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1. Preliminaries

Recently the Banach contraction principle [8] was discussed in a metric space endowed
with a partial order where some applications to matrix equations [16] and to ordinary
differential equations [11, 13] are presented. The usual contraction condition is weak-
ened but at the expense that the operator is monotone. The main idea in [11, 16]
involves combining the ideas in the contraction principle with those in the monotone
iterative technique [2, 3].

This article presents new results for contractions satisfying a condition of integral type
in ordered metric spaces and these results are slight extensions of those in [11, 16].

Existence of fixed point in partially ordered sets starts with Tarki’s theorem [18].
Recently, a lot of papers have treated this equation (see, for example [5, 6, 7, 9, 10, 11,
12, 13, 14, 15, 16, 19]).
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2. Fixed point theorems

Suppose (X,≤) is a partially ordered set and f : X −→ X. We say f is non-decreasing
if x, y ∈ X, x ≤ y implies f(x) ≤ f(y).

In a recent paper [1], R. Agarwal, M. El-Gebeily and D. O’Regan established the
following theorem.

Theorem 2.1. Let (X,≤) be a partially ordered set and suppose that there is a metric

d on X such that (X, d) is a complete metric space. Assume there is a non-decreasing

function ψ : [0,∞) −→ [0,∞) with limn→∞ ψn(t) = 0 for each t > 0 and also suppose

F : X −→ X is a nondecreasing mapping with

d(F (x), F (y)) ≤ ψ

(

max{d(x, y), d(x, F (x)), d(y, F (y)),
1

2
[d(x, F (y)) + d(y, F (x))]}

)

,

for all x ≥ y. Also suppose either F is continuous or if (xn) ⊂ X is a nondecreasing

sequence with xn → x in X then xn ≤ x for all n ∈ N.

If there exists x0 ∈ X with x0 ≤ F (x0), then F has a fixed point.

Now, we present our main result in this paper.

Previously, we define for F : X −→ X

m(x, y) = max

{

d(x, y), d(x, F (x)), d(y, F (y)),
1

2
[d(x, F (y)) + d(y, F (x))]

}

.

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let F : X → X be a

continuous and nondecreasing mapping such that there exists k ∈ [0, 1) with

∫ d(F (x),F (y))

0

ϕ(t)dt ≤ k

∫ m(x,y)

0

ϕ(t)dt for x ≥ y, (1)

where ϕ : R+ −→ R+ is a Lebesgue-integrable mapping such that
∫ ε

0
ϕ(t) > 0 for ε > 0.

If there exists x0 ∈ X with x0 ≤ F (x0) then F has a fixed point.

Proof. If F (x0) = x0 then the proof is finished. Suppose that x0 < F (x0). Since
x0 < F (x0) and F is nondecreasing, we obtain by induction that

x0 ≤ F (x0) ≤ F 2(x0) ≤ · · · ≤ F n(x0) ≤ F n+1(x0) ≤ . . . .

Put xn+1 = F n(x0). Then for each integer n ≥ 1, from (1) and, as the elements xn and
xn+1 are comparable, we get

∫ d(xn,xn+1)

0

ϕ(t)dt =

∫ d(F (xn−1),F (xn))

0

ϕ(t)dt ≤ k

∫ m(xn−1,xn)

0

ϕ(t)dt. (2)
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Taking into account that

m(xn−1, xn)

= max

{

d(xn−1, xn), d(xn−1, F (xn−1)),

d(xn, F (xn)),
1

2
[d(xn−1, F (xn)) + d(xn, F (xn−1))]

}

= max

{

d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
1

2
[d(xn−1, xn+1) + d(xn, xn)]

}

= max

{

d(xn−1, xn), d(xn, xn+1),
1

2
[d(xn−1, xn+1)]

}

,

and, as

d(xn−1, xn+1)

2
≤
d(xn−1, xn) + d(xn, xn+1)

2
≤ max{d(xn−1, xn), d(xn, xn+1)}

we obtain
m(xn−1, xn) = max{d(xn−1, xn), d(xn, xn+1)}.

