n−k) ≥ (1− t)Wk(K)1/(n−k) + tWk(L)
1/(n−k) . (1)

If t ∈ (0, 1) then equality holds for 0 ≤ k < n − 1 if and only if either K and
L are homothetic or they lie in parallel (n − i − 1)-planes. When k = 0 this is
the classical Brunn–Minkowski inequality. In general, the above inequalities can be
obtained as consequences of the Aleksandrov–Fenchel inequalities (see for instance [11,

§6.4]). Inequality (1) claims that the functional W
1/(n−k)
k is concave in the class of

convex bodies; heuristically, this implies that the second variation of this functional,
whenever it exists, must be negative semi–definite. In this paper we try to make this
argument more precise and we study its consequences.

Throughout the paper we use the notion of elementary symmetric functions of (the
eigenvalues of) symmetric matrices. In our notation, if A is a N × N real symmetric
matrix, for r ∈ {0, 1, . . . , N}, Sr(A) is the r–th elementary symmetric function of the
eigenvalues of A and (Sij

r (A)) is the r–cofactor matrix of A; these notions and their
properties are recalled in §2.

As we will be working on the unit sphere and on the boundary of smooth convex bodies,
the derivatives of a (smooth) function f defined on such sets will be always covariant
derivatives. If an orthonormal frame has been fixed, the covariant derivatives of f with
respect to the coordinates will be denoted by fi, fij, and so on, and ∇f will denote
the vector (f1, . . . , fn−1).

If K ⊂ R
n is a convex body of class C2

+ (see §2 for the definition) then, for k < n,

Wk(K) = c(n, k)

∫

Sn−1

hK Sn−k−1((hK)ij + hKδij) dHn−1 , (2)

where c(n, k) is a constant and (hK)ij are the second covariant derivatives of the support
function hK of K (see formula (5.3.11) in [11] for the value of c(n, k) and §2 for precise
definitions). This integral representation formula allows to compute explicitly the first
and second directional derivatives of quermassintegrals. Then, imposing the Brunn–
Minkowski inequality (1) we obtain the following results.

Theorem 1.1. Let K ⊂ R
n be a convex body of class C2

+, ν be its Gauss map and

k ∈ {1, . . . , n− 1}. For every ψ ∈ C1(∂K), if

∫

∂K

ψSk−1(Dν)dHn−1 = 0 (3)

then

k

∫

∂K

ψ2Sk(Dν)dHn−1 ≤
∫

∂K

〈

(Sij
k (Dν))∇ψ,

(

Sij
n−1(Dν)

)

∇ψ
〉 1

κ
dHn−1 (4)

where κ denotes the Gauss curvature.
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Theorem 1.2. Let h be the support function of a convex body K ⊂ R
n of class C2

+

and l ∈ {1, . . . , n− 1}. For every φ ∈ C1(Sn−1), if

∫

Sn−1

φSl(hij + hδij)dHn−1 = 0 (5)

then

(n− l)

∫

Sn−1

φ2Sl−1(hij + hδij)dHn−1 ≤
∫

Sn−1

〈

(Sij
l (hij + hδij))∇φ,∇φ

〉

dHn−1 . (6)

Theorems 1.1 and 1.2 are the two faces of the same coin; they can be obtained one from
each other by the change of variable provided by the Gauss map. The cases k = 1 of
Theorem 1.1 and l = n− 1 of Theorem 1.2 were already proved in [4], as consequences
of the classic Brunn–Minkowski inequality. Another proof of Theorems 1.1 and 1.2 in
these special cases, based on a functional inequality due to Brascamp and Lieb (see
[2]), was communicated to us by Cordero–Erausquin ([5]).

One way to look at (3)–(4) and (5)–(6) is as inequalities of Poincaré type, where a
weighted L2–norm of a function is bounded by a weighted L2–norm of its gradient,
under a zero–mean type condition. In particular, choosing K = Bn in Theorem 1.1, or
equivalently h ≡ 1 in Theorem 1.2, we recover the usual Poincaré inequality on S

n−1

with the optimal constant:
∫

Sn−1

φ dHn−1 = 0 ⇒
∫

Sn−1

φ2dHn−1 ≤ 1

n− 1

∫

Sn−1

|∇φ|2dHn−1 . (7)

We also note that inequalities (4) and (6), under side conditions (3) and (5) respectively,
are optimal. This fact, proved in Remark 4.5, §4, is a simple consequence of the
invariance of quermassintegrals under translations.

