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The ε-enlargement of a maximal monotone operator is a construct similar to the Brøndsted and
Rockafellar ε-subdifferential enlargement of the subdifferential. Like the ε-subdifferential, the ε-
enlargement of a maximal monotone operator has practical and theoretical applications.

In a recent paper in Journal of Convex Analysis, Burachik and Iusem studied conditions under which a
maximal monotone operator is non-enlargeable, that is, its ε-enlargement coincides with the operator.
Burachik and Iusem studied these non-enlargeable operators in reflexive Banach spaces, assuming the
interior of the domain of the operator to be nonempty. In the present work, we remove the assumption
on the domain of non-enlargeable operators and also present partial results for the non-reflexive case.
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1. Introduction

Let X be a real Banach space. We use the notation X∗ for the topological dual of X
and 〈·, ·〉 for the duality product in X ×X∗:

〈x, x∗〉 = x∗(x).

Whenever necessary, we will identify X with its image under the canonical injection of
X into X∗∗. A point-to-set operator T : X ⇉ X∗ is a relation on X ×X∗:

T ⊂ X ×X∗

and x∗ ∈ T (x) means (x, x∗) ∈ T . From now on, for T : X ⇉ X∗, we define

−T = {(x,−x∗) | (x, x∗) ∈ T},

so that −T : X ⇉ X∗, (−T )(x) = −(T (x)). An operator T : X ⇉ X∗ is monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ T.

and it is maximal monotone if it is monotone and maximal (with respect to the inclu-
sion) in the family of monotone operators of X to X∗. Maximal monotone operators
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in Banach spaces arise, for example, in the study of PDE’s, equilibrium problems and
calculus of variations.

The conjugate of f : X → R is f ∗ : X∗ → R,

f ∗(x∗) = sup
x∈X

〈x, x∗〉 − f(x).

and the effective domain of f is

dom(f) = {x ∈ X | f(x) < ∞}.

The subdifferential of f is the point to set operator ∂f : X ⇉ X∗,

∂f(x) = {x∗ | f(y) ≥ f(x) + 〈y − x, x∗〉, ∀y}.

In a paper where many fundamental techniques were introduced, Rockafellar proved
that the subdifferential of a proper, convex, lower semicontinuous function in a Banach
space is maximal monotone [27]. Rockafellar’s proof relied on the ε-subdifferential, a
concept introduced previously by Brøndsted and Rockafellar [4], which is defined as
follows, for f : X → R:

∂εf(x) = {x∗ | f(y) ≥ f(x) + 〈y − x, x∗〉 − ε, ∀y}.

Note that ∂f ⊂ ∂εf , for any ε ≥ 0, and the inclusion may be proper if ε > 0. Hence,
the ε-subdifferential is an “enlargement� of the subdifferential. It is easy to check that
for any ε > 0, the ε-subdifferential of a proper, convex, lower semicontinuous func-
tion f is non-empty at any point where f is finite. One of the key properties of the
ε-subdifferential of a proper, convex, lower semicontinuous function f , used on Rock-
afellar proof is the fact, proved by Brøndsted and Rockafellar [4], that points of ∂εf are
close to ∂f , and this distance can be estimated. This property is known as Brøndsted-
Rockafellar property of the ε-subdifferential. Although created by Brøndsted and Rock-
afellar for theoretical purposes, the ε-subdifferential has extensive practical applications
in convex optimization [33, 34, 11, 22, 19].

If T : X ⇉ X∗ is maximal monotone, then inclusion on T may be characterized by a
family of inequalities:

(x, x∗) ∈ T ⇐⇒ (〈x− y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ T ) .

