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1. Introduction

This paper contains various new results on closed starshaped sets in d-dimensional
linear space Rd, d ≥ 2. The main tools are introduced in Sections 2 and 3, such
as basic notions from set theory, topology, linear algebra, convexity and, particularly
important, properties and special types of cones. A general reference for cones is [3]. In
Section 4 we derive some asymptotic properties of unbounded closed starshaped sets,
including also classification results, and Section 5 contains theorems on the existence
of support cones of closed starshaped sets and on the representation of such sets via
support cones. Section 6 contains some separation theorems on (not only) starshaped
sets, and in the final sections the main result is prepared and proved. Namely, we
introduce so-called dispensable points for closed starshaped sets which somehow play
the same role for closed starshaped sets that extreme points play for closed convex
sets. Geometric properties of such points are described, also using the kernels of the
starshaped sets under consideration, and finally an analogue of the famous Krein-
Milman theorem (replacing “convex set� and “extreme points� by “starshaped set
with compact kernel� and “dispensable points�, respectively) is given.

2. Basic notation and definitions

Unless otherwise stated, we shall work in Rd and use standard concepts from set theory,
topology, linear algebra, and convexity. If A ⊂ Rd is any set, its complement will be
denoted by A′. If a, b are different points, by [a, b], [a, b) and (a, b) we shall denote
the segment with endpoints a and b, the half-line or ray with origin a through b, and
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the line through a and b, respectively. The replacement of [ by ] in [a, b] or [a, b)
simply means that the endpoint or origin a does not belong to the segment or ray;
analogously for the replacement of ] by [ in [a, b]. We agree that [a, a] = {a}, and
we shall say that a segment is non-degenerate if its endpoints are different. Similarly,
open and closed intervals in R will be denoted by ]α, β[, [α, β], [α,+∞[, etc. We shall
denote half-lines from the origin and lines through the origin by ∆ and Γ, respectively,
and sometimes we shall refer to ∆ as a direction. When necessary, we shall write ∆u

instead of ∆ for the half-line [0, u), where u 6= 0. If A ⊂ Rd, B ⊂ Rd, and Λ ⊂ R,
then A + B = {a+ b : a ∈ A, b ∈ B} and ΛA = {λa : λ ∈ Λ, a ∈ A}. If A or Λ are
singletons, we shall simply write a+B and λA.

If A ⊂ Rd is any set, its affine hull will be denoted by affA, its convex hull by convA,
and its relative interior (with respect to affA) and its interior will be denoted by
relintA and intA, respectively. The closure and the boundary of A will be denoted
by clA and bdA, respectively. By U (x, ε) and B (x, ε) we shall denote the open and
closed balls with center x and radius ε, respectively. We say that a set A is a hunk

if intA is connected and A = cl (intA). If A is a set and p /∈ A, the join of p and
A, denoted by [p,A], is the union of all segments [p, a] for a ∈ A. More generally, the
join of two disjoint sets A and B is the union [A,B] of all segments [a, b] with a ∈ A,
b ∈ B. If A is convex, [p,A] coincides with the set conv({p}∪A), which we shall denote
by conv(p,A). Similarly, if x is a point and X is a set, we shall write x ∪ X instead
of the more clumsy {x} ∪ X. If A is a closed convex set, by extA we shall denote
the set of extreme points of A. As usual, flats are the translates of subspaces of any
dimension, and we say that a set S is line-free if there is no line included in S. For
the sake of completeness, we recall that if S is a set and x ∈ S, the star of x in S
is the set st(x, S) = {y ∈ S : [x, y] ⊂ S}. From this we get that a set S is said to be
starshaped if there exists some x ∈ S such that st(x, S) = S. The kernel of S, denoted
by kerS, is the set of all x ∈ S such that st(x, S) = S. Without explicit mention we
shall assume that all starshaped sets are non-empty. Obviously, a set S is convex if and
only if S = convS. If S is a (starshaped) set, a convex component of S is a maximal
(with respect to inclusion) convex subset of S.

We shall say that a point z ∈ [x, y) is subsequent to y in [x, y) if z /∈ [x, y]. If S is a
starshaped set and m ∈ kerS, we shall say that a point l ∈ S is the last point of a

ray [m,x) in S if l ∈ [m,x) and there are no points y ∈ [m,x) ∩ S subsequent to l in
[m,x). Obviously, these points may not exist if S is not closed.

