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1. Introduction

Recall that monotonicity properties (strict and uniform monotonicity) play analogous
role in the best dominated approximation problems in Banach lattices as do the re-
spective rotundity properties (strict and uniform rotundity) in the best approximation
problems in Banach spaces (see [26]). Moreover, they are crucial in many problems
since they provide a tool for estimating a norm. It is worth noticing that monotonicity
properties are applicable in the ergodic theory ([1]). Recall also that they are restric-
tions of appropriate rotundity properties to the set of couples of comparable elements
in the positive cone of a Köthe space E (see [14]). Clearly, the points of lower (upper)
monotonicity of a Banach lattice E play an analogous role as the extreme points in
a Banach space X. Similarly, the role of points of upper (lower) local uniform mono-
tonicity in Banach lattices is analogous to that of points of local uniform rotundity
in Banach spaces. The monotonicity properties in Calderón-Lozanovskĭı spaces have
been studied in several papers (see [5], [10], [22]). The local monotonicity structure
of Calderón-Lozanovskĭı spaces has been considered in [18]. However, the precise full
criteria have been presented only for points of lower and upper monotonicity. Consider-
ing LLUM and ULUM -points, the authors of [18] gave only some sufficient and some
necessary conditions, basing often on too strong assumptions. The LLUM -points of
Calderón-Lozanovskĭı spaces have been characterized in [24]. In the present paper we
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shall give full criteria for ULUM -points of Calderón-Lozanovskĭı spaces. It is natural
to study LLUM and ULUM -points separately, because it appears that the structure
of LLUM and ULUM -points is quite different in Eϕ. Namely, considering the LLUM -
point x, the local ∆E

2 (x) condition is crucial, while in the case of an ULUM -point x
the respective global condition ∆E

2 is essential which is indeed really stronger than the
local ∆E

2 (x) in general.

2. Preliminaries

Let R, R+, N be the sets of reals, nonnegative reals and positive integers, respectively.
Set {k ≤} := {n ∈ N : k ≤ n} and {< k} = N \ {k ≤} for any k ∈ N. As usual S(X)
(resp. B(X)) stands for the unit sphere (resp. the closed unit ball) of a real Banach
space (X, ‖·‖X).

Let (T,Σ, µ) be a σ−finite and complete measure space. By L0 = L0(T ) we mean the
set of all µ-equivalence classes of real valued measurable functions defined on T.

A Banach space E = (E, ‖·‖E) is said to be a Köthe space if E is a linear subspace of
L0 and:

(i) if x ∈ E, y ∈ L0 and |y| ≤ |x| µ-a.e., then y ∈ E and ‖y‖E ≤ ‖x‖E ;

(ii) there exists a function x in E that is positive on the whole T (see [21] and [27]).

Every Köthe space is a Banach lattice under the obvious partial order (x ≥ 0 if x (t) ≥ 0
for µ-a.e. t ∈ T ). In particular, if we consider the space E over a nonatomic measure,
then we shall say that E is a Köthe function space. If we replace the measure space
(T,Σ, µ) by the counting measure space

(
N, 2N,m

)
, then we will say that E is a Köthe

sequence space and we denote it by e. In the last case the i-th unit vector is defined as
ei = (0, ..., 0, 1, 0, ...) , where "1" is an i-th coordinate of ei.

The set E+ = {x ∈ E : x ≥ 0} is called the positive cone of E. For any subset A ⊂ E
define A+ = A ∩ E+.

A Köthe space is called a symmetric space if for any x ∈ E and y ∈ L0 with x∗ = y∗ we
have that y ∈ E and ‖y‖E = ‖x‖E , where x∗ denotes the nonincreasing rearrangement

of x given by

x∗ (t) = inf {s ≥ 0 : µ {t ∈ T : |x(t)| > s} ≤ t} , t > 0.

For basic properties of symmetric spaces and rearrangements we refer to [29] and to
the monographs [2], [25].

A point x ∈ E is said to have an order continuous norm if for any sequence (xm) in
E such that 0 ≤ xm ≤ |x| and xm → 0 µ-a.e. we have ‖xm‖E → 0. A Köthe space E
is called order continuous (E ∈ (OC)) if every element of E has an order continuous
norm (see [21], [27] and [30]). As usual Ea stands for the subspace of order continuous
elements of E. It is known that x ∈ Ea iff

∥∥xχAn

∥∥
E
↓ 0 for any sequence {An} satisfying

An ↓ ? (that is An ⊃ An+1 and µ (
⋂∞

n=1 An) = 0). Clearly, µ (
⋂∞

n=1 An) = 0 iff χAn
→ 0

µ-a.e. in T. Moreover, for a Köthe sequence space e, x ∈ ea iff
∥∥xχ{n,n+1,...}

∥∥
e
→ 0 as

n → ∞.

A point x ∈ E+ \ {0} is said to be a point of lower monotonicity (upper monotonicity)
if for any y ∈ E+ such that y ≤ x and y 6= x (x ≤ y and y 6= x), we have ‖y‖E < ‖x‖E
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(‖x‖E < ‖y‖E). A point x ∈ E+ is called a point of lower local uniform monotonicity

(upper local uniform monotonicity) if ‖xn − x‖E → 0 for any sequence xn ∈ E such that
0 ≤ xn ≤ x and ‖xn‖E → ‖x‖E (x ≤ xn and ‖xn‖E → ‖x‖E). We will write shortly that
x is an LM -point, UM -point, LLUM -point and ULUM -point, respectively. Recall that
if each point of E+ \ {0} is an UM -point (equivalently LM -point), then we say that E
is strictly monotone (E ∈ (SM)) (see [3], [14]). Similarly, if each point of E+\{0} is an
LLUM -point [ULUM -point], then we say that E is lower locally uniformly monotone

(E ∈ (LLUM)) [upper locally uniformly monotone (E ∈ (ULUM))]. Notice that
global properties LLUM and ULUM are different in general (see [16]). We say that E
is uniformly monotone (E ∈ (UM)) provided for every q ∈ (0, 1) there exists p ∈ (0, 1)
such that for all 0 ≤ y ≤ x satisfying ‖x‖E = 1 and ‖y‖E ≥ q, we have ‖x− y‖E ≤ 1−p
(see [3], [14]).

In the whole paper ϕ denotes an Orlicz function, i.e. ϕ : R → [0,∞], ϕ is convex, even,
vanishing and continuous at zero, left continuous on (0,∞) and not identically equal
to zero. Denote

aϕ = sup {u ≥ 0 : ϕ (u) = 0} and bϕ = sup {u ≥ 0 : ϕ (u) < ∞} .

We write ϕ > 0 when aϕ = 0 and ϕ < ∞ if bϕ = ∞. Let ϕr = ϕχGϕ
, where

Gϕ =

{
{0} ∪ (aϕ, bϕ] if ϕ (bϕ) < ∞,

{0} ∪ (aϕ, bϕ) otherwise.
(1)

Define on L0 a convex semimodular Iϕ by

Iϕ(x) =

{
‖ϕ ◦ x‖E if ϕ ◦ x ∈ E,

∞ otherwise,

where (ϕ ◦ x) (t) = ϕ (x (t)) , t ∈ T. By the Calderón-Lozanovskĭı space Eϕ we mean

Eϕ = {x ∈ L0 : Iϕ(cx) < ∞ for some c > 0}

equipped with so called Luxemburg norm defined by

‖x‖ϕ = inf {λ > 0 : Iϕ (x/λ) ≤ 1} .

If E = L1 (e = l1), then Eϕ (eϕ) is the Orlicz function (sequence) space equipped with
the Luxemburg norm. If E = Λω -the Lorentz function space (e = λω) , then Eϕ (eϕ) is
the corresponding Orlicz-Lorentz function (sequence) space denoted by (Λω)ϕ ((λω)ϕ)
and equipped with the Luxemburg norm (see [12], [14], [22]).

We will assume in the whole paper that E has the Fatou property, that is, if 0 ≤ xn ↑
x ∈ L0 with (xn)

∞
n=1 in E and supn ‖xn‖E < ∞, then x ∈ E and ‖x‖E = limn ‖xn‖E .

