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We present a large class of examples with the remarkable property pointed out by Professor B. Ricceri
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1. Introduction

Except in the classical case of the interchange between infimum and integration consid-
ered by R. T. Rockafellar in [16], [17], [18], an exact computation of the lower bound for
a minimization problem involving integral functionals is not in general an easy problem.
In [13], [14] and [15], B. Ricceri considers the minimisation of elements of a class of
integral functionals (possibly continuous) on a equality constraint defined by a special
Lipschitzian integral functional and shows that the lower bound on the constraints is
equal to the lower bound on the whole underlying decomposable space; the variety of
the possible cost functions and constraints being surprising. We give an explanation
of this phenomenon. When the measured space is nonatomic, even if the problem in-
volving integral functionals is nonconvex, some convexity properties may appear, for
example the existence of a duality formula with Lagrange multipliers, [5] Theorem 5.1,
Theorem 2.4. This last duality result is true for the problems of B. Ricceri. We prove
that the only Lagrange multiplier associated to the dual of these problems is the null
multiplier and since every minimisation problem with this particular feature has the
lower bound property put in light by B. Ricceri, we produce another class of examples.

2. Preliminaries

In the sequel we note IR = IR ∪ {±∞}. Given a set X, IR-valued functions f and
g defined on X we denote dom f = {x ∈ X : f(x) < ∞}, and {f = g} is the
set {x ∈ X : f(x) = g(x)}. If X is a normed vector space recall that the Fenchel
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subdifferential ∂f(x0) of f at a point x0 ∈ dom f is the closed convex subset of the
topological dual X∗ of X defined by:

∂f(x0) = {x∗ ∈ X∗ : ∀x ∈ X, f(x) ≥ f(x0) + 〈x∗, x− x0〉}

and the Fenchel conjugate function f ∗ is given by: f ∗(x∗) = supx∈X〈x
∗, x〉 − f(x).

Let (Ω, T , µ) be a measured space by a σ-finite positive nonatomic measure µ, with
tribe T . For a measurable set A ∈ T , we set Ac = {ω ∈ Ω : ω /∈ A} and 1A stands
for the characteristic function of A, 1A(ω) = 1 if ω ∈ A, 0 if ω /∈ A. Let (E, ‖.‖)
be a Banach space with Borel tribe B(E). Denote by L0(Ω, E) the space of classes of
measurable functions (for µ-almost everywhere equality) defined on Ω and with values
in E, and by Lp(Ω, E), 1 ≤ p ≤ ∞ the classical Lebesgue space of (classes of) functions
endowed with the usual norm. Given a family (ui)i∈I of elements of L0(Ω, IR), we will
use the essential infimum of this family, ess infI ui, introduced by J. Neveu in [11], II.4.
The following notion is classic.

Definition 2.1 (See [7], Section 3). A subset X of L0(Ω, E) is said to be decom-
posable if, for every x, y in X and every measurable set A, the function x1A + y1Ac is
an element of X.

Let M be a multifunction defined on Ω with values in E, and let Lp(M) be the set of
measurable selections of M (almost everywhere) which are in Lp(Ω, E).

Definition 2.2 ([5], Section 3). If X and Y are two subsets of L0(Ω, E), X is said
rich in Y if X is a subset of Y and if for any y in Y , there exist an increasing covering
(Ωn)n of Ω by measurable sets of finite measure and a sequence (xn)n of elements of X
verifying for all n ∈ IN , y1Ωn = xn1Ωn .

In the sequel f : Ω×E → IR, (respectively g : Ω×E → IR
d
) is a T ⊗B(E)-measurable

integrand. For an element x of L0(Ω, E), the function f(x) (respectively g(x)) is defined
by: f(x)(ω) = f(ω, x(ω)) (respectively g(x)(ω) = g(ω, x(ω)). The interest of the notion
of richness may be the following lemma:

Lemma 2.3. Let X and Y be two decomposable subsets and f be a measurable inte-
grand, if X is rich in Y , then ess infX f(x) = ess infY f(y).