When l = 1 we can remove the smoothness assumption on K in Theorem 1.2. Indeed

we have Sl−1 = S0 ≡ 1 and Sij
1 (hij + hδij) = δij. Moreover S1(hij + hδij)dHn−1 =

[∆h + (n − 1)h]dHn−1 can be replaced by dA1(K, ·), where A1(K, ·) denotes the area
measure of order one of K (see §5 for the definition).

Theorem 1.3. Let K ⊂ R
n be a convex body with interior points and let A1(K, ·) be

its area measure of order one. For every φ ∈ C1(Sn−1), if

∫

Sn−1

φ(x) dA1(K, x) = 0 , (8)

then
∫

Sn−1

φ2(x)dHn−1(x) ≤ 1

n− 1

∫

Sn−1

|∇φ(x)|2dHn−1(x) .

Hence Theorem 1.3 extends the usual Poincaré inequality (7) on S
n−1 when the zero–

mean condition is replaced by (8). For n = 2 this leads to an extension of the well
knownWirtinger inequality, stated in Corollary 5.1 of §5. In higher dimension Theorem
1.3 together with some recent developments on the Christoffel problem ([7], [10]) leads
to the following result.
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Theorem 1.4. Let K ⊂ R
n be a convex body containing the origin in its interior, such

that
∫

Sn−1

xρK(x) dHn−1(x) = 0 , (9)

where ρK is the radial function of K. Then, for every φ ∈ C1(Sn−1),
∫

Sn−1

φ(x)ρK(x) dHn−1(x) = 0

⇒
∫

Sn−1

φ2(x)dHn−1(x) ≤ 1

n− 1

∫

Sn−1

|∇φ(x)|2dHn−1(x) .

Note that condition (9) is fulfilled when K is centrally symmetric. Moreover, for every
K there exists a point x̄ such that if the origin is placed in x̄ then (9) holds; see Remark
5.3 for the proof.

2. Preliminaries

2.1. Elementary symmetric functions

Let N be an integer; for a N × N symmetric matrix A = (aij) having eigenvalues
λ1, . . . , λN , and for k ∈ {0, 1, . . . , N} we define the k–th elementary symmetric function
of the eigenvalues of A as follows

Sk(A) =
∑

1≤i1<···<ik≤N

λi1 · · ·λik , if k ≥ 1 , (10)

and S0(A) = 1. In particular S1(A) and SN(A) are the trace and the determinant of
A, respectively. If A and k are as above and i, j ∈ {1, . . . , N}, we set

Sij
k (A) =

∂Sk(A)

∂aij
.

The matrix (Sij
k (A)) is also symmetric. The usual cofactor matrix happens when

k = N in (Sij
k (A)), so (Sij

k (A)) can be considered as a k–th cofactor matrix of A.

Note that (Sij
1 (A)) is the identity matrix. In the sequel we will use some properties

of elementary symmetric functions of matrices that, for convenience, we gather in the
following statement; for the proof we refer the reader to [8] and [9, Chapter 1].

Proposition 2.1. In the notation introduced above the following facts hold:

i) For every k, if A is diagonal then (Sij
k (A)) is diagonal;

ii) the eigenvalues of (Sij
k (A)) are given by

Λs = Sk−1(diag(λ1, . . . , λs−1, λs+1, . . . , λN)) , s = 1, . . . , N − 1 ,

where λ1, . . . , λN are the eigenvalues of A;

iii) if A is non–singular then

1

det(A)
Sk(A) = SN−k(A

−1) ;
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iv)

Sk(A) =
1

k

N
∑

i,j=1

Sij
k (A)aij ; (11)

v)

trace(Sij
k (A)) = (N − (k − 1))Sk−1(A) . (12)

2.2. Convex bodies and quermassintegrals

We denote by Kn the set of convex bodies in R
n. In this paper we will use several

results concerning convex bodies, for the proof of these results we refer the reader to
[11]. To every K ∈ Kn we can associate its support function hK

hK : Sn−1 → R , hK(u) = sup
{

〈x, u〉 : x ∈ K
}

,

(see e.g. [11, §1.7]). Note that in the present paper the support function is defined on
the unit sphere S

n−1 and we do not consider its homogeneous extension to the whole
space R

n. K is said to be of class C2
+ if ∂K ∈ C2 and the Gauss curvature is strictly

positive at each point of ∂K. If K is of class C2
+ we denote by νK its Gauss map: for

every x ∈ ∂K, νK(x) is the outer unit normal vector to K at x. When the body K
is clear from the context, we just write h and ν instead of hK and νK respectively. If
K is of class C2

+, then νK establishes a diffeomorphism between ∂K and S
n−1 and its

differential DνK is the Weingarten map of ∂K. The matrix associated with the linear
map D(ν−1

K ) is (hij + hδij) where for i, j = 1, . . . , n− 1, hi and hij denote respectively
the first and second covariant derivatives of h with respect to an orthonormal frame
on S

n−1 and δij is the standard Kronecker symbol.