Since E has the Fatou property, Eϕ has also this property, whence Eϕ is a Banach
space (see [28]). For arbitrary x ∈ L0 we define

θ(x) := sup{λ > 0 : Iϕ(λx) < ∞},

where sup ∅ = 0.
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We say an Orlicz function ϕ satisfies condition ∆2(0) (resp. ∆2(∞)) if there existK > 0
and u0 > 0 such that ϕ(u0) > 0 (resp. ϕ(u0) < ∞) and the inequality ϕ(2u) 6 Kϕ(u)
holds for all u ∈ [0, u0] (resp. u ∈ [u0,∞)) . If there exists K > 0 such that ϕ(2u) 6

Kϕ(u) for all u > 0, then we say that ϕ satisfies condition ∆2(R+). We write for short
ϕ ∈ ∆2(0), ϕ ∈ ∆2(∞), ϕ ∈ ∆2(R+), respectively. Obviously, ϕ ∈ ∆2(R+) if and only
if ϕ ∈ ∆2(0) and ϕ ∈ ∆2(∞).

For a Köthe space E and an Orlicz function ϕ we say that ϕ satisfies condition ∆E
2

(ϕ ∈ ∆E
2 for short) if:

1) ϕ ∈ ∆2(0) whenever E →֒ L∞;

2) ϕ ∈ ∆2(∞) whenever L∞ →֒ E;

3) ϕ ∈ ∆2(R+) whenever neither L
∞ →֒ E nor E →֒ L∞ (see [12]),

where the symbol E →֒ F stands for the continuous embedding of the space E into
the space F.

Relationships between the modular Iϕ and the norm ‖·‖ϕ are collected in [22].

3. ULUM-points in Köthe sequence spaces

Proposition 3.1. Let e be a Köthe sequence space. A point x ∈ e+ is an LLUM-point

of e if and only if x is an LM-point and x has an absolutely continuous norm.

Proof. Since for any Köthe space E every LLUM -point of E is an LM -point of E
and, by Lemma 6 in [18], any LLUM -point x ∈ S (E)+ has absolutely continuous
norm, the necessity of the theorem is obvious. We need to prove the sufficiency only.
Let x ∈ e+ and (xn) be a sequence such that 0 ≤ xn ≤ x and ‖xn‖e → ‖x‖e . Notice
that the sequences (xn (i))

∞
n=1 are bounded for any i ∈ N. By the diagonal method, we

conclude that there is y ∈ l0 and a subsequence (xnk
) of (xn) such that xnk

(i) → y (i)
for all i ∈ N. Obviously, 0 ≤ y ≤ x and, by the Fatou property of e, ‖xnk

‖e → ‖y‖e .
Hence, by the assumptions, we conclude ‖y‖e = ‖x‖e . Since x is an LM -point, we have
y = x. Moreover, x− xnk

→ 0 coordinatewise and 0 ≤ x− xnk
≤ x. By the fact that x

has absolutely continuous norm, it follows that ‖xnk
− x‖e → 0 as k → ∞. Notice that

(xnk
) with the above properties can be extracted from arbitrary subsequence of (xn) ,

so by virtue of the double extract convergence theorem, we also get that ‖xn − x‖e → 0
as n → ∞, which finishes the proof of the theorem.

We conclude immediately that a Köthe sequence space e is LLUM iff e ∈ (OC) and
e ∈ (SM) (see [10]).

The natural question is whether the similar characterization as in Proposition 3.1 is
valid for ULUM -points. The following example gives the negative answer.

Example 3.2. Consider the space c0 equipped with the norm

‖x‖S = sup
k∈N

|x (k)|+
∞∑

k=1

|x (k)|

2k−1

for any x ∈ c0. Take x = 1
2
e1. It is easy to see that x is an UM -point and x has an

absolutely continuous norm. We will show that x is not an ULUM -point. Really, define
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xn = 1
2
(e1 + en) . Then x ≤ xn. Moreover, ‖x‖S = 1, ‖xn‖S = 1 + 1

2n
and ‖xn − x‖S =

1
2
+ 1

2n
> 1

2
for any n ∈ N. Consequently, ‖xn‖S → ‖x‖S and ‖xn − x‖S 9 0, so x is

not an ULUM -point.

Proposition 3.3. Let e be a Köthe sequence space.

a) If a point x ∈ e+ is an ULUM-point of e, then x is an UM-point and for any

sequence xn ∈ e such that x ≤ xn and ‖xn‖e → ‖x‖e there holds
∥∥xnχ{k≤}

∥∥
e
→∥∥xχ{k≤}

∥∥
e
for any k ∈ N, where {k ≤} = {k, k + 1, k + 2, ...} .

b) Under the assumption that x has absolutely continuous norm, the converse is also

true.

Proof. a) Let x ∈ e+. It is clear that if x is an ULUM -point of e, then x is an UM -
point. Suppose that (xn) is a sequence such that 0 ≤ x ≤ xn and ‖xn‖e → ‖x‖e . Since
x is an ULUM -point of e, we have ‖xn − x‖e → 0. Then

∣∣∣
∥∥xnχ{k≤}

∥∥
e
−
∥∥xχ{k≤}

∥∥
e

∣∣∣ ≤
∥∥(xn − x)χ{k≤}

∥∥
e
≤ ‖xn − x‖e → 0

for any k ∈ N.

b) Let x ∈ e+ be an UM -point and (xn) be a sequence such that 0 ≤ x ≤ xn and
‖xn‖e → ‖x‖e . Notice that the sequence xn is convergent coordinatewise to x. If
not, then there is i0 such that xn (i0) 9 x (i0) . Without loss of generality we can
assume that there exists a positive number ε0 such that xn (i0) > x (i0) + ε0 for any
n ∈ N. Define y = xχN\{i0} + (x (i0) + ε0)χ{i0}. By the fact that x is an UM -point,
‖y‖e > ‖x‖e . On the other hand, since 0 ≤ x ≤ y ≤ xn, we have ‖y‖e ≤ ‖xn‖e for any
n ∈ N. Consequently, limn→∞ ‖xn‖e ≥ ‖y‖e > ‖x‖e . A contradiction.

By our assumption,
∥∥xnχ{k≤}

∥∥
e
→
∥∥xχ{k≤}

∥∥
e
for any k ∈ N. Now suppose that x

has absolutely continuous norm. Take ε > 0 and suppose that k0 is so large that∥∥xχ{k0≤}

∥∥
e
< ε/4. Then there is n1 ∈ N such that

∥∥xnχ{k0≤}

∥∥
e
−
∥∥xχ{k0≤}

∥∥
e
<

ε

4

for every n ≥ n1. Hence
∥∥xnχ{k0≤}

∥∥
e
< ε/2 for any n ≥ n1. Since xn (i) → x (i) for any

i ∈ N, we conclude that xnχ{<k0} − xχ{<k0} → 0 in norm, whence there is n2 such that

∥∥xnχ{<k0} − xχ{<k0}

∥∥
e
<

ε

4

for any n ≥ n2. Therefore

‖xn − x‖e =
∥∥(xnχ{<k0} − xχ{<k0}

)
+ xnχ{k0≤} − xχ{k0≤}

∥∥
e

≤
∥∥xnχ{<k0} − xχ{<k0}

∥∥
e
+
∥∥xnχ{k0≤}

∥∥
e
+
∥∥xχ{k0≤}

∥∥
e
< ε

for any n ≥ max {n1, n2} , which finishes the proof.