Proof of Lemma 2.3. Since X ⊂ Y , then ess infX f(x) ≥ ess infY f(y). Conversely,
let u = ess infX f(x). If y ∈ Y , there exists an increasing covering (Ωn)n of Ω by
measurable sets of finite measure and a sequence (xn)n of elements of X verifying for
all n ∈ IN , y1Ωn = xn1Ωn . Hence for all n: f(y)1Ωn = f(xn)1Ωn ≥ u1Ωn , taking the
limit in n we deduce that f(y) ≥ u. Since the last inequality is valid for every y ∈ Y ,
we obtain ess infY f(y) ≥ u. The proof of Lemma 2.3 is complete.

Given a measurable function v element of L0(Ω, IR) (respectively L0(Ω, IR
d
)), the upper

integral Iv of v is given by:

Iv =

∫ ∗

Ω

vdµ = inf

{
∫

Ω

udµ, u ∈ L1(Ω, IR), v ≤ u, µ− a.e.

}
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(respectively Iv = (Ivi)i, if v = (vi)i, 1 ≤ i ≤ d); classically the integral functional

associated to f (respectively g) is defined on L0(Ω, E) (respectively L0(Ω, IR
d
)) by:

If (x) = If(x) (respectively Ig(x) = Ig(x) ). The domain of the functional If is the set:

dom If = {x ∈ L0(Ω, E) : If (x) < ∞}.

Hereafter X is a decomposable subset of L0(Ω, E). Let us define the following sets:
Dom g(ω, .) = {e ∈ E : g(ω, e) ∈ IRd}, Dom Ig = {x ∈ X : Ig(x) ∈ IRd} and rIf (Ig) =

{Ig(x), x ∈ dom If ∩Dom Ig}. For a convex subset C of IRd we will denote its relative
interior by riC.
In the sequel, we consider an optimization problem of the following type:

(P) inf{If (x) + h(Ig(x)), x ∈ Dom Ig},

where h : IRd 7→ IR is a convex function. We will suppose that inf(P) is finite.
The performance function of the problem P is defined by:

p(y) = inf{If (x) + h(Ig(x) + y), x ∈ Dom Ig}.

The following result is a slight strengthening of the formulation of [5], Theorem 5.1.

Theorem 2.4. When 0 ∈ ri(domh− rIf (Ig)), we have the Lagrange duality formula:

inf(P) = max
y∗∈IRd

inf
x∈Dom Ig

If (x) + 〈y∗, Ig(x)〉 − h∗(y∗),

and the set of maximisers of the dual problem is exactly ∂p(0). We have also:

inf
x∈Dom Ig

If (x) + 〈y∗, Ig(x)〉 = Iuy∗

with: uy∗ = ess infDom Ig f(x) + 〈y∗, g(x)〉. Moreover if the tribe T is complete, the
Banach space E is separable, and if there exists a multifunction M with measurable
graph such that X is rich in L0(M), then for (almost every) ω ∈ Ω:

uy∗(ω) = inf{f(ω, e) + 〈y∗, g(ω, e)〉, e ∈ M(ω) ∩Dom g(ω, .)}.

Proof of Theorem 2.4. From [5], Theorem 4.1 (valid even if the tribe is not complete
and the Banach space E is non separable), the map (If , Ig) is epi-convex (see [5],
Definition 2.14). Thus due to [5], Theorem 2.19 the problem (P) is stable (see [5],
Definition 2.5). A simple computation gives: p∗(y∗) = h∗(y∗)− infx∈DomIg〈y