In other words (hij +hδij) is the matrix of the reverse second fundamental form of ∂K.

For brevity, in the sequel we will adopt the notation:

(hij + hδij) = Ξ−1 .

In particular, ifK is of class C2
+ then Ξ−1 is positive definite on S

n−1 and its eigenvalues

are the principal radii of curvature of K. Conversely, if h ∈ C2(Sn−1) and the matrix
(hij + hδij) is positive definite at each point of Sn−1, then h is the support function of
a (uniquely determined) convex body K of class C2

+. Hence the set

C = {h ∈ C2(Sn−1) : (hij + hδij) > 0 on S
n−1}

consists of support functions of convex bodies of class C2
+.

When K is of class C2
+, the quermassintegrals of K can be expressed as integrals

involving the support function h of K. In fact, for k ∈ {0, 1, . . . , n− 1},

Wk(K) =
1

n

(

n− 1

n− k − 1

)−1 ∫

Sn−1

hSn−k−1(Ξ
−1) dHn−1 (13)

(see formula (5.3.11) in [11]). Note that for K,L ∈ Kn and t ∈ [0, 1] we have

h(1−t)K+tL = (1− t)hK + thL .

From the above facts and inequality (1) we deduce the following result.
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Proposition 2.2. For i ∈ {0, 1, . . . , n− 1} define the functional

Fi : C → R+ , Fi(h) =

∫

Sn−1

hSn−i−1(Ξ
−1) dHn−1 .

Then (Fi)
1/(n−i) is concave in C.

3. A lemma concerning Hessian operators on the sphere

This section is devoted to prove the following result, which will be used in the proofs
of Theorems 1.1 and 1.2.

Lemma 3.1. Let u ∈ C2(Sn−1), k ∈ {1, . . . , n − 1} and let {E1, . . . , En−1} be a local
orthonormal frame of vector fields on S

n−1. Then, for every i ∈ {1, . . . , n− 1},

divj(S
ij
k (∇2u+ uI)) :=

n−1
∑

j=1

∂

∂Ej

Sij
k (∇2u+ uI) = 0 ,

where ∂
∂Ej

denotes the covariant differential acting on Ej and I denotes the (n− 1)×
(n− 1) identity matrix.

The case k = n − 1 of the preceding lemma was proved by Cheng and Yau in [3, p.
504]. We also note that an analogous result is valid in the Euclidean setting, with
(∇2u + uI) replaced by ∇2u (see for instance [8, Proposition 2.1] and [9, §2.3]). Our
proof follows the argument of [9] for the Euclidean case and uses some standard tools
from differential geometry on S

n−1.

Proof. For k ∈ {0, 1, . . . , N}, the k–th elementary symmetric function of a symmetric
N ×N matrix A = (aij) can be written in the following way (see, for instance, [8])

Sk(A) =
1

k

∑

δ

(

i1, . . . , ik
j1, . . . , jk

)

ai1j1 · · · aikjk

where the sum is taken over all possible indices ir, jr ∈ {1, . . . , N} for r = 1, . . . , k and

the Kronecker symbol δ
(

i1,...,ik
j1,...,jk

)

equals 1 (respectively, −1) when i1, . . . , ik are distinct

and (j1, . . . , jk) is an even (respectively, odd) permutation of (i1, . . . , ik); otherwise it
is 0. Using the above equality we have

Sij
k (A) =

1

(k − 1)!