Proposition 3.3 b) is not true without assumption that x has absolutely continuous
norm, which is ilustrated by the following example.
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Example 3.4. Consider the space l∞ equipped with the norm ‖·‖S defined as in Exam-
ple 3.2. Take x =

(
2
5
, 1
5
, 2
5
, 1
5
, 2
5
, ...
)
. Obviously, x is an UM -point. Since

∥∥xχ{m≤}

∥∥
S
> 2

5

for any m ≥ 2, x has not absolutely continuous norm. Moreover, taking xn = x+ 1
5
e2n

for any n ∈ N, we get x ≤ xn, and ‖xn‖S → ‖x‖S . Since ‖xn − x‖S > 1
5
, x is not an

ULUM -point. Finally, we show that for any sequence (xn) in l∞ such that x ≤ xn

and ‖xn‖S → ‖x‖S there holds
∥∥xnχ{k≤}

∥∥
S
→
∥∥xχ{k≤}

∥∥
S
for any k ∈ N. Suppose for

the contrary that x ≤ xn, ‖xn‖S → ‖x‖S and there are δ > 0 and k0 ∈ N such that∥∥xnχ{k0≤}

∥∥
S
−
∥∥xχ{k0≤}

∥∥
S
≥ δ for infinitely many n (say for all n). Since x ≤ xn and

‖xn‖S → ‖x‖S , we conclude that supi≥k0
|xn (i)| → supi≥k0

|x (i)| as n → ∞. Hence

∞∑

i=k0

|xn (i)|

2i−1
−

∞∑

i=k0

|x (i)|

2i−1
>

δ

2

for n ≥ N1. Moreover, there is k1 > k0 with
∑∞

i=k1

|xn(i)|
2i−1 < δ

8
for each n. Thus

k1∑

i=k0

|xn (i)|

2i−1
−

k1∑

i=k0

|x (i)|

2i−1
>

δ

8
. (2)

On other hand x is an UM -point and consequently, by the proof of Proposition 3.3 b)
and our assumptions, xn → x coordinatewise. This is a contradiction with (2).

We will prove more facts about UM and ULUM -points, whenever e is a symmetric
Köthe sequence space.

Lemma 3.5. Let e be a symmetric Köthe sequence space. If x ∈ e+ is an UM-point,

then x ∈ c and limj→∞ x(j) = infj∈N x (j) .

Proof. It is enough to show that there are a subsetA ⊂ N and a bijection π : N → N\A
such that x∗(i) = x(π(i)) for any i ∈ N and x(i) = limj→∞ x∗(j) for any i ∈ A. First
we assume that

(+) there is i0 such that x(i0) < x∗(j) for any j ∈ N.

Since x∗ is a nonincreasing sequence and x(i0) is its lower bound, there is the limit x0

of the sequence x∗, i.e. x0 = limj→∞ x∗(j). If x(i0) < x0, then, taking into account that
x is an UM -point and setting λ = 1

2
(x0 − x(i0)) , we have that x∗ = (x+ λei0)

∗ and

‖x∗‖e ≥ ‖x+ λei0‖e > ‖x‖e = ‖x∗‖e ,

a contradiction. Hence x(i0) = limj→∞ x∗(j). In this case we define

A =

{
i ∈ N : x(i) = lim

j→∞
x∗(j)

}
.

If condition (+) does not hold, then we put A = ?.

Remark 3.6. It is obvious that if e is a symmetric Köthe sequence space and x is
an ULUM -point, then x∗ is an ULUM -point. The converse is not true. Really, take
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e = l∞. Define

x =
∞∑

i=1

(
3

4
+

1

4
(−1)i+1

)
ei and y =

∞∑

i=1

(
1

4
+

1

4
(−1)i

)
ei.

Then x ∈ S (l∞) , y ≥ 0 and y 6= 0. Moreover

‖x+ y‖l∞ =
∥∥∥
∑∞

i=1
ei

∥∥∥
l∞

= 1 = ‖x‖l∞ ,

whence x in not an UM -point. On the other hand x∗ =
∑∞

i=1 ei is an ULUM -point.

Corollary 3.7. Suppose that e is a symmetric Köthe sequence space. Let x ∈ e+. The
following statements are equivalent:

a) A point x is an ULUM-point.

b) A point x is an UM-point and x∗ is an ULUM-point.

Proof. The implication a) ⇒ b) is obvious by Remark 3.6, so we will show b) ⇒ a).
Applying the proof of Lemma 3.5, if A = ?, then there is a permutation π : N → N

such that x∗(i) = x(π(i)) for any i ∈ N. Let (xn) be a sequence of elements of e such
that x ≤ xn and ‖xn‖e → ‖x‖e . Define x̃n (i) = xn(π(i)). Then x∗ ≤ x̃n and

‖x̃n‖e = ‖xn‖e → ‖x‖e = ‖x∗‖e .

Since x∗ is an ULUM -point, we have ‖xn − x‖e = ‖x̃n − x∗‖e → 0. Thus x is an
ULUM -point.

Now, suppose that A 6= ?. By Lemma 3.5, x(i) = x0 for any i ∈ A. Take a sequence
(xn) satisfying the same properties as in the previous part of the proof. Again define
x̃n (i) = xn(π(i)), where π is the same as in the proof of Lemma 3.5. Then x∗ ≤ x̃n

and
‖x∗‖e ≤ ‖x̃n‖e =

∥∥xnχN\A

∥∥
e
≤ ‖xn‖e → ‖x‖e = ‖x∗‖e ,

whence ‖x̃n‖e → ‖x∗‖e . Hence, by the fact that x∗ is an ULUM -point, we have
‖x̃n − x∗‖e → 0. Further, by the triangle inequality, we have

‖xn − x‖e ≤ ‖x̃n − x∗‖e + ‖(xn − x)χA‖e .

To finish the proof, it is enough to show that ‖(xn − x)χA‖e → 0.

We claim that for any ε > 0 there is nε such that |xn (i)− x0| < ε for every i ∈ A
and n > nε, where x0 = limj→∞ x∗(j) = x (i) for each i ∈ A. It is clear in the case
if card (A) < ℵ0, because xn → x coordinatewise (see the proof of Proposition 3.3).
Suppose that card (A) = ℵ0 and that our claim is not true. Then there are ε0 > 0,
sequences (nk) of positive integers and (ik) of elements of A such that |xnk

(ik)− x0| >
ε0 for any k ∈ N (we have x0 = x (ik)). Hence xnk

χA ≥ x0 + ε0eik for any k ∈ N.
Consequently, xnk

≥ x + ε0eik for any k ∈ N. Since x (i) = x (j) for each i, j ∈ A, by
the symmetry of the space e and the fact that x is an UM -point, we have

‖x+ ε0eik‖e = ‖x+ ε0ei1‖e = a > ‖x‖e .
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Consequently, in view of our assumptions, we get

‖x‖e = lim
n→∞

‖xn‖e = lim
k→∞

‖xnk
‖e ≥ a > ‖x‖e ,

a contradiction. Hence
‖(xn − x)χA‖e < ε

for any n > nε and consequently ‖(xn − x)χA‖e → 0, which finishes the proof.

The implication b) ⇒ a) is not true in general in nonsymmetric Köthe sequence spaces
(see Example 3.4, where x∗ = 2

5

∑∞
i=1 ei is an ULUM -point).

4. Points of upper local uniform monotonicity of Eϕ

Remark 4.1. In the next theorem we will assume that the Köthe space E is order
continuous and symmetric. Under these assumptions in the case when E is function
space, we have E 6 →֒ L∞. Therefore E →֒ L∞ is possible only for Köthe sequence
spaces, i.e. E = e. Moreover, for the symmetric and nontrivial Köthe sequence spaces
we always have that e →֒ l∞. Hence the ∆E

2 -condition means the ∆2 (∞)-condition
whenever L∞ →֒ E, the ∆2 (R)-condition (i.e. both ∆2 (∞) and ∆2 (0) conditions) if
L∞ 6 →֒ E and ∆2 (0) condition when E = e.

Theorem 4.2. Let E be an order continuous symmetric Köthe space. Suppose addi-

tionally that if L∞ 6 →֒ E in the function case or E = e, then aϕ = 0. Moreover, for a

sequence case assume that ϕ (bϕ) ‖e1‖e > 1. A point x ∈ S (Eϕ)+ is an ULUM-point if

and only if x = bϕχT or the following conditions are satisfied:

a) x ≥ aϕχT ,

b) ϕ ∈ ∆E
2 ,

c) ϕ ◦ x is an ULUM-point in E.

Proof. Necessity. Let x ∈ S (Eϕ)+ be an ULUM -point. Since x is also an UM -point,
by Theorem 1 from [18], x = bϕχT or (x ≥ aϕχT and Iϕ(x) = 1).