∗, Ig(x)〉+
If (x). The problem P being stable, for z∗ ∈ ∂p(0) we have: 0 ∈ ∂p∗(z∗), and:

inf(P) = p(0) = −p∗(z∗) = max
y∗∈IRd

−p∗(y∗),

this gives the Lagrange duality formula and shows that z∗ is a maximiser of the dual
problem. Conversely, let z∗ be a maximiser of the dual problem, then 0 ∈ ∂p∗(z∗),
hence z∗ ∈ ∂p∗∗(0), but since p is subdifferentiable at 0, we have p(0) = p∗∗(0) and
∂p∗∗(0) = ∂p(0), thus z∗ ∈ ∂p(0). We have proved that the set of maximisers of the
dual problem is exactly ∂p(0). Moreover, from [5], Lemma 3.10, Dom Ig (= X ∩ L1

g,
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with the notations of [5]) is a decomposable set. Therefore [5], Theorem 3.1 (valid even
if the tribe is not complete and the Banach E is non separable), gives:

inf
x∈Dom Ig

If (x) + 〈y∗, Ig(x)〉 = Iess infDom Ig f(x)+〈y∗,g(x)〉 = Iuy∗
,

and the proof of the first part of Theorem 2.4 is complete. The second part is exactly
[5], Theorem 5.1.

3. About Ricceri’s Property

Theorem 3.1. Let X be a decomposable subset of L0(Ω, E), and let C be a convex
subset of IRd. Let us suppose that the following assumptions are fulfilled:

(H1) 0 ∈ ri(C − rIf (Ig)),

(H2) y∗ ∈ IRd, y∗ 6= 0, supc∈C〈y
∗, c〉 < +∞ ⇒ infx∈Dom Ig If (x) + 〈y∗, Ig(x)〉 = −∞.

Then, setting X = {x ∈ X : Ig(x) ∈ C}, the following equalities hold:

inf
x∈X

If (x) = inf
x∈Dom Ig

If (x) = Iess infDom Ig f(x),

provided the above left hand side is finite. Moreover if Dom Ig is rich in X, then

inf
x∈X

If (x) = inf
x∈X

If (x) = Iess infX f(x).

Proof of Theorem 3.1. We consider the problem P associated to the convex func-
tion h = iC , where iC(e) = 0, if e ∈ C, iC(e) = ∞, if not, then domh = C, and
h∗(y∗) = supc∈C〈y

∗, c〉 vanishes at the origin and dont take the value −∞. Due to
assumption (H1) and the first part of Theorem 2.4 with the convex function h defined
above, we have

inf
x∈X

If (x) = inf(P) = max
y∗∈IRd

inf
x∈Dom Ig

If (x) + 〈y∗, Ig(x)〉 − h∗(y∗) (1).

Since inf(P) is finite, property (H2) gives:

y∗ 6= 0, h∗(y∗) < +∞ ⇒ −∞ = inf
x∈Dom Ig

If (x) + 〈y∗, Ig(x)〉 − h∗(y∗) < inf(P).

This proves that the maximum in (1) is attained only for y∗ = 0, therefore,

inf
x∈X

If (x) = inf(P) = inf
x∈Dom Ig

If (x) = Iu0 = Iess infDom Ig f(x).

The last assertion of Theorem 3.1 is a consequence of the Lemma 2.3. Since Dom Ig is
rich in X, then ess infX f(x) = ess infDom Ig f(x), and we can write:

inf
x∈X

If (x) ≤ inf
∈X

If (x) = inf
x∈Dom Ig

If (x) = Iess infDom Ig f(x) = Iess infX f(x) ≤ inf
X

If (x),

and the proof of Theorem 3.1 is complete.
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Let us prove that the Ricceri property [15], Theorem 2.1, is a consequence of the above
result.
Let X be a decomposable linear subspace of Lp(Ω, E), 1 ≤ p < ∞. We denote by
V(X) the family of all sets V ⊆ X of the following type:

V =

{

x ∈ X : Ψ(x) =

∫

Ω

h(x)dµ

}

,

where Ψ is a continuous linear functional on X, and h : Ω× E → IR, is a measurable
integrand such the integral functional x → Ih(x) is (well defined and) Lipschitzian in
X, with a Lipschitz constant strictly less than ‖Ψ‖X∗ .