∑

δ

(

i, i1, . . . , ik−1

j, j1, . . . , jk−1

)

ai1j1 · · · aik−1jk−1
.
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Hence we can write

(k − 1)!
n−1
∑

j=1

∂

∂Ej

Sij
k (∇2u+ uI) (14)

=
n−1
∑

j=1

∑

δ

(

i, i1, . . . , ik−1

j, j1, . . . , jk−1

)

∂

∂Ej

((ui1j1 + uδi1j1) · · · (uik−1j k−1
+ uδik−1j k−1

))

=
n−1
∑

j=1

∑

δ

(

i, i1, . . . , ik−1

j, j1, . . . , j k−1

)

[(ui1j1j + ujδi1j1)(ui2j2 + uδi2j2) · · · (ujk−1ik−1
+ uδik−1jk−1

)

+ · · ·+ (ui1j1 + uδi1j1)(ui2j2 + uδi2j2) · · · (uik−1jk−1j + ujδik−1jk−1
)].

In the last sum, for fixed i1, . . . ik−1, j1, . . . jk−1, j, let us consider the terms

A = δ1(ui1j1j + ujδi1j1)C and B = δ2(ui1jj1 + uj1δi1j)C ,

where

δ1 = δ

(

i, i1, i2, . . . , ik−1

j, j1, j2, . . . , j k−1

)

, δ2 = δ

(

i, i1, i2, . . . , ik−1

j1, j, j2, . . . , j k−1

)

,

and

C = (ui2j2 + uδi2j2) · · · (ujk−1ik−1
+ uδik−1jk−1

) .

Clearly δ1 = −δ2. Moreover we have the following relation concerning covariant deriva-
tives on S

n−1 (see, for instance, [3])

urst + utδrs = urts + usδrt , ∀ r, s, t = 1, · · · , n− 1 .

Hence A + B = 0. We have proved that to the term A in the last sum in (14) it
corresponds another term B, uniquely determined, which cancels out with A. The
same argument can be repeated for any other term of the sum and this concludes the
proof.

4. Proof of Theorems 1.1 and 1.2

In this section K is a fixed convex body of class C2
+ and h is its support function; in

particular h ∈ C. We recall that Ξ−1 = (hij + hδij) and, for k ∈ {0, . . . , n− 1},

Fk(h) =

∫

Sn−1

hSn−k−1(Ξ
−1) dHn−1 .

Note that if φ ∈ C∞(Sn−1) and ǫ > 0 is sufficiently small, then h+ sφ ∈ C for |s| ≤ ǫ.
We will denote by Ξ−1

s the matrix ((hs)ij + hsδij).

Proposition 4.1. Let k ∈ {0, . . . , n − 1}, h ∈ C, φ ∈ C∞(Sn−1) and ǫ > 0 be such
that hs = h+ sφ ∈ C for every s ∈ (−ǫ, ǫ). Let f(s) = Fk(hs). Then

f ′(s) = (n− k)

∫

Sn−1

φSn−k−1(Ξ
−1
s )dHn−1 , s ∈ (−ǫ, ǫ) .
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Proof.

f ′(s) =

∫

Sn−1

∂

∂s

[

hs Sn−k−1(Ξ
−1
s )
]

dHn−1

=

∫

Sn−1

[

φSn−k−1(Ξ
−1
s ) + hs

∂

∂s
(Sn−k−1(Ξ

−1
s ))

]

dHn−1 (15)

=

∫

Sn−1

[

φSn−k−1(Ξ
−1
s ) + hs

n−1
∑

i,j=1

Sij
n−k−1(Ξ

−1
s )(φij + φδij)

]

dHn−1 .

Integrating by parts twice and using Lemma 3.1 we obtain

∫

Sn−1

hs

n−1
∑

i,j=1

Sij
n−k−1(Ξ

−1
s )φijdHn−1 =

∫

Sn−1

φ
n−1
∑

i,j=1

Sij
n−k−1(Ξ

−1
s )(hs)ijdHn−1 . (16)

On the other hand, by (11)

n−1
∑

i,j=1

Sij
n−k−1(Ξ

−1
s )((hs)ij + hsδij) = (n− k − 1)Sn−k−1(Ξ

−1
s ) . (17)

The proof is completed inserting (16) and (17) in (15).

The proof of the next result is a straightforward consequence of Proposition 4.1.

Proposition 4.2. In the assumptions and notations of Proposition 4.1

f ′′(s) = (n− k)

∫

Sn−1

φ
n−1
∑

i,j=1

Sij
n−k−1(Ξ

−1
s )(φij + φδij)dHn−1 . (18)

We are now ready to prove Theorems 1.1 and 1.2; we begin with the latter.