By Remark 4.1, to prove b) we will show first that if E is a Köthe function space and
ϕ /∈ ∆2 (∞) , then there are Dn ∈ Σ with µ (Dn) → 0 and a sequence (yn) in S (Eϕ)+
such that supp yn = Dn and Iϕ(yn) → 0. Consider three possible cases in which the
condition ∆2 (∞) is not satisfied.

Case 1. If bϕ < ∞ and ϕ (bϕ) < ∞, then, taking an arbitrary sequence of sets Dn ∈ Σ
with µ (Dn) → 0 and

∥∥ϕ (bϕ)χDn

∥∥
E
≤ 1 for each n ∈ N, and defining yn = bϕχDn

, we
have

‖yn‖ϕ = inf {λ > 0 : Iϕ (yn /λ) ≤ 1} = inf
{
λ > 0 :

∥∥ϕ (bϕ /λ)χDn

∥∥
E
≤ 1
}
= 1

for any n ∈ N. Moreover, Iϕ (yn) =
∥∥ϕ (bϕ)χDn

∥∥
E

→ 0, by order continuity and
symmetry of E.

Case 2. Suppose that bϕ < ∞ and ϕ (bϕ) = ∞. Take an arbitrary set A of finite
measure and a sequence of reals (un) such that un → bϕ. By order continuity of E,
there is a sequence (An) of measurable and disjoint sets such that µ (An) ≤ µ (A) /2n
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and
∥∥ϕ (un)χAn

∥∥
E

≤ 1 /2n for any n ∈ N. Define yn =
∑∞

k=n ukχAk
. Then for any

λ < 1 there is n0 ∈ N such that un0
/λ > bϕ, so ϕ (un0

/λ) = ∞. Consequently,
Iϕ (yn /λ) = ∞ for any λ < 1. But for λ = 1, we have

Iϕ (yn) =

∥∥∥∥∥ϕ ◦

(
∞∑

k=n

ukχAk

)∥∥∥∥∥
E

≤
∞∑

k=n

∥∥ϕ (uk)χAk

∥∥
E
≤

∞∑

k=n

1

2k
=

1

2n−1
< 1.

Hence ‖yn‖ϕ = 1 for any n ∈ N and Iϕ (yn) → 0. Define Dn =
⋃∞

k=nAk. Then
supp yn = Dn and µ (Dn) → 0.

In the proof of the following case we apply similar methods as in [12], but we present
the whole proof for the sake of convenience.

Case 3. Suppose that bϕ = ∞. If ϕ /∈ ∆2 (∞) , then there is an increasing sequence
(un) such that un → ∞ and

ϕ

((
1 +

1

n

)
un

)
>

2n

‖χA‖E
ϕ (un) and ϕ (un) ≥ 1,

where A ∈ Σ is an arbitrary set of positive and finite measure such that ‖χA‖E < 1.
Notice that if A = A1 ∪ A2, A1 ∩ A2 = ? and µ (A1) = µ (A1) = µ (A) /2, then

‖χA‖E =
∥∥χA1

+ χA2

∥∥
E
≤
∥∥χA1

∥∥
E
+
∥∥χA2

∥∥
E
= 2

∥∥χA1

∥∥
E
,

whence
∥∥χA1

∥∥
E
≥ ‖χA‖E /2. Let (An) be a sequence of disjoint measurable sets such

that µ (An) = µ (A) /2n for any n ∈ N and
⋃∞

n=1 An = A. Then, by the above ob-
servation,

∥∥χAn

∥∥
E
≥ ‖χA‖E /2n for any n ∈ N. By order continuity of the space E,

the function defined ν (B) = ‖χB‖E for any B ∈ Σ ∩ A is an absolutely continuous
submeasure with respect to measure µ. Hence it has the Darboux property (see [6])
and consequently for any n ∈ N there exists a set Bn ⊂ An such that

ν (Bn) =
∥∥χBn

∥∥
E
=

1

2nϕ (un)
‖χA‖E .

Obviously, (Bn)
∞
n=1 is a sequence of disjoint sets. Define

yn =
∞∑

k=n

ukχBk
and Dn =

∞⋃

k=n

Bk

for any n ∈ N. Obviously, supp yn = Dn and µ (Dn) → 0. Moreover, we have

Iϕ (yn) =

∥∥∥∥∥

∞∑

k=n

ϕ (uk)χBk

∥∥∥∥∥
E

≤
∞∑

k=n

ϕ (uk)
∥∥χBk

∥∥
E

=
∞∑

k=n

1

2k
‖χA‖E =

1

2n−1
‖χA‖E <

1

2n−1
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for any n ∈ N. Hence Iϕ (yn) → 0. Moreover, for every λ ∈ (0, 1) and n ∈ N there is
n0 ≥ n such that 1 + 1/n0 < 1 /λ . Then

Iϕ

(yn
λ

)
=

∥∥∥∥∥

∞∑

k=n

ϕ
(
λ−1uk

)
χBk

∥∥∥∥∥
E

≥
∥∥∥ϕ
(
λ−1un0

)
χBn0

∥∥∥
E

>

∥∥∥∥ϕ
((

1 +
1

n0

)
un0

)
χBn0

∥∥∥∥
E

>
2n0

‖χA‖E
ϕ (un0

)
∥∥∥χBn0

∥∥∥
E
= 1,

whence ‖yn‖ϕ = 1. This finishes the proof of Case 3.

Consider the situation when ϕ 6∈ ∆2(0).

Case 4. If L∞ 6 →֒ E (resp. E = e), aϕ = 0 and ϕ /∈ ∆2 (0) , then for any set A ∈ Σ
(resp. A ⊂ N) of infinite measure there are a decreasing sequence of sets (Cn) in Σ∩A
(resp. Cn ⊂ A) of infinite measure and a sequence of functions (yn) in S (Eϕ)+ (resp.
S (eϕ)+) such that supp yn = Cn for any n ∈ N, Cn ↓ ? and Iϕ(yn) → 0.

To prove this claim, suppose that L∞ 6 →֒ E (resp. E = e), aϕ = 0 and ϕ /∈ ∆2 (0) . Take
a set A ∈ Σ (resp. A ⊂ N) such that χA /∈ E. In view of symmetry of E, µ (A) = ∞.
The condition ϕ /∈ ∆2 (0) implies that there is an decreasing sequence (un) such that
un → 0 and

ϕ

((
1 +

1

n

)
un

)
> 2nϕ (un) and ϕ (un) ≤ 1.

Without loss of generality, passing to a subsequence if necessary, we can assume that
ϕ (un) ≤ 1 /2n . Really, since ϕ (un) → 0, there is an increasing sequence (nk) of positive
integers such that ϕ (unk

) ≤ 1
/
2k for any k ∈ N. Noticing that nk ≥ k for any k ∈ N,

we have

ϕ

((
1 +

1

k

)
unk

)
≥ ϕ

((
1 +

1

nk

)
unk

)
> 2nkϕ (unk

) ≥ 2kϕ (unk
) .

To get the desired subsequence it is enough to put vk = unk
for any k ∈ N.

In the case when L∞ 6 →֒ E we take a sequence of disjoint sets (An) of finite measure such
that ϕ(un)

∥∥χAn

∥∥
E
= 1/2n and An ⊂ A for any n ∈ N. Moreover, by our assumption,∥∥χAn

∥∥
E
≥ 1. By symmetry of the space E, there is a positive number β > 0 such that

µ (An) ≥ β for any n ∈ N.

If E = e, then the sequence (un) can be taken such that ϕ (un)
∥∥χ{e1}

∥∥
e
≤ 1 /2n for any

n ∈ N. Hence we can construct a finite set An ⊂ A such that 1
2n

≤ ϕ(un)
∥∥χAn

∥∥
e
≤ 1

2n−1

for any n ∈ N. To this end, note that if A = {ai : i ∈ N}, then, by the Fatou property,
the sequence of the norms

∥∥χ{a1,a2,...,ak}

∥∥
e
→ ∞. Hence we can takeA1 = {a1, a2, ..., ak1}

as the smallest set such that 1
2
≤ ϕ(u1)

∥∥χA1

∥∥
e
. Then for any element a ∈ A1 we have

ϕ(u1)
∥∥χA1\{a}

∥∥
e
< 1

2
and

ϕ(u1)
∥∥χA1

∥∥
e
= ϕ(u1)

∥∥χA1\{a} + χ{a}

∥∥
e
≤ ϕ(u1)

∥∥χA1\{a}

∥∥
e
+ ϕ(u1)

∥∥χ{a}

∥∥
e
< 1.