3. Cones

A set C ⊂ Rd is a cone if there exists a point a ∈ Rd such that

]0,∞[·(C − a) ⊂ C − a .

The point a is called apex of the cone, and it does not necessarily belong to the cone.
A cone may have not only one apex; but if one of its apices belongs to the cone, all of
them belong to it. The set of all apices of C is a flat called summit of C and denoted
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by γC1. Therefore
γC = {y : ]0,∞[·(C − y) ⊂ C − y} .

If γC ⊂ C, the cone is called sharp; otherwise it is dull. A sharp cone C is salient if no
line through any of its apices is included in C, and in that case it has a unique apex.
If C is a salient cone with apex a, the opposite cone of C is the cone oppC = 2a−C.

For any cone C with apex a, its translate to the origin C0 = C − A is called the
centralized cone of C.

If A ⊂ Rd and a ∈ Rd, the conic hull of A from a is the set

[a,A) = {a}+ [0,∞[·(A− a) .

It is the smallest (with respect to inclusion) sharp cone with apex a including A. If
a = 0, it will be simply called the conic hull of A and denoted by C(A). If A is a
convex set, then [a,A) is a convex cone for any a. The witness cone [a,A)0 of A is the
centralized conic hull of A from a:

[a,A)0 = [a,A)− a .

It is well known (see [1]) that if A is convex and compact, then [a,A) is a closed convex
cone, but this may not be the case if A is merely closed. If a /∈ A and A is convex, the
convex cone [a, 2a− A) =

⋃

x∈A [a, 2a− x) is called opposite to [a,A).

Unless explicitly stated, all cones considered in this paper are supposed to be non-
trivial, that is, they are not reduced to their apices.

4. On the asymptotic structure of starshaped sets

The following statements describe “asymptotic properties� that closed starshaped sets
may have. For the first one, the reader is reminded that for convex sets unboundedness
implies the existence of half-lines included in these sets, and that this property applies
here (since kerS is convex).

Theorem 4.1. Let S be an unbounded closed starshaped set. Then there exists a half-

line ∆ such that kerS + ∆ ⊂ S. Moreover, if kerS is unbounded, then S + ∆ ⊂ S,
where ∆ is now a half-line ∆ such that m+∆ ⊂ kerS for some m ∈ kerS.

Proof. Let m ∈ kerS. If S is unbounded, for every n ∈ N there exists an xn ∈ S such
that ‖xn −m‖ ≥ n. Obviously, [m,xn] ⊂ S for every n ∈ N. Let

Sm =
{

x ∈ Rd : ‖x−m‖ = 1
}

and, for every n ∈ N, sn ∈ Sm ∩ [m,xn) ⊂ Sm ∩ S. Also it is clear that Sm ∩ [m,xn) =
{sn} for every n ∈ N. By compactness of Sm there exists a subsequence of the sequence
(sn) which is convergent to a point s ∈ Sm ∩ S. Eventually renaming the elements of
the subsequence, we may assume that (sn) → s, and it is clear that the corresponding
xn verify ‖xn −m‖ ≥ n for every n ∈ N, because they form a subsequence of the

1In the same way we can define the summit of A for any subset A of a linear space. It is always an
affine subvariety of affA (see [3], pp. 14–15).
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original sequence. Let ∆ = [m, sn) − m. We have [m, s) = m + ∆ ⊂ S, since S is
closed. Then

[kerS : [m, s)] = conv(kerS ∪ [m, s))

is a convex cylinder included in S, and therefore its closure satisfies kerS + ∆ ⊂ S,
again since S is closed. Assume now that there exists an m ∈ kerS and a half-line ∆
such that m+∆ ⊂ kerS, and let x ∈ S. Then [x, y] ⊂ S for every y ∈ m+∆, and so
x+∆ ⊂ S, since S is closed.

0

∆
s

m

kerS

[kerS : [m : s)] =

conv(kerS ∪ [m : s)) m+∆ = [m : s)

Figure 4.1

Corollary 4.2. Let S be a closed starshaped set and ∆ a direction. If m+∆ ⊂ S for

some m ∈ kerS, then kerS + ∆ ⊂ S. If m + ∆ ⊂ kerS for some m ∈ kerS, then
kerS + ∆ ⊂ kerS and S + ∆ ⊂ S. Conversely, if S + ∆ ⊂ S for some direction ∆,

then kerS +∆ ⊂ kerS.