Corollary 3.2 (See [15], Theorem 2.1). Let us consider a T ⊗ B(E)-measurable
integrand f : Ω × E → IR, such that there exist α ∈ L1(Ω, IR), γi ∈]0, 1[ and βi ∈
Lp/(p−γi)(Ω, IR), i = 1...k, satisfying:

−α(ω) ≤ f(ω, e) ≤ α(ω) +
k

∑

i=1

βi(ω)|ei|
γi .

Then, for every decomposable linear space X of Lp(Ω, E), 1 ≤ p < ∞, and every
V ∈ V(X), one has:

inf
x∈V

If (x) = inf
x∈X

If (x).

Proof of Corollary 3.2 (or more precisely, another proof of [15], Theorem
2.1). By the Hahn-Banach theorem, Ψ is the restriction to X of a continuous lin-
ear functional on Lp(Ω, E). So by a well-known representation theorem ([10], VII,
4, Theorem 7, and VII, 5, Theorem 9), there exists a scalarly measurable mapping
x∗ : Ω → E∗ such for every x ∈ X:

Ψ(x) =

∫

Ω

〈x∗, x〉dµ.

The mapping (ω, e) → 〈x∗(ω), e〉 is a Caratheodory integrand, hence g(ω, e) = 〈x∗(ω), e〉
−h(ω, e) is a measurable integrand and Ig = Ψ−Ih. Moreover X = {x ∈ X : Ig(x) = 0}
is equal to V . Let us prove that:

inf
x∈X

If (x) = inf
x∈X

If (x).

Clearly with the notations of Theorem 3.1, here d = 1, C = {0}, and Dom Ig = X.
If x ∈ Lp(Ω, E), then ‖x‖γi ∈ Lp/γi ; since γi/p + (p − γi)/p = 1, we deduce that
βi‖x‖

γi ∈ L1(Ω, IR), and:

∫

βi‖x‖
γidµ ≤ ‖βi‖Lp/(p−γi)

.‖x‖γiLp
(2)

This proves that dom If = X, thus:

rIf (Ig) = Ig(X). (3)
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We suppose first that h(ω, 0) = 0, a.e.
Let c > 0 be the Lipschitz constant of Ih. By assumptions there exists an element
x0 ∈ X in the unit sphere such that:

Ψ(x0)− c > 0. (4)

This gives for r > 0:

Ig(rx0) = Ψ(rx0)− Ih(rx0) ≥ r(Ψ(x0)− c), (5)

and for r < 0:

Ig(rx0) = Ψ(rx0)− Ih(rx0) ≤ rΨ(x0)− cr = r(Ψ(x0)− c). (6)

Clearly since Ig is Lipschitzian, the numerical function r 7→ Ig(rx0) is Lipschitzian and
(5) and (6) prove, since X is a vector space, that IR is the range of Ig. Hence, using
(3): IR = Ig(X) = rirIf (Ig), and the assumption (H1) of Theorem 3.1 is satisfied when
the set C ⊂ IR is equal to any single point.
On the other hand, X being a vector space, we remark that for every y∗ 6= 0, we have:

inf
x∈Dom Ig

If (x) + 〈y∗, Ig(x)〉 ≤ inf
r∈IR

If (rx0) + 〈y∗, Ig(rx0)〉. (7)

Let us suppose that y∗ > 0; then since γi ∈]0, 1[, with (2), (4) and (6) we obtain:

inf
r<−1

If (rx0) + 〈y∗, Ig(rx0)〉

≤ inf
r<−1

k
∑

i=1

|r|γi‖βi‖Lp/(p−γi)
.‖x0‖

γi
Lp

+

∫

αdµ+ ry∗(Ψ(x0)− c) = −∞.