Veselý [35] defined an ε-monotone operator as an operator which satisfies this condition
with −ε replacing 0 in the above inequality. Mart́ınez-Legaz and Thera [23] also noted
that the above inequality could be relaxed. Burachik, Iusem and Svaiter proposed the
T ε enlargement [7] of a maximal monotone operator T : X ⇉ X∗ as follows: for ε ≥ 0,

(x, x∗) ∈ T ε ⇐⇒ (〈x− y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T ) . (1)

The T ε enlargement has many similarities to the ε-subdifferential proposed by Brønd-
sted and Rockafellar [4]. For example, in the interior of the domain of T , for ε bounded
away from 0, the mapping

(x, ε) 7→ T ε(x) = {x∗ | (x, x∗) ∈ T ε}
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is locally Lipschitz continuous, with respect to the Hausdorff metric. This enlarge-
ment also satisfies (in reflexive spaces) a property similar to the Brøndsted-Rockafellar
property of the ε-subdifferential. Beside that, the T ε enlargement has also theoreti-
cal [26, 25, 21, 3] and algorithmic applications [28, 9, 8, 29, 20, 30, 24]. For a survey
in the subject, see [6].

Our aim is to investigate those maximal monotone operators T : X ⇉ X∗ which are
“non-enlargeable�, that is,

T ε = T, ∀ε ≥ 0. (2)

This question has been previously addressed by Burachik and Iusem [5] and the present
work is inspired by that article of Burachik and Iusem.

The T ε enlargement is one among a family of enlargements, defined and studied in [31].
These enlargements share some basic properties and T ε is the biggest element in this
family. Moreover, if T happens to be the subdifferential of some convex function f ,
then the ε-subdifferential of f also belongs to this family and the inclusion

∂εf ⊂ (∂f)ε

is proper, in general.

The T ε enlargement is closely tied to the Fitzpatrick function, which we discuss next.
To honor Fitzpatrick, we shall use ϕ, the Greek “f�, to denote Fitzpatrick function [12]
associated with a maximal monotone operator T : X ⇉ X∗:

ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉 . (3)

Observe that ϕT is convex, lower semicontinuous on the w × w∗ topology of X × X∗

and
ϕT (x, x

∗) ≥ 〈x, x∗〉, T = {(x, x∗) | ϕT (x, x
∗) = 〈x, x∗〉} . (4)

The above inequality is a generalization of Fenchel-Young inequality. Indeed if f is a
proper convex lower semicontinuous function on X, then

f(x) + f ∗(x∗) ≥ 〈x, x∗〉, ∂f = {(x, x∗) | f(x) + f ∗(x∗) = 〈x, x∗〉}.

So given f , defining the Fenchel-Young function associated with f ,

hFY : X ×X∗ → R, hFY (x, x
∗) = f(x) + f(x∗), (5)

we have a convex function bounded bellow by the duality product and equal to it
on ∂f . Fitzpatrick proved that associated with each maximal monotone operator T
there is a family of functions with these properties and that ϕT is the minimal element
of this family. Brøndsted and Rockafellar observed that the ε-subdifferential can be
characterized by the function hFY :

∂εf = {(x, x∗) | f(x) + f ∗(x∗) ≤ 〈x, x∗〉+ ε}

= {(x, x∗) | hFY (x, x
∗) ≤ 〈x, x∗〉+ ε}. (6)

Likewise, it is trivial to check that ϕT characterizes the T ε enlargement of a maximal
monotone T : X ⇉ X∗:

T ε = {(x, x∗) | ϕT (x, x
∗) ≤ 〈x, x∗〉+ ε}. (7)
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Given a maximal monotone operator T : X ⇉ X∗, Fitzpatrick defined [12] the family
FT as those convex, lower semicontinuous functions in X × X∗ which are bounded
below by the duality product and coincide with it on T :

FT =







h ∈ R
X×X∗

∣

∣

∣

∣

∣

∣

h is convex and lower semicontinuous
〈x, x∗〉 ≤ h(x, x∗), ∀(x, x∗) ∈ X ×X∗

(x, x∗) ∈ T ⇒ h(x, x∗) = 〈x, x∗〉







. (8)

Fitzpatrick proved that ϕT belongs to this family and it is its minimal element. More-
over, he also proved that if h ∈ FT then h represents T in the following sense:

(x, x∗) ∈ T ⇐⇒ h(x, x∗) = 〈x, x∗〉.

For the case of the subdifferential of a proper convex lower semicontinuous function f ,
defining hFY as (5),

hFY ∈ F∂f .