Define An =
{
akn−1

, ..., akn
}
, where kn is the smallest positive integer such that 1

2n
≤

ϕ(un)
∥∥χAn

∥∥
e
. By the same argumentation as for the set A1, we conclude that 1

2n
≤
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ϕ(un)
∥∥χAn

∥∥
e
≤ 1

2n−1 . Define for both cases

yn =
∞∑

k=n

ukχAk
and Cn =

∞⋃

k=n

Ak

for any n ∈ N. Obviously, Cn ↓ ?, supp yn = Cn and µ (Cn) = ∞ for any n ∈ N.
Moreover,

Iϕ (yn) =

∥∥∥∥∥

∞∑

k=n

ϕ (uk)χAk

∥∥∥∥∥
E

≤
∞∑

k=n

ϕ (uk)
∥∥χAk

∥∥
E
≤

∞∑

k=n

1

2k−1
=

1

2n−2

for any n ∈ N. Consequently, Iϕ (yn) → 0. Similarly as in Case 3, for any λ ∈ (0, 1)
and n ∈ N a positive integer n0 ≥ n can be found such that 1 + 1/n0 < 1 /λ . Hence,
by an analogous way as in Case 3, we get Iϕ (yn/λ) > 1, which implies that ‖yn‖ϕ = 1
for any n ∈ N, as we claimed in Case 4.

Now suppose that E is a Köthe function space, x ∈ S (Eϕ)+ is an ULUM -point
and x 6= bϕχT . Then there are a set A of positive and finite measure and a number
a ∈ (0, 1) such that x(t) < bϕ for µ-a.e. t ∈ A and θ(xχA) >

1
1−a

. If ϕ /∈ ∆2 (∞) , then,
by Cases 1–3, we can find a sequence (Dn) of measurable subsets of A with µ (Dn) → 0
and a sequence (yn) in S (Eϕ)+ such that ‖yn‖ϕ = 1, supp yn = Dn for any n ∈ N and
Iϕ(yn) → 0. Define xn = x + ayn for any n ∈ N. Obviously, xn ≥ x. Since x is also an
UM -point, by Theorem 1 in [18], Iϕ (x) = 1. Hence

1 = Iϕ (x) ≤ Iϕ (xn) ≤ Iϕ
(
xχT\Dn

)
+ Iϕ

(
xχDn

+ ayn
)

= Iϕ
(
xχT\Dn

)
+ Iϕ

(
(1− a)

x

1− a
χDn

+ ayn

)
(3)

≤ Iϕ (x) + (1− a) Iϕ

(
x

1− a
χDn

)
+ aIϕ (yn) → 1

because Iϕ
(

x
1−a

χA

)
< ∞. Consequently, Iϕ

(
x

1−a
χDn

)
→ 0, by order continuity of E.

Thus ‖xn‖ϕ → 1 = ‖x‖ϕ . But

‖xn − x‖ϕ = a ‖yn‖ϕ = a > 0

for any n ∈ N, which means that x is not an ULUM -point. The obtained contradiction
shows that if E is a Köthe function space, then ϕ always satisfies the ∆2 (∞) condition.
In particular, if L∞ →֒ E, then ϕ ∈ ∆E

2 .

Suppose that L∞ 6 →֒ E or E = e, aϕ = 0, x ∈ S (Eϕ)+ is an ULUM -point and
ϕ /∈ ∆2 (0) . Since L∞ 6 →֒ E or e is symmetric order continuous Köthe sequence space,
then either χT\suppx /∈ E or χsuppx /∈ E (if E = e, then T = N). If χT\suppx /∈ E,
then, taking A = T\suppx, by the claim in Case 4, we can construct a decreasing
sequence of sets (Cn) in Σ ∩ A of infinite measure and a sequence of functions (yn) in
S (Eϕ)+ such that supp yn = Cn ⊂ A and Iϕ(yn) → 0. Now, putting xn = x + yn for
any n ∈ N, we have that xn ≥ x and 1 = Iϕ (x) ≤ Iϕ (xn) ≤ Iϕ (x) + Iϕ (yn) → 1.
Hence ‖xn‖ϕ → ‖x‖ϕ and ‖xn − x‖ϕ = 1, which contradicts the fact that x is an
ULUM -point. Thus ϕ ∈ ∆2 (0) .
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Now suppose that χsuppx /∈ E. It implies that µ (suppx) = ∞. Let (un) be a decreasing
sequence from Case 4 such that ϕ (un) ≤ 1

2n‖χB‖E
, where µ (B) = 1 and let a ∈

(0, 1) be a real number. Then, by order continuity and symmetry of E, a sequence
(An) of measurable disjoint sets of finite measure can be found such that µ (An) ≥ 1,
An ⊂ suppx, xχAn

≤ (1− a)unχT and ϕ(un)
∥∥χAn

∥∥
E
= 1/2n for any n ∈ N. Denote

A =
⋃∞

k=1 Ak and Cn =
⋃∞

k=nAk. Defining as in Case 4 the sequence yn =
∑∞

k=n ukχAk

in S (Eϕ)+ , we have that Iϕ(yn) → 0. Since Cn ↓ ? and

Iϕ

(
x

1− a
χA

)
≤ Iϕ

(
∞∑

n=1

unχAn

)
≤

∞∑

n=1

ϕ (un)
∥∥χAn

∥∥
E
= 1,

by order continuity of E, we have

Iϕ

(
x

1− a
χCn

)
=

∥∥∥∥ϕ ◦

(
x

1− a

)
χCn

∥∥∥∥
E

→ 0.

Hence, defining xn = x+ayn for any n ∈ N and repeating the sequence of inequalities (3)
(replacing Dn by Cn), we obtain that Iϕ (xn) ց 1, whence ‖xn‖ϕ → ‖x‖ϕ . Moreover,
‖xn − x‖ϕ = a > 0 for any n ∈ N. The same contradiction as above shows that
ϕ ∈ ∆2(0). For the case E = e a finite sequence (An) of disjoint subsets of N can
be found such that µ (An) ≥ 1, An ⊂ suppx, xχAn

≤ (1− a)unχT and 1 /2n+1 ≤
ϕ(un)

∥∥χAn

∥∥
E
≤ 1 /2n for any n ∈ N.

Combining the above, if L∞ →֒ E, then ϕ ∈ ∆2(∞). If L∞ 6 →֒ E, then ϕ ∈ ∆2(0) and
ϕ ∈ ∆2(∞), i.e. ϕ ∈ ∆2(R+). If E = e, then ϕ ∈ ∆2(0). Consequently, in all four cases
ϕ ∈ ∆E

2 , which finishes the proof of b).

If E is a Köthe function space, the condition c) follows immediately from Proposition 4
in [18]. We remind to the reader that θ(x) defined in [18] is smaller than one if and only
if θ(x) defined by us is bigger than one. It is enough to notice that if the measure µ is
nonatomic, then the condition ∆2 (∞) implies that θ (x) > 1 and [0,∞) ⊂ ϕ ([0,∞)) . If
e is a Köthe sequence space and ϕ (bϕ) = ∞, then also the assumptions of Proposition 4
in [18] are satisfied.

It remains to prove condition c) in the case when E = e, bϕ < ∞ and ϕ (bϕ) < ∞. We
have that ϕ (bϕ) ‖e1‖e > 1. Let x ∈ S (eϕ)+ be an ULUM -point. Then x (i) < bϕ for
any i ∈ N. Let i0 be the smallest number for which

x (i0) = b = sup {x (i) : i ∈ N} < bϕ.