Substituting into (2) we obtain

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ k

∫ max{d(xn−1,xn),d(xn,xn+1)}

0

ϕ(t)dt

= kmax

{

∫ d(xn−1,xn)

0

ϕ(t)dt,

∫ d(xn,xn+1)

0

ϕ(t)dt

}

. (3)

If max
{

∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn,xn+1)

0
ϕ(t)dt

}

=
∫ d(xn,xn+1)

0
ϕ(t), then, by (3),

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ k

∫ d(xn,xn+1)

0

ϕ(t)dt.

and, as k ∈ [0, 1), we have that
∫ d(xn,xn+1)

0
ϕ(t)dt = 0. By our hypothesis about ϕ, we

get d(xn, xn+1) = 0, or, equivalently, xn = xn+1 = F (xn) and xn is a fixed point of F .

If max
{

∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn,xn+1)

0
ϕ(t)dt

}

=
∫ d(xn−1,xn)

0
ϕ(t) then, from (3), we get

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ k

∫ d(xn−1,xn)

0

ϕ(t)dt. (4)

Using induction we have

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ k

∫ d(xn−1,xn)

0

ϕ(t)dt ≤ · · · ≤ kn
∫ d(x0,x1)

0

ϕ(t)dt.

Taking limit as n→ ∞

lim
n→∞

∫ d(xn,xn+1)

0

ϕ(t)dt = 0. (5)
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On the other hand, by (4), as k ∈ [0, 1),

∫ d(xn,xn+1)

0

ϕ(t)dt ≤ k

∫ d(xn−1,xn)

0

ϕ(t)dt <

∫ d(xn−1,xn)

0

ϕ(t)dt

and, as ϕ is a non-negative function, we obtain that {d(xn, xn+1)} is a non-negative
and non-increasing sequence. We put limn→∞ d(xn, xn+1) = a.

In what follows, we will prove that a = 0.

Suppose that a > 0. As 0 < a ≤ d(xn, xn+1) for all n, and, taking into account our
assumption about ϕ,

0 <

∫ a

0

ϕ(t)dt ≤

∫ d(xn,xn+1)

0

ϕ(t)dt.

Taking limit as n→ ∞ and, from (5),

0 <

∫ a

0

ϕ(t)dt ≤ lim
n→∞

∫ d(xn,xn+1)

0

ϕ(t)dt = 0,

which is a contradiction. Therefore,

lim
n→∞

d(xn, xn+1) = 0. (6)

Now, we show that {xn} is a Cauchy sequence.

Suppose that {xn} is not a Cauchy sequence there exists an ε > 0 and subsequences
{m(p)} and {n(p)} such that m(p) < n(p) < m(p+ 1) with

d(xm(p), xn(p)) ≥ ε and d(xm(p), xn(p)−1) < ε. (7)

Then

m(xm(p)−1, xn(p)−1) = max

{

d(xm(p)−1, xn(p)−1), d(xm(p)−1, xm(p)), d(xn(p)−1, xn(p)),

1

2
[d(xm(p)−1, xn(p)) + d(xm(p), xn(p)−1)]

}

.

By (5), we have

lim
p→∞

∫ d(xm(p)−1,xm(p))

0

ϕ(t)dt = lim
p→∞

∫ d(xn(p)−1,xn(p))

0

ϕ(t)dt = 0. (8)

By the triangular inequality and (7)

d(xm(p)−1, xn(p)−1) ≤ d(xm(p)−1, xm(p)) + d(xm(p), xn(p−1)) < d(xm(p)−1, xm(p)) + ε

and, by (5), this implies

lim
p→∞

∫ d(xm(p)−1,xn(p)−1)

0

ϕ(t)dt ≤

∫ ε

0

ϕ(t)dt. (9)
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Again, using the triangular inequality and (7), we get

1

2
[d(xm(p)−1, xn(p)) + d(xm(p), xn(p)−1)]

≤
1

2
[d(xm(p)−1, xm(p)) + d(xm(p), xn(p)−1) + d(xn(p)−1, xn(p)) + d(xm(p), xn(p)−1)]

=
1

2
[d(xm(p)−1, xm(p)) + 2d(xm(p), xn(p)−1) + d(xn(p)−1, xn(p))]

=
1

2
[d(xm(p)−1, xm(p)) + d(xn(p)−1, xn(p))] + d(xm(p), xn(p)−1)

<
1

2
[d(xm(p)−1, xm(p)) + d(xn(p)−1, xn(p))] + ε.