Proof of Theorem 1.2. Without loss of generality we may assume that φ∈C∞(Sn−1).
Fix ǫ > 0 such that h+ sφ ∈ C for s ∈ (−ǫ, ǫ) and let k = n− l − 1. As above, we set

f(s) = Fk(h+ sφ) and define g(s) = f
1

n−k (s). We know from Proposition 2.2 that g is
a concave function and so

g′′(0) =
1

n− k

[(

1

n− k
− 1

)

f(0)
1

n−k
−2(f ′(0))2 + (f(0))

1

n−k
−1f ′′(0)

]

≤ 0 .

Notice that, by Proposition 2.1, the assumption (5) gives exactly f ′(0) = 0, so the

condition g′′(0) ≤ 0 becomes (f(0))
1

n−k
−1f ′′(0) ≤ 0. Since f(0) = n

(

n−1
n−k−1

)

Wk(K) > 0

it follows f ′′(0) ≤ 0. Now (18) gives us

∫

Sn−1

φ2

n−1
∑

i,j=1

Sij
l (Ξ

−1)δijdHn−1 ≤ −
∫

Sn−1

φ
n−1
∑

i,j=1

Sij
l (Ξ

−1)φijdHn−1 .

Integrating by parts in the right hand–side and using Lemma 3.1 we obtain

∫

Sn−1

φ
n−1
∑

i,j=1

Sij
l (Ξ

−1)φijdHn−1 = −
∫

Sn−1

n−1
∑

i,j=1

Sij
l (Ξ

−1)φiφjdHn−1

and we are done with the aid of part v) of Proposition 2.1.
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Remark 4.3. Notice that the (n−1)-st quermassintegralWn−1 (which is proportional
to the mean width) is linear, i.e. for every K and L convex bodies

Wn−1(K + L) =Wn−1(K) +Wn−1(L) .

This implies in particular that if we take k = n− 1 in Proposition 2.2 we get f ′′ ≡ 0.

For the proof of Theorem 1.1 we need the following auxiliary result.

Lemma 4.4. Let φ ∈ C∞(Sn−1) and ψ(x) = φ(ν(x)), x ∈ ∂K, where ν is the Gauss
map of K. Fix r ∈ {1, . . . , n− 1}. Then for every y ∈ S

n−1

1

det(Ξ−1(y))

〈

(Sij
r (Ξ

−1(y)))∇φ(y),∇φ(y)
〉

=
〈

((Ξ−1(y))(∇ψ(x)), Sij
n−r(Ξ(x))∇ψ(x))

〉

,

where x = ν−1(y) and Ξ(x) = Dν(x) = (hij + hδij)
−1
ij (x).

Proof. We may assume that Ξ−1(y) is diagonal:

Ξ−1(y) = diag(λ1, . . . , λn−1) , λi > 0 , i = 1, . . . , n− 1 .

Then

Dν(x) = diag(µ1, . . . , µn−1) , µi =
1

λi
, i = 1, . . . , n− 1 .

In particular

∇ψ(x) = Dν(x)∇φ(ν(x)) = (µ1φ1(y), . . . , µn−1φn−1(y)) . (19)

By Proposition 2.1 the matrix (Sij
r (Ξ

−1(y))) is also diagonal and its eigenvalues are
given by

Λs = Sr−1(diag(λ1, . . . , λs−1, λs+1, . . . , λn−1)) , s = 1, . . . , n− 2 .

Using again Proposition 2.1 we get

∑n−1
i,j=1 S

ij
r (Ξ

−1(y))φi(y)φj(y)

det(Ξ−1(y))

=
n−1
∑

i=1

Λi

det(Ξ−1(y))
φ2
i (y)

=
n−1
∑

i=1

µiSn−r−1(diag(µ1, . . . , µi−1, µi+1, . . . , µn−1))φ
2
i (y)

=
n−1
∑

i=1

µiS
ii
n−r(Dν(x))φ

2
i (y)

= 〈∇ψ(x), (Sij
n−r(Dν(x)))∇φ(y)〉 .

The conclusion of the lemma follows from the first equality in (19) and the symmetry

of the matrix (Sij
n−r(Dν(x))).
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Proof of Theorem 1.1. We set φ(y) = ψ(ν−1(y)), y ∈ S
n−1. Consider the map

ν−1 : Sn−1 → ∂K; its Jacobian is given by

det(D(ν−1)(y)) = det(Ξ−1(y)) > 0 , ∀y ∈ S
n−1 .