Moreover, hFY is separable. It would be most desirable to find separable elements in
FT . Unfortunately, this family has a separable element if and only if T is a subdiffer-
ential [10]. Another interesting property of hFY is that this function is a fixed point of
the mapping

J : R
X×X∗

→ R
X×X∗

, Jg(x, x∗) = g∗(x∗, x).

Burachik and Svaiter observed that FT is invariant under J [10] and Svaiter proved
that there always exists a fixed point of J in FT [32]. These fixed points have meet
some applications in the study of PDE’S under the attractive name “self-dual� [14, 13,
18, 15, 17, 16] in the pioneering works of Ghoussoub.

2. Non-enlargeable operators

Direct use of (7) shows that problem (2) is equivalent to finding those maximal mono-
tone operators T such that

dom(ϕT ) = T. (9)

It has been recently proved in [1] and in [2], independently, that if a maximal monotone
T ⊂ X ×X∗ is convex, then it is an affine subspace of X ×X∗. As ϕT is convex, the
above condition implies that T is convex. Therefore, we can reduce our problem to
finding those maximal monotone operators which are affine subspaces and satisfy (2).

If T ⊂ X ×X∗ and (x0, x
∗
0) ∈ X ×X∗, defining

T0 = T − {(x0, x
∗

0)}

= {(x− x0, x
∗ − x∗

0) | (x, x
∗) ∈ T}.

We have

(T0)
ε = T ε − {(x0, x

∗

0)}. (10)

So, we can restrict our attention tho those maximal monotone operators which are sub-
spaces of X ×X∗ and satisfy (2), and the general case will be obtained by translations
of these subspaces.
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Define, for B ⊂ X ×X∗

B⊢ = {(y, y∗) | 〈x, y∗〉+ 〈y, x∗〉 = 0, ∀(x, x∗) ∈ B} . (11)

Note that B⊢ can be written in terms of the annihilator of a family in (X ×X∗)∗:

B⊢ = a{(x∗, x) | (x, x∗) ∈ B}

Lemma 2.1. If T ⊂ X ×X∗ is maximal monotone and a subspace, then

1. T ⊢ ⊂ {(x, x∗) | ϕT (x, x
∗) = 0},

2. T ∩ T ⊢ = T ∩ {(x, x∗) | 〈x, x∗〉 = 0}.

Proof. To prove item 1., take (x, x∗) ∈ T ⊢. As (0, 0) ∈ T , for any (y, y∗) ∈ T ,
〈y, y∗〉 ≥ 0. Therefore

ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉

= sup
(y,y∗)

−〈y, y∗〉 = 0.

To prove item 2., first use item 1. to obtain

T ∩ T ⊢ ⊂ T ∩ {(x, x∗) | ϕT (x, x
∗) = 0}.

As ϕT (x, x
∗) = 〈x, x∗〉 for any (x, x∗) ∈ T , we conclude

T ∩ T ⊢ ⊂ T ∩ {(x, x∗) | 〈x, x∗〉 = 0}.

To prove the other inclusion, take (x, x∗) ∈ T ∩ {(x, x∗) | 〈x, x∗〉 = 0}. As T is a
subspace, if (y, y∗) ∈ T , then, for any λ ∈ R

λ(x, x∗) + (y, y∗) ∈ T.

As (0, 0) ∈ T ,

〈λx+ y, λx∗ + y∗〉 = λ[〈x, y∗〉+ 〈y, x∗〉] + 〈y, y〉 ≥ 0.

As λ is arbitrary, we conclude that the expression inside the brackets must be 0.

It is interesting to observe that 〈x, x∗〉 is non-linear and non-convex in (x, x∗). Even
though, the points on T where this expression vanish is a subspace, which may be
trivial.

We will be concerned with a special type of linear point-to set operators

Definition 2.2. An operator A : X ⇉ X∗ is self-cancelling if A is a subspace and

〈x, x∗〉 = 0, ∀(x, x∗) ∈ A.