Taking into account (6), we obtain

lim
p→∞

∫ 1
2
[d(xm(p)−1,xn(p))+d(xm(p),xn(p)−1)]

0

ϕ(t)dt ≤

∫ ε

0

ϕ(t)dt. (10)

From (1) and (7), we can get
∫ ε

0

ϕ(t)dt ≤

∫ d(xm(p),xn(p))

0

ϕ(t)dt

=

∫ d(F (xm(p)−1),F (xn(p)−1))

0

ϕ(t)dt ≤ k

∫ m(xm(p)−1,xn(p)−1)

0

ϕ(t)dt

= kmax

(

∫ d(xm(p)−1,xn(p)−1)

0

ϕ(t)dt,

∫ d(xm(p)−1,xm(p))

0

ϕ(t)dt,

∫ d(xn(p)−1,xn(p))

0

ϕ(t)dt,

∫ 1
2
[d(xm(p)−1,xn(p))+d(xm(p),xn(p)−1)]

0

ϕ(t)dt

)

,

and, taking limit as p→ ∞, and taking into account (8), (9) and (10), we obtain
∫ ε

0

ϕ(t)dt ≤ k

∫ ε

0

ϕ(t)dt.

As k ∈ [0, 1), this implies
∫ ε

0
ϕ(t)dt = 0 which is a contradiction.

Therefore, {xn} is a Cauchy sequence. Since X is a complete metric space there exists
z ∈ X such that limn→∞ xn = z.

Finally, we prove that z ∈ X is a fixed point of F .

As F is a continuous mapping and limn→∞ xn = z, then

z = lim
n→∞

xn+1 = lim
n→∞

F (xn) = F (z)

and the proof is complete.

In what follows, we prove that Theorem 2.2 is still valid for F not necessarily continu-
ous, assuming the following hypothesis in X (which appears in Theorem 1 of [1]):

if (xn) ⊂ X is a nondecreasing sequence with xn → x then xn ≤ x for all n ∈ N. (11)
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Theorem 2.3. Let (X,≤) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let F : X −→ X be a

nondecreasing mapping such that there exists k ∈ [0, 1) with

∫ d(F (x),F (y))

0

ϕ(t)dt ≤ k

∫ m(x,y)

0

ϕ(t)dt, for x ≥ y,

where ϕ : R+ −→ R+ is a Lebesgue-integrable mapping such that
∫ ε

0
ϕ(t)dt > 0 for

ε > 0. Assume that X satisfies (11) and there exists x0 ∈ X with x0 ≤ F (x0), then F
has a fixed point.

Proof. Following the proof of Theorem 2.2, we only have to check that F (z) = z.

From (2) and (11), we have
∫ d(F (z),xn+1)

0

ϕ(t)dt ≤ k

∫ m(z,xn)

0

ϕ(t)dt

= kmax

{

∫ d(z,xn)

0

ϕ(t)dt,

∫ d(z,F (z))

0

ϕ(t)dt,

∫ d(xn+1,xn)

0

ϕ(t)dt,

∫ 1
2
[d(z,xn+1)+d(xn,F (z))]

0

ϕ(t)dt

}

,

and, taking limit as n→ ∞, and, by (5), we get

∫ d(F (z),z)

0

ϕ(t)dt ≤ k

∫ d(F (z),z)

0

ϕ(t)dt,

which implies that
∫ d(F (z),z)

0
ϕ(t)dt = 0. By our assumption about ϕ, this gives us

d(F (z), z) = 0

and this proves that z is a fixed point of F .

Remark 2.4. If we assume that ϕ is a nonincreasing function in Theorem 2.2 its proof
is less complicated.