Similarly, if y∗ < 0, using (2), (4) and (5):

inf
r>1

If (rx0) + 〈y∗, Ig(rx0)〉 = −∞,

therefore with (7) we have proved the second assumption of Theorem 3.1:

y∗ 6= 0 ⇒ inf
x∈Dom Ig

If (x) + 〈y∗, Ig(x)〉 = −∞.

Applying Theorem 3.1, when C ⊂ IR is equal to any singleton r0, if X = {x ∈
X, Ig(x) = r0}, since Dom Ig = X, we obtain:

inf
x∈X

If (x) = inf
x∈X

If (x)
(

= Iess infX f(x)

)

.

Now for the proof without the assumption h(ω, 0) = 0, a.e., since g(0) is integrable,
remark that Ig(x) = 0 ⇔ Ig(x)−g(0) = −Ig(0) and we apply our proved result with
r0 = −Ig(0) = −Ih(0), and the integrand g

′

= g−g(0) = 〈x∗, .〉−h
′

, where h
′

= h−h(0).
This is possible since h

′

(ω, 0) = 0, and clearly Ih′ has the same Lipschitz constant as
that of Ih. The proof of Corollary 3.2 is complete. Remark that in [13], [14], [15], the
measurability of the integrands f and h is taken in a apparently weaker sense.
We conclude by a simple criterion with "disintegrated" assumptions.
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Corollary 3.3. Assume that the tribe T is µ-complete and the Banach space E is
separable. Let X be a decomposable subset of L0(Ω, E) rich in L0(M) for a suitable
multifunction M with measurable graph, and let C be a convex subset of IRd. Let f
and g be two integrands as in Section 2, define uy∗(ω) = inf{f(ω, e)+ 〈y∗, g(ω, e)〉, e ∈
M(ω) ∩Dom g(ω, .)}. Suppose that the following assumptions are fulfilled:

(H1) 0 ∈ ri(C − rIf (Ig)),

(H3) y∗ ∈ IRd, y∗ 6= 0, supc∈C〈y
∗, c〉 < +∞ ⇒ µ({uy∗ = −∞}) > 0.

Then, setting X = {x ∈ X : Ig(x) ∈ C}, we have:

inf
x∈X

If (x) = inf
x∈Dom Ig

If (x) = Iu0 ,

provided the above left hand side is finite.

Proof of Corollary 3.3. Since infx∈X If (x) is finite, for every y∗ ∈ IRd the function
uy∗ is bounded above by an integrable function, hence due to (H3):

y∗ 6= 0, sup
c∈C

〈y∗, c〉 < +∞ ⇒ Iuy∗
= −∞.

But as remarked in Theorem 2.4: Iuy∗
= infx∈Dom Ig If (x) + 〈y∗, Ig(x)〉.

This proves that the assumption (H2) of Theorem 3.1 is satisfied, and therefore its
conclusion holds:

inf
x∈X

If (x) = inf
x∈Dom Ig

If (x) = Iu0 ,

The proof of Corollary 3.3 is complete.
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[13] B. Ricceri: A variational property of integral functionals on L
p spaces of vector-valued

functions, C. R. Acad. Sci., Paris, Sér. I (1994) 337–342.

[14] B. Ricceri: More on a variational property of integral functionals, J. Optimization Theory
Appl. 94(3) (1997) 757–763.

[15] B. Ricceri: Further considerations on a variational property of integral functionals, J.
Optimization Theory Appl. 106(3) (2000) 677–681.

[16] R. T. Rockafellar: Integrals which are convex functionals, Pac. J. Math. 24(3) (1968)
525–539.

[17] R. T. Rockafellar: Integrals which are convex functionals. II, Pac. J. Math. 39(2) (1971)
439–469.

[18] R. T. Rockafellar: Integral functionals, normal integrands and measurable selections, in:
Nonlinear Operators and the Calculus of Variations (Bruxelles, 1975), J. P. Gossez et al.
(ed.), Lecture Notes in Mathematics 543, Springer, Berlin (1976) 157–206.

[19] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis, Springer, Berlin (1998).