This definition is an extension of the definition of skew-symmetric operators of Burachik
and Iusem [5] and of the definition of skew linear of Bauschke, Wang and Yau [2]. The
relations between these classes will be discussed in the Section 3.
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Lemma 2.3. If A ⊂ X ×X∗ is self-cancelling, then A ⊂ A⊢.

Proof. Take (x, x∗), (y, y∗) ∈ A. Then, (x+ y, x∗ + y∗) ∈ A and so

〈x+ y, x∗ + y∗〉 = 〈x, x∗〉+ 〈x, y∗〉+ 〈y, x∗〉+ 〈y, y∗〉 = 0.

To end the proof, note that 〈x, x∗〉 = 〈y, y∗〉 = 0.

Lemma 2.4. If A ⊂ X ×X∗ is self-cancelling and A⊢ is maximal monotone then, for

any (x0, x
∗
0) ∈ X ×X∗, the operator

T = A⊢ + {(x0, x
∗

0)}

is non-enlargeable, or equivalently, dom(ϕT ) = T .

Proof. In view of (10), it suffices to prove this lemma for (x0, x
∗
0) = 0. In that case, if

(x, x∗) /∈ A⊢, there exists (y, y∗) ∈ A such that

〈x, y∗〉+ 〈y, x∗〉 6= 0.

As A is a subspace and A ⊂ A⊢,

ϕA⊢(x, x∗) ≥ sup
λ∈R

〈x, λy∗〉+ 〈λy, x∗〉 − 〈λy, λy∗〉 = sup
λ∈R

〈x, λy∗〉+ 〈λy, x∗〉.

Combining the above equation we obtain ϕA⊢(x, x∗) ≥ ∞.

Theorem 2.5. If X is reflexive, then a maximal monotone T is non-enlargeable, if

and only if there exists an self-canceling A and (x, x∗) ∈ X × X∗ such that A⊢ is

maximal monotone and

T = A⊢ + {(x, x∗)}.

Moreover, if T is non-enlargeable and (x, x∗) ∈ T , then the maximal A satisfying the

above condition is

(T − (x, x∗))⊢.

Proof. First assume that T is non-enlargeable and (0, 0) ∈ T . Define

A = T ⊢.

Using Lemma 2.1, item 1, we conclude that ϕT (x, x
∗) = 0 for all (x, x∗) ∈ A. As

dom(ϕT ) = T , we conclude that A ⊂ T . Therefore,

A = T ∩ A = T ∩ T ⊢.

Combining the above equation with the definition of A and Lemma 2.1, item 2, we
conclude that A is self-cancelling. Moreover A is the maximal self-cancelling operator
contained in T . As T is a closed subspace and X is reflexive, direct use of Hahn-Banach
theorem yields

T = (T ⊢)⊢ = A⊢.

Note also that the above defined A is maximal in the family

{B ⊂ X ×X∗ | T = B⊢}

Conversely, if for some self-cancelling A, T = A⊢, then according to Lemma 2.4 T is
non-enlargeable.

The general case follows now using (10).
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3. On maximal monotone operators obtained from self-cancelling opera-

tors

Now we shall analyze those maximal monotone operators discussed in Theorem 2.5.

Proposition 3.1. If A ⊂ X × X∗ is self-cancelling and A⊢ is monotone, then A⊢ is

maximal monotone.

Proof. Take (x0, x
∗
0) /∈ A⊢. Then there exists (y, y∗) ∈ A such that

〈x0, y〉+ 〈y, x∗

0〉 6= 0.

Using Lemma 2.3 we conclude that (y, y∗) ∈ A⊢. For any λ ∈ R,

〈x0 + λy, x∗

0 + λy∗〉 = 〈x0, x
∗

0〉+ λ[〈x0, y
∗〉+ 〈y, x∗

0〉].

Combining the two above equations with the fact that A⊢ is a subspace, we conclude
that {(x0, x

∗
0)} ∪ A⊢ is not monotone.

Observe that in Lemma 2.1, the maximal monotone operator T may not be in the
family of A⊢ with A self-cancelling.

In the next proposition we will use the following result, which follows from the Hahn-
Banach theorem in locally convex linear spaces.