Moreover, by Proposition 2.1 we have that for every r ∈ {0, 1, . . . , n− 1},

Sr(Dν(ν
−1(y))) =

Sn−r−1(Ξ
−1(y))

det(Ξ−1(y))
, ∀y ∈ S

n−1 .

Hence we can write
∫

∂K

ψSk−1(Dν)dHn−1 =

∫

Sn−1

φSn−k(Ξ
−1)dHn−1 ,

∫

∂K

ψ2Sk(Dν)dHn−1 =

∫

Sn−1

φ2Sn−k−1(Ξ
−1)dHn−1 .

And, by Lemma 4.4,

∫

∂K

〈

Sij
k (Dν)∇ψ, (Dν)−1∇ψ

〉

dHn−1 =

∫

Sn−1

〈

(Sij
n−k(Ξ

−1))∇φ,∇φ
〉

dHn−1 .

The proof is completed applying Theorem 1.2 with l = n− k and recalling that

(Dν)−1 =
1

det(Dν)
(Sij

n−1(Dν)) =
1

κ
(Sij

n−1(Dν)) .

Remark 4.5. With the notation of the proof of Theorem 1.2, let φ(y) = 〈y0, y〉, where
y0 ∈ S

n−1 is fixed. Note that condition (5) is verified since

∫

Sn−1

ySl(hij(y) + hδij(y))dHn−1(y) =

∫

Sn−1

y dAl(K, y) ,

where Al(K, ·) is the l–th area measure of K (see [11] or the next section for the
definition), and the latter integral is zero by standard properties of area measures.
Moreover, for every s, h + sφ is the support function of a translate of K. Since
quermassintegrals are invariant with respect to translations, the function f is constant
in particular f ′′(0) = 0. This proves that if φ is as above we have equality in (6).
Analogously, choosing ψ(x) = 〈x0, ν(x)〉 where 0 6= x0 ∈ R

n is fixed, we see that
condition (3) of Theorem 1.1 is fulfilled and (4) becomes an equality.

5. The case l = 1: proof of Theorems 1.3 and 1.4

We start this section recalling the definition of area measures; for a detailed presen-
tation of this topic we refer the reader to [11, Chapter 5]. If K1, . . . , Km, m ∈ N, are
convex bodies in R

n and λ1, . . . , λm are non–negative real numbers, then we have:

Hn(λ1K1 + · · ·+ λmKm) =
m
∑

i1,...,in=1

λi1 · · ·λinV (Ki1 , . . . , Kin) .
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The coefficients of the polynomial at the right–hand side are called mixed volumes.
Moreover, if we fix n− 1 convex bodies K2, . . . , Kn, there exists a unique non–negative
Borel measure A(K2, . . . , Kn, ·) (called mixed area measure) such that for every convex
body K1

V (K1, K2, . . . , Kn) =
1

n

∫

Sn−1

hK1
(x) dA(K2, . . . , Kn, x) .

For j = 1, . . . , n − 1, the area measure of order j of a convex body K is obtained in
the following way: Aj(K, ·) = A(K, . . . ,K,Bn, . . . , Bn, ·), where K is repeated j times
and Bn n− j − 1 times. An alternative definition of area measures is based on a local
version of the Steiner formula (see [11, Chapter 4]). In particular, the area measure of
order one of K is A1(K, ·) = A(K,Bn . . . , Bn, ·). If K is of class C2

+, then it can be
proved that

dA1(K, ·) =
1

n− 1
S1((hK)ij + hKδij)dHn−1 . (20)

Hence condition (5) is equivalent to (8) when h is the support function of a convex
body of class C2

+ and l = 1.

Proof of Theorem 1.3. We may assume that φ ∈ C∞(Sn−1). K can be approxi-
mated by a sequence Kr, r ∈ N, such that for every r, Kr is of class C2

+ and (Kr)r∈N
converges to K in the Hausdorff metric as r tends to infinity. Fix r ∈ N and let hr
be the support function of Kr. For s sufficiently small in absolute value, consider the
function

fr(s) =

∫

Sn−1

(hr + sφ)S1((hr + sφ)ij + (hr + sφ)δij) dHn−1 .

By Proposition 2.2,
√
fr is concave so that 2fr(0)f

′′
r (0)−(f ′

r(0))
2 ≤ 0. Since the relation

(Sij
1 (A)) = (δij) holds for any matrix A, using (13) and Propositions 4.1 and 4.2 (with

k = n− 2), we obtain

n(n− 1)Wn−2(Kr)

∫

Sn−1

φ

(

(n− 1)φ+
n−1
∑

i=1

φii

)

dHn−1

≤
(
∫

Sn−1

φS1((hr)ij + hrδij) dHn−1

)2

.