Such i0 always exists, because, by order continuity and symmetry of e, x (i) → 0. Take
u0 =

b+bϕ
2

and c = b+bϕ
2b

. Then, by the ∆2(0)-condition for ϕ, there is K > 1 such that
ϕ (cu) ≤ Kϕ (u) for any |u| ≤ u0

c
. Hence

Iϕ (cxχN) ≤ KIϕ (xχN) ≤ KIϕ (x) = K < ∞. (4)

Let (yn) ⊂ e+ be a sequence such that yn ≥ ϕ◦x for any n ∈ N and ‖yn‖e → ‖ϕ ◦ x‖e =
1. Without loss of generality, excluding a finite number of elements, if necessary, we can
assume that ‖yn‖e < ϕ (bϕ) ‖e1‖e for any n ∈ N. Hence yn(i) < ϕ (bϕ) for any i, n ∈ N.
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It follows from the proof of Proposition 3.3 b) that yn → ϕ◦x coordinatewise. Denoting
zn = ϕ−1

r ◦ yn, we have bϕ > zn (i) ≥ x (i) for any i, n ∈ N and Iϕ (zn) = ‖yn‖e → 1,
whence ‖zn‖ϕ → 1. Since x is an ULUM -point, we obtain ‖zn − x‖ϕ → 0. Let (znk

)
be a subsequence of (zn) such that

∞∑

k=1

‖znk
− x‖ϕ <

(bϕ − b)

2bϕ
.

Define h :=
∑∞

k=1 (znk
− x) . Obviously, znk

− x ≤ h for each k ∈ N. Since

∥∥hχ{i}

∥∥
ϕ
≤ ‖h‖ϕ <

bϕ − b

2bϕ

for any i ∈ N, we have

1 ≥ Iϕ

(
2bϕhχ{i}

bϕ − b

)
= ϕ

(
2bϕh (i)

bϕ − b

)
‖e1‖e ,

whence

h (i) ≤ ϕ−1
r

(
1

‖e1‖e

)
bϕ − b

2bϕ
≤

bϕ − b

2
.

Therefore, for any i ∈ N, we have

x (i) + h (i) ≤ b+
(bϕ − b)

2
≤

(bϕ + b)

2
≤ bϕ

and

c

c− 1
h (i) ≤

b+bϕ
2b

b+bϕ
2b

− 1

bϕ − b

2
=

(bϕ + b)

2
.

Hence, again, by the ∆2 (0)-condition for u1 =
b+bϕ
2

and c1 =
c

c−1
there is K1 such that

ϕ (c1u) ≤ K1ϕ (u) for any |u| ≤ u1

c1
. Thus

Iϕ

(
c

c− 1
hχN

)
≤ K1Iϕ (h) ≤ K1 ‖h‖ϕ < ∞. (5)

Therefore, by (4), (5) and convexity of ϕ, we have

Iϕ (x+ h) = ‖ϕ ◦ (x+ h)‖e ≤
1

c
Iϕ (cx) +

c− 1

c
Iϕ

(
c

c− 1
h

)
< ∞,

whence ϕ ◦ (x+ h) ∈ e. Since ϕ ◦ znk
→ ϕ ◦ x coordinatewise and

0 ≤ ynk
− ϕ ◦ x = ϕ ◦ znk

− ϕ ◦ x ≤ ϕ ◦ (x+ h)

for every k ∈ N, by order continuity of e, we obtain

‖ynk
− ϕ ◦ x‖e → 0.
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Applying the double extract subsequence theorem, we get ‖yn − ϕ ◦ x‖e → 0. Conse-
quently, ϕ ◦ x is an ULUM -point, which finishes the proof of necessity.

Sufficiency. Suppose that x := bϕχT is not an ULUM -point. Then there are a sequence
(yn) in (Eϕ)+ and a positive real number ε such that ‖yn‖ϕ ≥ ε for any n ∈ N and
‖x+ yn‖ϕ → 1. Define

Bn =
{
t ∈ T : yn (t) ≥

ε

2
x (t)

}
.

Then
ε ≤

∥∥ynχT\Bn

∥∥
ϕ
+
∥∥ynχBn

∥∥
ϕ
<

ε

2
+
∥∥ynχBn

∥∥
ϕ
.

Consequently,
∥∥ynχBn

∥∥
ϕ
> ε

2
and µ (Bn) > 0 for any n ∈ N. Moreover

Iϕ

(
x+ yn
1 + ε2/2

)
=

∥∥∥∥ϕ ◦

(
x+ yn
1 + ε2/2

)∥∥∥∥
E

≥

∥∥∥∥ϕ ◦

(
x+ yn
1 + ε2/2

)
χBn

∥∥∥∥
E

>

∥∥∥∥ϕ
(

1 + ε/2

1 + ε2/2
bϕ

)
χBn

∥∥∥∥
E

= ∞

because 1 + ε2/2 < 1 + ε/2. Therefore ‖x+ yn‖ϕ ≥ 1 + ε2/2, a contradiction. In
consequence x = bϕχT is an ULUM -point.

Suppose that E is a Köthe function space and x ∈ S (Eϕ)+ and conditions a), b), c) are
satisfied. Let (xn) be a sequence of elements of (Eϕ)+ such that xn ≥ x for all n ∈ N

and ‖xn‖ϕ → ‖x‖ϕ = 1. We will show that ‖xn − x‖ϕ → 0. Note that E 6 →֒ L∞ because

E ∈ (OC) . Then ϕ ∈ ∆E
2 means ϕ ∈ ∆2 (∞) whenever L∞ →֒ E or ϕ ∈ ∆2 (R+) if

L∞ 6 →֒ E, whence, in any case, ϕ < ∞. Thus, we conclude that ‖ϕ ◦ x‖E = Iϕ (x) = 1
and

‖ϕ ◦ xn‖E = Iϕ (xn) → 1 = ‖ϕ ◦ x‖E

(see [5]). Moreover, ϕ ◦ x ≤ ϕ ◦ xn for all n ∈ N because ϕ is an increasing function.
Therefore, by assumption c),

‖ϕ ◦ xn − ϕ ◦ x‖E → 0. (6)

Applying superadditivity of ϕ on R+, we obtain

Iϕ (xn − x) = ‖ϕ ◦ (xn − x)‖E ≤ ‖ϕ ◦ xn − ϕ ◦ x‖E , (7)

whence Iϕ (xn − x) → 0. As above, by the ∆E
2 -condition, we conclude that ϕ ∈ ∆2 (∞)

whenever L∞ →֒ E or ϕ ∈ ∆2 (R+) whenever L
∞ 6 →֒ E.

If ϕ ∈ ∆2 (R+) , then ϕ > 0 and consequently ‖xn − x‖ϕ → 0, which means that x
is an ULUM -point of Eϕ. Suppose that L∞ →֒ E and ϕ ∈ ∆2 (∞) . Condition (6)
and assumption a) imply that xn − x → 0 µ-a.e.. Consequently, by Lemma 8 in [8],
‖xn − x‖ϕ → 0 as desired.

Suppose that e is a symmetric and order continuous Köthe sequence space and ϕ (bϕ) =
∞. Then, repeating the same argumentation as for function spaces, we conclude that
under assumptions a), b), c), x ∈ S (eϕ)+ is an ULUM -point (see [9], [22] for the
required results to apply).
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It remains to proof the hypothesis in the case when bϕ < ∞ and ϕ (bϕ) < ∞. Let (xn)
be a sequence in (eϕ)+ such that xn ≥ x for all n ∈ N and ‖xn‖ϕ → ‖x‖ϕ = 1. Since,
ϕ (bϕ) ‖e1‖e > 1, there is α ∈ (0, 1) such that ‖xn‖ϕ < ϕ (αbϕ) ‖e1‖e for n large enough.
Consequently, x (i) ≤ xn (i) < αbϕ for any i ∈ N and n ∈ N large enough. Then
conditions (6) and (7) are satisfied, whence Iϕ (xn − x) → 0. By the ∆e

2-condition, we
conclude that ‖xn − x‖ϕ → 0, whence x ∈ S (eϕ)+ is an ULUM -point, which finishes
the proof.

Remark 4.3. By Lemma 1.4 in [22], the assumption ϕ (bϕ) ‖e1‖e ≥ 1 under the ∆2(0)-
condition is necessary and sufficient to the equivalence Iϕ (x) = 1 ⇔ ‖x‖ϕ = 1 for any
x ∈ eϕ. Our assumption with the sharp inequality ϕ (bϕ) ‖e1‖e > 1 is slightly stronger.