Lemma 3.2. Let Z be a locally convex topological linear space. If A is a subspace of

Z, then
cl(A) = {z ∈ Z | f(z) = 0, ∀f ∈ Aa}

where Aa is the family of continuous linear functionals which vanish at A.

Proposition 3.3. If A is self-cancelling and A⊢ is monotone, then

Ã := clw×w∗A = cls×w∗A

is a maximal element of the family of self-cancelling operators, where clw×w∗ and cls×w∗

denotes the closure in the weak×weak-∗ and strong×weak-∗ topologies, respectively.

Proof. The dual of X × X∗ in the weak×weak-∗ and strong×weak-∗ topologies is
X∗ ×X. Combining this observation with Lemma 3.2 we conclude that the closure of
A in these topologies is the same and that

Ã = (A⊢)⊢.

Using Lemma 2.3 we obtain A ⊂ A⊢. Direct inspection of definition (11) shows that
A⊢ is closed in the weak×weak-∗ topology. Therefore

A ⊂ Ã ⊂ A⊢.

Combining the two above equations we obtain (A⊢)⊢ ⊂ A⊢. If (x, x∗) ∈ Ã = (A⊢)⊢,
then (x, x∗) ∈ A⊢ and 2〈x, x∗〉 = 0. Therefore Ã is self-cancelling.

Suppose that B = [Ã ∪ {x0, x
∗
0}] is self-cancelling. In that case,

B⊢ ⊂ A⊢.
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In particular, B⊢ is monotone. Using Proposition 3.1 we conclude that B⊢ is maximal
monotone. Hence the above inclusion holds as an equality. Therefore,

B ⊂ (B⊢)⊢ = (A⊢)⊢ = Ã,

and (x0, x
∗
0) ∈ Ã.

Now, we will discuss maximal self-cancelling operators.

Lemma 3.4. Let A : X ⇉ X∗ self-cancelling. Then A is maximal in the family of

self-cancelling operators if and only if

A = A⊢ ∩ {(x, x∗) | 〈x, x∗〉 = 0}.

Proof. As A is self-cancelling, using Definition 2.2 and Lemma 2.3 we have

A ⊂ A⊢ ∩ {(x, x∗) | 〈x, x∗〉 = 0}. (12)

If the above inclusion holds as an equality, A ⊂ B and B is self-cancelling, then
B⊢ ⊂ A⊢ and by the same token

B ⊂ B⊢ ∩ {(x, x∗) | 〈x, x∗〉 = 0} ⊂ A⊢ ∩ {(x, x∗) | 〈x, x∗〉 = 0} = A.

Therefore, in this case A is maximal self-cancelling.

Conversely, if A is maximal self-cancelling and

(z, z∗) ∈ A⊢, 〈z, z∗〉 = 0,

then, for any (x, x∗) ∈ A and λ ∈ R,

〈x+ λz, x∗ + λz∗〉 = 0.

This means that the subspace generated by A ∪ {(z, z∗)} is self-cancelling. Therefore,
(z, z∗) ∈ A. Altogether we have

A⊢ ∩ {(x, x∗) | 〈x, x∗〉 = 0} ⊂ A

which combined with the (12) shows that the above inclusion holds as an equality.

A natural question is whether A⊢ is maximal monotone whenever A is maximal self-
cancelling. Up to now we have a partial answer to this question.

Proposition 3.5. If A : X ⇉ X∗ is maximal self-cancelling, the A⊢ or −A⊢ is maxi-

mal monotone.

Proof. Recall that −A = {(x,−x∗) | (x, x∗) ∈ A} so that

(−A)⊢ = −(A⊢) ,

Take (x, x∗), (y, y∗) ∈ A⊢. Suppose that

〈x, x∗〉 > 0, 〈y, y∗〉 < 0. (13)
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Then, for some θ ∈ (0, 1)

zθ = θx+ (1− θ)y, z∗θ = θx∗ + (1− θ)y∗.

satisfy
〈zθ, z

∗

θ〉 = 0.