(21)

From (20) we know that

∫

Sn−1

φS1((hr)ij + hrδij) dHn−1 = (n− 1)

∫

Sn−1

φ(x) dA1(Kr, x) .

Moreover, as r tends to infinity the sequence of measures A1(Kr, ·) converges weakly
to A1(K, ·) (see [11, Theorem 4.2.1]). This implies

lim
r→∞

∫

Sn−1

φ(x) dA1(Kr, x) =

∫

Sn−1

φ(x) dA1(K, x) = 0 . (22)

On the other handWn−2(Kr) converges toWn−2(K) as r tends to infinity (by standard
continuity results on quermassintegrals) and Wn−2(K) > 0 since K has interior points.
The conclusion follows letting r → ∞ in (21), using (22) and integrating by parts.
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As mentioned in the Introduction, Theorem 1.3 extends the usual (sharp) Poincaré
inequality (7) on S

n−1 when the usual zero–mean condition is replaced by (8). Clearly,
in order to apply this result it would be useful to understand when a measure µ on
S
n−1 is the area measure of order one of some convex body. This amounts to solve the

Christoffel problem for µ (see for instance [11, §4.3]). For n = 2 this problem coincides
with the Minkowski problem and its solution is completely understood. Let µ be a
non–negative Borel measure on S

1 such that: i) µ is not the sum of two point–masses;
ii)

∫

S1

x dµ(x) = 0 .

Then there exists a convex bodyK in R
2 such that A1(K, ·) = µ(·) (note that conditions

i) and ii) are also necessary in order µ to be the area measure of order one of some
convex body). Hence we have the following extension of the well known Wirtinger
inequality.

Corollary 5.1. Let µ be a non–negative Borel measure on [0, 2π] such that µ is not
the sum of two point–masses and

∫ 2π

0

sin θ dµ(θ) =

∫ 2π

0

cos θ dµ(θ) = 0 .

Then, for every φ ∈ C1([0, 2π]) such that φ(0) = φ(2π)

∫ 2π

0

φ(θ) dµ(θ) = 0 ⇒
∫ 2π

0

(φ(θ))2 dθ ≤
∫ 2π

0

(φ′(θ))2 dθ .

In higher dimension the Christoffel problem is more complicated. Necessary and suffi-
cient conditions for a measure µ to be the area measure of order one of some convex
body were found by Firey [6] and Berg [1] (see also [11, §4.2]). On the other hand these
conditions are not easy to use in practice. A considerable progress (in a larger class of
problems) has been made by Guan and Ma in [7] and Sheng, Trudinger and Wang in
[10] where a rather simple sufficient condition is found. Here we state this result in the
case of area measures of order one.

Theorem 5.2 (Guan, Ma, Sheng, Trudinger, Wang). Let f ∈ C1,1(Sn−1), f > 0
and let g = 1/f . If

∫

Sn−1

xf(x)dHn−1(x) = 0 ,

and the matrix (gij + gδij) is positive semi–definite a.e. on S
n−1, then there exists a

convex body K, uniquely determined up to translations, such that

dA1(L, ·) = f dHn−1 ,

i.e., f is the density of A1(K, ·) with respect to Hn−1.

Using the above result and Theorem 1.3, we now proceed to show Theorem 1.4.
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Proof of Theorem 1.4. We recall that the radial function ρK of K is defined as
ρK(x) = max{λ ≥ 0 |λx ∈ K}. Let H be the polar body of K:

H = {x ∈ R
n : 〈x, y〉 ≤ 1 , ∀y ∈ K} .

H is still a convex body and the origin belongs to its interior. Note that (see for
instance [11, Remark 1.7.7])

ρK =
1

hH
, on S

n−1 ,

so that condition (9) becomes

∫

Sn−1

x
1

hH(x)
dHn−1(x) = 0 . (23)

We first show that we can find a sequence of convex bodies Hr, r ∈ N, of class C2
+,

converging to H in the Hausdorff metric and such that
∫

Sn−1

x
1

hHr
(x)

dHn−1(x) = 0. (24)

In order to do it we consider the function

F (y) =

∫

Sn−1

ln(hH(x)− 〈x, y〉)dHn−1(x) ,

where y is an interior point of H. Then

∇F (y) = −
∫

Sn−1

x
1

hH(x)− 〈x, y〉dH
n−1(x) (25)

and
(

∂2F

∂yi∂yj
(x)

)

= −
(
∫

Sn−1

xixj
(hH(x)− 〈x, y〉)2dH

n−1(x)

)

.