In fact, perhaps the more difficult part in Theorem 2.2 is to prove that {xn} is a Cauchy
sequence. Under assumption that ϕ is a nonincreasing function, for m > n we can get

∫ d(xm,xn)

0

ϕ(t)dt ≤

∫ d(xm,xm−1)+d(xm−1,xm−2)+···+d(xn+1,xn)

0

ϕ(t)dt

=

∫ d(xn+1,xn)

0

ϕ(t)dt+

∫ d(xn+2,xn+1)+d(xn+1,xn)

d(xn+1,xn)

ϕ(t)dt

+ · · ·+

∫ d(xn+1,xn)+···+d(xm−1,xm−2)+d(xm,xm−1)

d(xn+1,xn)+···+d(xm−1,xm−2)

ϕ(t)dt.

Applying a simple change of variables, our integrals can be transformed in

∫ d(xm,xn)

0

ϕ(t)dt ≤
m
∑

i=n+1

∫ d(xi,xi−1)

0

ϕ

(

s+
i−1
∑

j=n+1

d(xj, xj−1)

)

ds
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and, as ϕ is a nonincreasing function, we can get

∫ d(xm,xn)

0

ϕ(t)dt

≤
m
∑

i=n+1

∫ d(xi,xi−1)

0

ϕ

(

s+
i−1
∑

j=n+1

d(xj, xj−1)

)

ds ≤
m
∑

i=n+1

∫ d(xi,xi−1)

0

ϕ(s)ds.

Taking into account (4) in the proof of Theorem 2.2, we obtain

∫ d(xm,xn)

0

ϕ(t)dt ≤
m
∑

i=n+1

∫ d(xi,xi−1)

0

ϕ(t)dt

≤
m
∑

i=n+1

ki−1

∫ d(x0,x1)

0

ϕ(t)dt =

(

∫ d(x0,x1)

0

ϕ(t)dt

)

(kn + · · ·+ km−1)

≤

(

∫ d(x0,x1)

0

ϕ(t)dt

)

(

kn

1− k

)

.

Taking limit as n→ ∞ we have

lim
m,n→∞

∫ d(xm.xn)

0

ϕ(t)dt = 0. (12)

Now, suppose that {xn} is not a Cauchy sequence. This means that there exists an
ε > 0 such that for any p ∈ N we can findm(p), n(p) ∈ N withm(p), n(p) > p satisfying
d(xm(p),xn(p)

) ≥ ε. Consequently,

∫ d(xm(p),xn(p))

0

ϕ(t)dt ≥

∫ ε

0

ϕ(t)dt > 0,

and, taking limit as p→ ∞, we get

lim
p→∞

∫ d(xm(p),xn(p))

0

ϕ(t)dt ≥

∫ ε

0

ϕ(t)dt > 0

and this contradicts to (12).

Remark 2.5. If we put ϕ(t) = 1 in (1) of Theorem 2.2, we have

d(F (x), F (y)) ≤ k m(x, y) for x ≥ y

and our Theorem 2.2 is a particular case of Theorem 2.2 of [1] for the function ψ(t) = kt

with k ∈ [0, 1).

Remark 2.6. If we put ϕ(t) = 1 in (1) of Theorem 2.2 then the condition d(F (x), F (y))
≤ kd(x, y) for x ≥ y implies d(F (x), F (y)) ≤ k m(x, y) and Theorem 2.1 in [11] and
Theorem 2.1 in [16] are particular cases of our Theorem 2.2.
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Remark 2.7. We present an example where it can be appreciated that hypotheses in
Theorem 2.2 do not guarantee uniqueness of the fixed point. This example appears in
[11].

Let X = {(1, 0), (0, 1)} ⊂ R
2 and consider the usual order

(x, y) ≤ (z, t) ⇔ x ≤ z and y ≤ t.

Thus, (X,≤) is a partially ordered set, whose different elements are not comparable.
Besides, (X, d2) is a complete metric space considering d2 the euclidean distance. The
identity map f(x, y) = (x, y) is trivially continuous and nondecreasing and condition
(1) of Theorem 2.2 is satisfied for any k ∈ [0, 1) and ϕ nonnegative Lebesgue-integrable
function since elements in X are only comparable to themselves. Moreover, (1, 0) ≤
f(1, 0) = (1, 0) and f has two fixed points in X.