The case L∞ 6 →֒ E with aϕ > 0 deviates from the pattern set by Theorem 4.2. Since
in such a case ϕ /∈ ∆E

2 = ∆2 (R+) , one can expect that S (Eϕ)+ has no ULUM -points.
On the other hand the next theorem shows that if L∞ 6 →֒ E and aϕ > 0, then Theorem
4.2 (with a small restriction) holds true, whenever we replace the condition ϕ ∈ ∆E

2 by
the conditions ϕ ∈ ∆2 (∞) and Iϕ (x) = 1.

Lemma 4.4. For any Orlicz function ϕ and any α ∈ (0, 1] the inequality

ϕ (u+ v) ≥ ϕ (u) + ϕ (αaϕ + v)

holds for any u ≥ αaϕ and v ≥ 0.

Proof. By Lemma 1 in [17], the inequality holds for α = 1. Hence, by monotonicity
of ϕ, the inequality is true for any α ∈ (0, 1] .

Theorem 4.5. Suppose that E is an order continuous symmetric Köthe function space

such that L∞ 6 →֒ E, aϕ > 0. Let x ∈ S (Eϕ)+ be such that ϕ ◦ x is an ULUM-point

in E. A point x is an ULUM-point in Eϕ if and only if the following conditions are

satisfied:

a) x ≥ aϕχT ,

b) ϕ ∈ ∆2 (∞) ,

c) Iϕ (x) = 1.

Proof. Necessity. Let x ∈ S (Eϕ)+ be an ULUM -point. Since x is also an UM -point,
by Theorem 1 in [18], x ≥ aϕχT and Iϕ(x) = 1, i.e. a) and c) are satisfied. Similarly
as in the proof of Theorem 4.2, we conclude b).

Sufficiency. Assume that x ∈ S (Eϕ)+ , ϕ ◦ x is an ULUM -point in E and that a), b)
and c) are satisfied. Suppose that x is not an ULUM -point. Then there are a sequence
(yn) in (Eϕ)+ and a positive real number ε such that ‖yn‖ϕ ≥ 4ε for any n ∈ N and
‖x+ yn‖ϕ → 1. Define

Bn = {t ∈ T : yn (t) ≥ 2εaϕ} .

Then
4ε ≤

∥∥ynχT\Bn

∥∥
ϕ
+
∥∥ynχBn

∥∥
ϕ
< 2ε+

∥∥ynχBn

∥∥
ϕ
.

Consequently,
∥∥ynχBn

∥∥
ϕ
> 2ε and µ (Bn) > 0 for any n ∈ N. We will show, that

there is β > 0 such that Iϕ
(
(aϕ + yn)χBn

)
> β for any n ∈ N. To do this, denote
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a = lim infn→∞ µ (Bn) . Passing to a subsequence if necessary, we can assume that a =
limn→∞ µ (Bn) . In the case when a ∈ (0,∞] , we can take β = ‖ϕ ◦ (aϕ (1 + 2ε))χB‖E ,
where B is an arbitrary set in Σ with µ (B) = 1

2
a if a < ∞ or µ (B) = 1 if a = ∞.

Let now a = 0 and define

Cn = {t ∈ Bn : yn (t) ≥ 2aϕ} .

By order continuity of E,
∥∥∥ϕ
(

2aϕ
ε

)
χBn

∥∥∥
E
≤ 1 for n large enough. Again, without loss

of generality, we can assume that
∥∥2aϕχBn

∥∥
ϕ
< ε for any n ∈ N. Then

2ε ≤
∥∥ynχBn\Cn

∥∥
ϕ
+
∥∥ynχCn

∥∥
ϕ
<
∥∥2aϕχBn

∥∥
ϕ
+
∥∥ynχCn

∥∥
ϕ
< ε+

∥∥ynχCn

∥∥
ϕ
,

whence
∥∥ynχCn

∥∥
ϕ
> ε for any n ∈ N. It implies, by the definition of the norm, that

Iϕ
(
yn
ε
χCn

)
> 1 for any n ∈ N. In view of the ∆2 (∞)-condition, there is a constant

K (ε) > 0 such that Iϕ
(
ynχCn

)
> 1/K (ε) = β, and consequently

Iϕ
(
(aϕ + yn)χBn

)
≥ Iϕ

(
ynχCn

)
> β

for any n ∈ N. Hence
∥∥ϕ ◦

(
(aϕ + yn)χBn

)∥∥
E
= Iϕ

(
(aϕ + yn)χBn

)
> β

for any n ∈ N. Since ϕ ◦ x is an ULUM -point in E, a real number γ (β) > 0 can be
found such that

Iϕ (x+ yn) = ‖ϕ ◦ (x+ yn)‖E ≥ ‖ϕ ◦ x+ ϕ ◦ (aϕχT + yn)‖E
≥

∥∥ϕ ◦ x+ ϕ ◦
(
(aϕ + yn)χBn

)∥∥
E
≥ 1 + 3γ (β)

for any n ∈ N. For any η > 0 define

Dη = {t ∈ T : x (t) ≤ aϕ (1 + η)} .

By order continuity of E there is η0 such that
∥∥∥ϕ ◦

(
xχDη0

)∥∥∥
E
< γ (β) . It is easy to

see that we can choose η0 ∈ (0,min {ε, aϕ}) . We have

∥∥∥ϕ ◦
(
xχT\Dη0

)
+ ϕ ◦

(
(aϕ + yn)χBn

)∥∥∥
E

=
∥∥∥ϕ ◦ x− ϕ ◦

(
xχDη0

)
+ ϕ ◦

(
(aϕ + yn)χBn

)∥∥∥
E

≥
∥∥ϕ ◦ x+ ϕ ◦

(
(aϕ + yn)χBn

)∥∥
E
−
∥∥∥ϕ ◦

(
xχDη0

)∥∥∥
E

≥ 1 + 3γ (β)− γ (β) = 1 + 2γ (β)

for any n ∈ N. By the condition ∆2 (∞) , for any K > 1 there is λK ∈ (1, K) such that

ϕ (v) ≤ Kϕ
(

v
λK

)
for any v

λK
≥ aϕ

(
1 + 1

2
η0
)
. Take

K = min

{
1 + γ (β) ,

1 + η0
1 + η0/ 2

}
.
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Notice that by the fact that λK < 1+η0
1+η0/2

, we have

x(t)

λK

>
1 + η0/ 2

1 + η0
aϕ (1 + η0) = aϕ

(
1 +

η0
2

)

for µ-a.e. t ∈ T \Dη0
and

(aϕ + yn(t))

λK

≥
1 + η0/ 2

1 + η0
aϕ (1 + 2ε) ≥ aϕ

(
1 +

η0
2

)

for µ-a.e. t ∈ Bn. Hence, by Lemma 4.4, we obtain

Iϕ

(
x+ yn
λK

)
=

∥∥∥∥ϕ ◦

(
x+ yn
λK

)∥∥∥∥
E

≥

∥∥∥∥ϕ ◦

(
x

λK

)
+ ϕ ◦

(
(aϕ + yn)χBn

λK

)∥∥∥∥
E

≥

∥∥∥∥ϕ ◦

(
x

λK

)
χT\Dη0

+ ϕ ◦

(
(aϕ + yn)χBn

λK

χBn

)∥∥∥∥
E

≥
1

K

∥∥∥ϕ ◦ (x)χT\Dη0
+ ϕ ◦

(
(aϕ + yn)χBn

)∥∥∥
E
≥

1 + 2γ (β)

1 + γ (β)
> 1

for any n ∈ N. Consequently, ‖x+ yn‖ϕ > λK > 1 for any n ∈ N. This contradiction
finishes the proof.

Theorem 4.6. Suppose that e is an order continuous symmetric Köthe sequence space

and ϕ is an Orlicz function such that aϕ > 0 and ϕ (bϕ) ‖e1‖e > 1. Let x ∈ S (eϕ)+ be

such that ϕ ◦ x is an ULUM-point in e. The point x is an ULUM-point of eϕ if and

only if the following conditions are satisfied:

a) x ≥ aϕχN,

b) Iϕ (x) = 1.