The last equality implies that F is strictly concave and then, by (23) and (25), y = 0

is the unique point where F attains its maximum. Now let H̃r, r ∈ N, be a sequence of

convex bodies of class C2
+ converging to H in the Hausdorff metric. We set h̃r = hH̃r

.

For r ∈ N and y interior to H̃r, consider the corresponding function for H̃r:

Fr(y) =

∫

Sn−1

ln(h̃r(x)− 〈x, y〉)dHn−1(x) .

As above, it can be shown that Fr is strictly concave in the interior of H̃r. Moreover,

since h̃r → hH uniformly on S
n−1, Fr converges to F uniformly on compact subsets of

H. Let δ > 0 be such that the ball Bδ centred at 0 with radius δ is contained in the
interior of H. Then

F (0) > max
y∈∂Bδ

F (y) .

By the uniform convergence, the same inequality holds if F is replaced by Fr, when r is
sufficiently large. This implies that for every sufficiently large r there exists a uniquely
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determined point yr, belonging both, to the interior of H, and to the interior or each
Hr, such that Fr(yr) = maxHr

Fr; in particular

∇Fr(yr) = −
∫

Sn−1

x
1

h̃r(x)− 〈x, yr〉
dHn−1(x) = 0 .

for r sufficiently large.

Using again the uniform convergence we get that yr → 0 as r → ∞; consequently the

sequence Hr = H̃r − yr converges to H in the Hausdorff metric. On the other hand

hr := h̃r(x)− 〈x, yr〉 is the support function of Hr. Hence for every r sufficiently large
condition (24) is fulfilled.

For r ∈ N, let hr denote the support function of Hr; we have that

((hr)ij + hrδij) > 0 on S
n−1 for every r ∈ N. (26)

Hence for every r ∈ N we can apply Theorem 5.2 with f = fr = 1/hr, obtaining a
convex body Lr such that

dA1(Lr, ·) = fr dHn−1 .

Since H is a convex body with interior points, we have that c < hH < C on S
n−1, for

suitable positive constants c and C. Using the uniform convergence we obtain that
there exist d,D > 0 such that d ≤ fr(x) ≤ D, ∀x ∈ S

n−1, ∀r ∈ N. Hence we may
apply Lemma 3.1 in [7] to deduce that the sequence Lr is bounded and by the Blaschke
selection theorem (see [11, Theorem 1.8.6]), up to a subsequence, it converges to a
convex body L in the Hausdorff metric. As already noticed in the proof of Theorem
1.3, the sequence of measures A1(Lr, ·) converges weakly to A1(L, ·) as r tends to
infinity. Consequently

dA1(L, ·) =
1

hH
dHn−1 = ρKdHn−1 .

The conclusion follows applying Theorem 1.3.

Remark 5.3. Let us prove that for every convex body K with non–empty interior
there is a translate of K such that condition (9) holds. First, assume that the origin
is an interior point of K. For y ∈ K let ρy be the radial function of K with respect to
y and consider the vector–valued map

F (y) =
1

∫

Sn−1 ρy(x) dHn−1(x)

∫

Sn−1

xρy(x) dHn−1(x) .

Let us prove that F (y) is an interior point of K for every y ∈ K. Let x̄ ∈ S
n−1 and let

z ∈ ∂K be such that x̄ belongs to the normal cone of K at z. Then the set

α = {u ∈ R
n | 〈u− z, x̄〉 ≤ 0}

is the supporting half–space of K at z with outer unit normal vector x̄. For every
x ∈ S

n−1 xρy(x) ∈ ∂K and then

〈xρy(x)− z, x̄〉 ≤ 0
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and this quantity is strictly negative for some choices of x. From this fact and the
definition of F we get that F (y) is an interior point of α. Since α is an arbitrary
supporting half–space to K this proves that F (y) belongs to the interior of K. An
application of the Schauder Fixed Point Theorem shows that there exists ȳ, interior to
K, such that F (ȳ) = ȳ. If we choose the origin in ȳ we obtain condition (9).
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