Hence, using Lemma 3.4 we have (zθ, z
∗
θ) ∈ A. Therefore 〈zθ, y

∗〉 + 〈y, z∗θ〉 = 0. Direct
use of the definitions of zθ, z

∗
θ gives

θ(x, x∗) = (zθ, z
∗

θ)− (1− θ)(y, y∗),

which readily implies

θ2〈x, x∗〉 = 〈zθ − (1− θ)y, z∗θ − (1− θ)y∗〉

= (1− θ)2〈y, y∗〉

in contradiction with (13). Therefore (13) can not hold for (x, x∗), (y, y∗) ∈ A⊢ and
A⊢ or −A⊢ is monotone. Maximal monotonicity of A⊢ or −A⊢ now follows from
Proposition 3.1.

Working in the setting of reflexive Banach spaces, Burachik and Iusem [5] defined a
skew-symmetric operator as a linear continuous operator L : X → X∗ such that

L = −L∗

where L∗ is the adjoint of L. As L∗ : X∗∗ → X∗, it is natural to consider, in a reflexive
Banach space, L∗ : X → X∗. In that case, L∗ is defined as

〈Lx, y〉 = 〈x, L∗y〉, ∀x, y ∈ X.

Note that L∗ = (−L)⊢. Bauschke, Wang and Yao [2], still working in reflexive Banach
spaces, extended this definition of adjoint to an arbitrary linear point-to-set operator
L : X ⇉ X∗ as L∗ = (−L)⊢. For these authors, a point to set operator L : X ⇉ X∗ is
skew if it is linear and L = −L∗. It is trivial to verify that a skew-symmetric operator
(in the sense of [5]) is always a skew operator (in the sense on [2]). We will use the the
notation D(M) and R(M) for the domain and the range of M : X ⇉ X∗,

D(M) := {x ∈ X | M(x) 6= ∅}, R(M) := {x∗ ∈ X | M−1(x∗) 6= ∅}.

Lemma 3.6. Let M : X ⇉ X∗ be a linear point to set operator.

1. If M is a skew operator, then it is maximal self-cancelling.

2. If M is maximal self-cancelling and D(M) is closed then it is skew.

3. If M is maximal self-cancelling, R(M) is closed and X is reflexive, then it is

skew.

Proof. To prove item 1., suppose that M is skew. Then, M is self-cancelling. If A is
self-cancelling and M ⊂ A, then using Lemma 2.3 and (11) we have

A ⊂ A⊢ ⊂ M.
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Therefore, A = M .

To prove item 2., suppose that M is maximal self-cancelling. Take

(x0, x
∗

0) ∈ M⊢

If x0 /∈ D(M), then there exists y∗ such that

〈x, y∗〉 = 0, ∀x ∈ D(M), 〈x0, y
∗〉 6= 0.

In that case, (0, y∗) ∈ M and 〈x0, y
∗〉+〈0, x∗

0〉 6= 0, in contradiction with the assumption
(x0, x

∗
0) ∈ M⊢. Hence, x0 ∈ D(A) and there exists z∗ such that (x0, z

∗) ∈ M . Therefore,

(x0, x
∗

0)− (x0, z
∗) ∈ M⊢.

To simplify the notation, let u∗ = x∗
0− z∗. We have just proved that (0, u∗) ∈ M⊢. Let

V = span(M ∪ {(0, u∗)}).

If (x, x∗) ∈ M and λ ∈ R, then

〈x, x∗ + λu∗〉 = 〈x, x∗〉+ λ〈x, u∗〉 = 0.

Hence, V is self-cancelling. As M is maximal self-cancelling,

(0, u∗) = (x0, x
∗

0)− (x0, z
∗) ∈ M,

and (x0, x
∗
0) ∈ M . Altogether, using also Lemma 2.3 we have

M ⊂ M⊢ ⊂ M

and so M is skew.

Item 3. follows from item 2., applied to X ′ = X∗ and

M ′ = {(x∗, x) | (x, x∗) ∈ M}.
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[20] A. N. Iusem, L. R. Lucambio Pérez: An extragradient-type algorithm for non-smooth
variational inequalities, Optimization 48(3) (2000) 309–332.
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