Remark 2.8. In Theorem 2.1 of [11] and Theorem 2.3 of [16] it is proved the unique-
ness of the fixed point adding the following conditon

every pair of elements of X has a lower bound or an upper bound. (13)

We have not been able to prove this fact for our Theorem 2.2. We think that condition
(13) is not sufficient for the uniqueness of the fixed point in Theorem 2.2.

Remark 2.9. If X is a totally ordered set then we can obtain the uniqueness of the
fixed point in Theorem 2.2.

In fact, if y is other fixed point of F then, as F n(z) = z and F n(y) = y for n ∈ N, and,
as y and z are comparable, the condition (1) of Theorem 2.2 give us

∫ d(y,z)

0

ϕ(t)dt =

∫ d(Fn(y),Fn(z))

0

ϕ(t)dt ≤ k

∫ m(Fn−1(y),Fn−1(z))

0

ϕ(t)dt.

But

m(y, z) = m(F n−1(y), F n−1(z))

= max

{

d(y, z), d(y, F (y)), d(z, F (z)),
1

2
[d(y, F (z)) + d(F (y), z)]

}

= max{d(y, z), 0, 0, d(y, z)} = d(y, z)

and, consequently,
∫ d(y,z)

0

ϕ(t)dt ≤ k

∫ d(y,z)

0

ϕ(t)dt

and, as k ∈ [0, 1), this implies that
∫ d(y,z)

0
ϕ(t)dt = 0. By our assumption about ϕ, we

obtain d(y, z) = 0, or, equivalently, y = z.

Remark 2.10. Theorem 2.2 is false if we admit zero value near zero for the mapping ϕ.
The following example proves this fact. Let (N, d) be with the trivial metric (d(x, y) = 0
iff x = y and d(x, y) = 1 if x 6= y). Then (N, d) is a complete metric space.

We consider in N the usual order and let f : N −→ N be defined by f(n) = n + 1.
Obviously, f is continuous (the topology generated by d is the discret topology) and
nondecreasing.
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Let ϕ : R+ −→ R+ be defined by ϕ(t) =

{

0 if 0 ≤ t ≤ 1
e−t if t > 1.

Now, since for each n,m ∈ N, d(f(n), f(m)) ≤ 1, we have, for every k ∈ [0, 1)
∫ d(f(n),f(m))

0

ϕ(t)dt ≤

∫ 1

0

ϕ(t)dt = 0 ≤ k

∫ d(n,m)

0

ϕ(t) = 0

and, consequently, the condition (1) of Theorem 2.2 is satisfied. Moreover, 0 ≤ f(0) = 1
and we can see that f has no fixed points.

Remark 2.11. In [17] it is proved the following theorem.

Let (X, d) be a complete metric space, k ∈ [0, 1), F : X −→ X a mapping such that,
for each x, y ∈ X,

∫ d(F (x),F (y))

0

ϕ(t)dt ≤ k

∫ m(x,y)

0

ϕ(t)dt,

where ϕ : R+ −→ R+ is a Lebesgue-integrable mapping such that
∫ ε

0
ϕ(t)dt > 0 for

ε > 0. Then F has a unique fixed point z ∈ X.

By using Zermelo’s well ordering theorem the set X can be well-ordered and the condi-
tion (1) of our Theorem 2.2 is valid for each x, y ∈ X. Moreover, x0 = minX satisfies
x0 ≤ F (x0) and our Theorem 2.2 give us the above mentioned result for the particular
case that F is a continuous and nondecreasing function. The uniqueness of fixed point
is obtained in virtue a well ordering in a set X implies that X is a totally ordered set
and Remark 2.9 applies.

In connection with the condition (11) it is proved in [11] the following lemma.

Lemma 2.12. If X is a totally ordered set and

d(a, c) ≥ d(b, c) for a ≤ b ≤ c (14)

then the condition (11) holds.

Consequently, our Theorem 2.2 also gives us the result mentioned in Remark 2.11
for the particular case that F is a nondecreasing function and the distance satisfies
condition (14).

Remark 2.13. Theorem 2.1 uses nondecreasing functions ψ : [0,∞) −→ [0,∞) with
limn→∞ ψn(t) = 0 for each t > 0. In the sequel, we present a function ψ which can be
expressed by an integral.