Proof. Necessity. Let x ∈ S (Eϕ)+ be an ULUM -point. Since x is also an UM -point,
by Theorem 1 in [18], a) and b) are satisfied.

Sufficiency. Suppose that x ∈ S (eϕ)+ , ϕ◦x is an ULUM -point in e and that conditions
a) and b) are satisfied. Assume that x is not an ULUM -point. Then there are a
sequence (yn) in (eϕ)+ and a positive real number ε such that ‖yn‖ϕ ≥ 4ε for any
n ∈ N and ‖x+ yn‖ϕ → 1. Since ϕ (bϕ) ‖e1‖e > 1, there is α ∈ (0, 1) such that
‖x+ yn‖ϕ < ϕ (αbϕ) ‖e1‖e for n large enough. Consequently, without loss of generality,
we can assume that x (i) + yn (i) < αbϕ for all i, n ∈ N. Define

Bn = {i ∈ N : yn (i) ≥ 2εaϕ} .

Similarly as in the proof of Theorem 4.5, we get
∥∥ynχBn

∥∥
ϕ
> 2ε, whence

a = lim inf
n→∞

m (Bn) ≥ 1.

Moreover,
Iϕ
(
(aϕ + yn)χBn

)
≥
∥∥ϕ ◦ (aϕ (1 + 2ε))χ{e1}

∥∥
e
= β
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for any n ∈ N. Hence, by the fact that ϕ ◦ x is an ULUM -point in e, repeating the
same argumentation as in the proof of Theorem 4.5, a real number γ (β) > 0 can be
found such that Iϕ (x+ yn) ≥ 1 + 3γ (β) for any n ∈ N. Further, defining

Dη = {i ∈ N : x (t) ≤ aϕ (1 + η)}

for any η > 0, similarly as in the proof of Theorem 4.5, we get

∥∥∥ϕ ◦
(
xχT\Dη0

)
+ ϕ ◦

(
(aϕ + yn)χBn

)∥∥∥
e
≥ 1 + 2γ (β)

for a certain real number η0 ∈ (0,min {ε, aϕ}) and any n ∈ N. Since the function ϕ is
uniformly convex on the interval (η0, αbϕ) , for any K > 1 there is λK ∈ (1, K) such

that ϕ (v) ≤ Kϕ
(

v
λK

)
for any v

λK
∈
[
aϕ
(
1 + 1

2
η0
)
, αbϕ
λK

]
. Again, repeating the same

argumentation as at the end of the proof of Theorem 4.5, we get

Iϕ

(
x+ yn
λK

)
≥ 1

for any n ∈ N, whence ‖x+ yn‖ϕ > λK > 1 for for any n ∈ N. This contradiction
finishes the proof.

5. Application to Orlicz-Lorentz and Orlicz spaces

Now we consider Orlicz-Lorentz spaces as a special class of Calderón-Lozanovskĭı
spaces.

Recall that the function ω : [0, γ) → R+ with γ = µ(T ) is said to be the weight function,
if it is nonnegative, nonincreasing and locally integrable function with the respect to
the Lebesgue measure µ. Then the Lorentz function space Λω consists of all functions
x ∈ L0(T,Σ, µ) such that ‖x‖ =

∫ γ

0
x∗(t)ω(t)dt < ∞, where x∗ is the nonincreasing

rearrangement of x. Recall also that Lorentz sequence space λω consists of all sequences
x = (x (i)) such that

∑∞
i=1 x

∗(i)ω(i) < ∞, where ω = (ω (i)) is a weight sequence, that
is ω is a nonincreasing sequence of nonnegative real numbers. If E = Λω or e = λω,
then the Calderon-Lozanovskĭı space Eϕ (resp. eϕ) is the corresponding Orlicz-Lorentz
function (resp. sequence) space Λϕ := (Λω)ϕ (resp. λϕ := (λω)ϕ) (see [4], [12], [13], [19],
[20], [22] and [23]).

Corollary 5.1. Suppose that

a) the weight function ω is positive on [0, γ) and
∫∞

0
ω (t) dt = ∞ in the case when

γ = ∞ and µ is nonatomic;

b) ϕ (bϕ)ω (1) > 1 and
∑∞

n=1 ω (i) = ∞ whenever µ is the counting measure.

A point x ∈ S (Λϕ)+ (resp. x ∈ S (λϕ)+) is an ULUM-point if and only if x = bϕχT

(resp. x = bϕχN) or one of the following conditions is satisfied:

(i) ϕ ∈ ∆2 (∞) , µ is nonatomic and either (µ (T ) < ∞ and αϕ = 0) or (aϕ > 0,
x ≥ aϕχT , Iϕ(x) = 1 and µ (T ) ≤ ∞);

(ii) ϕ ∈ ∆2 (R+) , µ is nonatomic and µ (T ) = ∞;
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(iii) T = N, µ is the counting measure and either ϕ ∈ ∆2 (0) or (aϕ > 0, x ≥ aϕχN

and Iϕ(x) = 1).

Proof. By Propositions 3 and 4 in [10], under the assumptions on ω the space Λω as
well as λω is upper locally uniformly monotone. Hence ϕ ◦ x is an ULUM -point for
any x ∈ S (Λϕ)+ (resp. x ∈ S (λϕ)+). Then the characterization follows immediately
from Theorems 4.2, 4.5 and 4.6.

Notice that if ω = χT (resp. χN), then Λω = L1 (resp. λω = l1) and then the Orlicz-
Lorentz space becomes an Orlicz space. Moreover, the assumption (a) from Corollary
5.1 is satisfied automatically, but (b) is reduced to the condition ϕ (bϕ) > 1. Hence the
criterion for Orlicz spaces is the following:

Corollary 5.2. Let ϕ be an Orlicz function such that ϕ (bϕ) > 1. A point x ∈ S (Lϕ)+
(resp. x ∈ S (lϕ)+) is an ULUM-point if and only if x = bϕχT (resp. x = bϕχN) or one
of the conditions (i), (ii) or (iii) from Corollary 5.1 is satisfied.

6. Open problems.

We do not know answers to the following questions:

1. Is Theorem 4.2 true without requiring that E is an order continuous symmetric
Köthe space?

2. Suppose that aϕ > 0, E (resp. e) is an order continuous symmetric Köthe function
(resp. sequence) space such that L∞ 6 →֒ E. Is ϕ◦x always an ULUM -point in E (resp.
in e) whenever x ∈ S (Eϕ)+ (resp. x ∈ S (eϕ)+) is an ULUM -point? (see Theorem 4.5
and 4.6).

3. According to Lemma 1.4 from [22], the assumption ϕ (bϕ) ‖e1‖e ≥ 1 is natural.
Theorems 4.2 and 4.6 are proved under the assumption that ϕ (bϕ) ‖e1‖e > 1. Are
Theorems 4.2 and 4.6 also true when ϕ (bϕ) ‖e1‖e = 1?
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Lozanovskĭı spaces and Orlicz-Lorentz spaces, Houston J. Math. 22 (1996) 639–663.
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Calderón-Lozanovskĭı sequence spaces, J. Math. Anal. Appl. 356(2) (2009) 605–614.

[25] S. G. Krein, Yu. I. Petunin, E. M. Semenov: Interpolation of Linear Operators, Nauka,
Moscow (1978), (in Russian).

[26] W. Kurc: Strictly and uniformly monotone Musielak-Orlicz spaces and applications to
best approximation, J. Approximation Theory 69(2) (1992) 173–187.

[27] J. Lindenstrauss, L. Tzafriri: Classical Banach spaces. II: Function Spaces, Springer,
Berlin (1979).

[28] W. A. J. Luxemburg: Banach Function Spaces, Van Gorcum, Assen (1955).

[29] W. A. J. Luxemburg: Rearrangement invariant Banach function spaces, in: Symposium
in Analysis (Kingston / Canada, 1967), Queen’s Papers in Pure and Applied Mathemat-
ics 10, Queen’s University, Kingston / Canada (1967) 83–144.

[30] W. Wnuk: Banach Lattices with Order Continuous Norms, Polish Scientific Publishers
PWN, Warszawa (1999).