Put ψ(t) =
∫ t

0
ϕ(s)ds, where ϕ(s) = 1

(1+s)2
.

Then, a simple calculus, give us ψ(t) = t
1+t

and, it is easily proved that ψn(t) = t
1+nt

and that ψ is a non-decreasing function. Obviously, limn→∞ ψn(t) = 0.

One would like to be able to replace (1) in Theorem 2.2 with the integral form of Ciric’s
condition [4], that is

∫ d(F (x),F (y))

0

ϕ(t)dt ≤ k

∫ M(x,y)

0

ϕ(t)dt, (15)
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where M(x, y) = max{d(x, y), d(x, F (x)), d(y, F (y)), d(x, F (y)), d(y, F (x))}.

The following example proves that this is not possible (this example appears in [17]).

Let f : N −→ N defined by f(n) = n+ 1.

In N we consider the usual order and the euclidean distance d. Obviously, (N, d) is
a complete metric space and f is continuous and nondecreasing function. Moreover,
0 ≤ f(0) = 1.

On the other hand, we consider φ, ϕ : [0,∞) −→ [0,∞), where φ(t) = (t + 1)t+1 − 1
and ϕ(t) = φ′(t).

Then, for n > m

M(n,m) = max{n−m, 1, n−m− 1, n−m+ 1} = n−m+ 1.

Note that, for any t ∈ N with t ≥ 1, we have

(t+ 2)t+2 − 1 = (t+ 1 + 1)t+2 − 1 ≥ (t+ 1)t+2 + 1t+2 − 1

= (t+ 1)t+1(t+ 1) ≥ 2(t+ 1)t+1

≥ 2(t+ 1)t+1 − 2 = 2[(t+ 1)t+1 − 1].

Consequently, φ(t+ 1) ≥ 2φ(t).

Since ϕ(t) = φ′(t), we can get

∫ d(f(n),f(m))

0

ϕ(t)dt =

∫ n−m

0

ϕ(t)dt = φ(n−m) ≤
1

2
φ(n−m+ 1) =

1

2

∫ M(n,m)

0

ϕ(t)dt

and the condition (15) is satisfied. However, f has no fixed point.

It is possible to prove a weaker theorem involving condition (15).

Let O(x, n) = {x, f(x), f2(x), . . . , fn(x)} and O(x) = {x, f(x), f2(x), . . . , fn(x), . . . }.
Then O(x, n) is called the nth orbit of x and O(x) the orbit of x. δ(A) will denote the
diameter of A.

Theorem 2.14. Let (X,≤) be a partially ordered set and suppose that there exists

a metric d in X such that (X, d) is a complete metric space. Let F : X −→ X a

nondecreasing mapping such that there exists k ∈ [0, 1) with

∫ d(F (x),F (y))

0

ϕ(t)dt ≤ k

∫ M(x,y)

0

ϕ(t)dt, for x ≥ y,

where ϕ : R+ −→ R+ is a Lebesgue-integrable mapping such that
∫ ε

0
ϕ(t)dt > 0 for

ε > 0. Assume that F is continuous or that X satisfies (11) and suppose that there

exists x0 ∈ X with x0 ≤ F (x0) and O(x0) is bounded. Then F has a fixed point.

Proof. As in the proof of Theorem 2.2, we consider the nondecreasing sequence

x0 ≤ F (x0) ≤ F 2(x0) ≤ · · · ≤ F n(x0) ≤ · · ·
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Put xn = F n(x0). As O(x0) is bounded and for each m ∈ N, O(xm, n) ⊂ O(x0) for
every n ∈ N and as O(xm, n) is finite for every n ∈ N, there exist integers i, j satisfying
0 ≤ i < j ≤ n such that δ(O(xm, n)) = d(xm+i, xm+j).

We claim that for m fixed and for every n ∈ N and n > 0, there exists k with 0 < k ≤ n

such that

δ(O(xm, n)) = d(xm, xm+k). (16)

In fact, we may assume that δ(O(xm, n)) > 0 for m,n ∈ N (with n > 0) fixed since if
δ(O(xm, n)) = 0, then F has a fixed point and the proof is finished.

Suppose that δ(O(xm, n)) = d(xm+i, xm+j) with 0 < i < j ≤ n. Then, by our assump-
tion, we can get

∫ δ(O(xm,n))

0

ϕ(t)dt =

∫ d(xm+i,xm+j)

0

ϕ(t)dt =

∫ d(Fm+i(x0),Fm+j(x0))

0

ϕ(t)dt

≤ k

∫ M(Fm+i−1(x0),Fm+j−1(x0))

0

ϕ(t)dt ≤ k

∫ δ(O(xm,n))

0

ϕ(t)dt

and, as k ∈ [0, 1), this gives us δ(O(xm, n)) = 0 and this contradicts the fact that
δ(O(xm, n)) > 0. Therefore i = 0.

Now, let m and n be integers with m > n. By our assumption

∫ d(xn,xm)

0

ϕ(t)dt ≤ k

∫ M(xn−1,xm−1)

0

ϕ(t)dt ≤ k

∫ δ(O(xn−1,m−n))

0

ϕ(t)dt.

By (16), δ(O(xn−1,m − n)) = d(xn−1, xk1+n−1) for some 0 < k1 ≤ m − n and, conse-
quently,

∫ d(xn,xm)

0

ϕ(t)dt ≤ k

∫ δ(O(xn−1,m−n))

0

ϕ(t)dt = k

∫ d(xn−1,xk1+n−1)

0

ϕ(t)dt.

Repeating the same process we get

∫ d(xn,xm)

0

ϕ(t)dt ≤ k

∫ d(xn−1,xk1+n−1)

0

ϕ(t)dt

≤ k2
∫ M(xn−2,xk1+n−2)

0

ϕ(t)dt ≤ k2
∫ δ(O(xn−2,k1))

0

ϕ(t)dt

= k2
∫ d(xn−2,xk2+n−2)

0

ϕ(t)dt, for some 0 < k2 ≤ k1 ≤ m− n ≤ m

...

≤ kn
∫ d(x0,xh)

0

ϕ(t)dt for some 0 < h ≤ m− n ≤ m

≤ kn
∫ δ(O(x0,m))

0

ϕ(t)dt.
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As the orbit of x0 is bounded,
∫ δ(O(x0,m))

0
ϕ(t)dt < ∞ and, taking limit as m,n → ∞,

we get

lim
m,n→∞

∫ d(xm,xn)

0

ϕ(t)dt = 0.

And using the same reasoning that Theorem 2.2 we can prove that {xn} is a Cauchy
sequence and hence convergent.

Put limn→∞ xn = z.

Finally, if F is a continuous mapping, applying the same argument that Theorem 2.2,
we can prove that z is a fixed point.

If F satisfies the condition (11) we get

∫ d(xn+1,F (z))

0

ϕ(t)dt ≤ k

∫ M(xn,z)

0

ϕ(t)dt

= kmax

{

∫ d(xn,z)

0

ϕ(t)dt,

∫ d(xn,xn+1)

0

ϕ(t)dt,

∫ d(z,F (z))

0

ϕ(t)dt

∫ d(xn,F (z))

0

ϕ(t)dt,

∫ d(z,xn+1)

0

ϕ(t)dt

}

,

and, taking limit as n→ ∞, we obtain

∫ d(z,F (z))

0

ϕ(t)dt ≤ k

∫ d(z,F (z))

0

ϕ(t)dt.

This implies that d(z, F (z)) = 0 and this says us that z = F (z).

Remark 2.15. If (X,≤) is a totally ordered set we can obtain the uniqueness of the
fixed point in Theorem 2.14.

In fact, suppose that z and w are fixed points of F . Then by our assumption, z ≤ w

or w ≤ z and, consequently,

∫ d(z,w)

0

ϕ(t)dt =

∫ d(F (z),F (w))

0

ϕ(t)dt

≤ k

∫ M(z,w)

0

ϕ(t)dt = k

∫ d(z,w)

0

ϕ(t)dt,

which implies that
∫ d(z,w)

0
ϕ(t)dt = 0 and, this gives us that d(z, w) = 0. Therefore,

z = w.
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