Proof. Let t ∈ kerS. Then [t, p] ⊂ S for any p ∈ m + ∆. Hence t + ∆ ⊂ S, since
S is closed. The second assertion is obvious, since kerS is closed and convex. As
for the converse, if there exists some m ∈ kerS such that m + ∆ " kerS, let t ∈
(m+∆)∩(kerS)′ and let p be any point in S.We shall prove that [t, p] ⊂ S, contradicting
the assumption that t /∈ kerS. If x ∈ [t, p], then x ∈ [m, y] ⊂ S, since m ∈ kerS and
y ∈ p+∆ ⊂ S (see Figure 4.1).

This concludes the proof.

Corollary 4.3. Let S be a closed starshaped set. If there exists a flat F ⊂ S, then
kerS + (F − F ) ⊂ S.

The kernel of a starshaped set S may include lines or, more generally, flats. But the
structure of such sets is relatively simple.

Theorem 4.4. Let S be a closed starshaped set and assume that there exists a flat

F ⊂ kerS. Then S ∩ (F − F )⊥ is starshaped and

S = S ∩ (F − F )⊥ + (F − F ) .

Moreover, if F is a flat included in kerS and there is no flat F ′ such that F $ F ′ ⊂

kerS, then ker
[

S ∩ (F − F )⊥
]

is line-free.

Proof. This follows from the above results.
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Corollary 4.5. Let S be a closed starshaped set. If a set H ⊂ kerS is a hyperplane,

then S is a convex set of one of the following types: (a) the whole space; (b) a closed half-

space; (c) a layer between two parallel hyperplanes. In cases (b) and (c) the bounding

hyperplanes of S are parallel to H.

Proof. If H ⊂ kerS is a hyperplane, then (H − H)⊥ is one-dimensional such that
S∩ (H−H)⊥ could be: (a) a line, (b) a half-line, and (c) a segment. The result follows
from the above theorem.

This generalizes known results on convex sets; see [12] and [2], p. 26 (Exercise 12).

Definition 4.6. Let S be a closed starshaped set and let ∆ be a direction. We say
that ∆ is a recession direction of S if kerS + ∆ ⊂ kerS, and it is called an infinity

direction of S if kerS +∆ ⊂ S . The set of all recession directions of S will be called
the recession cone of S, denoted by rcS, and the set of all infinity directions of S will
be called the infinity cone of S and denoted by icS.

Note that a recession direction for a starshaped set S is a recession direction for the
conex set kerS.

5. Linear accessibility

Theorem 5.1. Let S be a starshaped set such that int kerS 6= ?. If x ∈ clS and

m ∈ int kerS, then [m,x[ ⊂ intS.

Proof. Let us first prove that ]m,x[ ⊂ S. Let y = λm + (1 − λ)x, with 0 < λ < 1,
and ε > 0 be such that U(m, ε) ⊂ kerS. If δ = λε

1−λ
, then U(x, δ) ∩ S 6= ?. Let

z ∈ U(x, δ) ∩ S. Then [z, y) ∩ U(m, ε) 6= ? and, if t ∈ [z, y) ∩ U(m, ε), then y ∈
[t, z] ⊂ S. Let now C be any convex component of S such that [m,x[ ⊂ C. Then
m ∈ intC and x ∈ clC. By the linear accessibility theorem for convex sets then
[m,x[ ⊂ intC ⊂ intS.

Corollary 5.2. If S is a closed starshaped set such that int kerS 6= ?, then S is a

hunk.

Proof. The property that intS is (arcwise) connected is immediate. Let x ∈ S = clS
and m ∈ int kerS. Then [m,x[ ⊂ intS whence x ∈ cl intS. The converse inclusion is
obvious.

Conjecture 5.3. If S is a starshaped set such that dimkerS ≥ 2 and kerS is rotund,

then dimS > dimkerS.

6. Support cones

An important notion for our investigations is that of a support cone of a starshaped
set.

Definition 6.1. Let S ⊂ Rd be any set. A convex cone C with apex a and non-empty
interior is a support cone of S at a if a ∈ S, S ⊂ (intC)′ and C is a maximal (with
respect to inclusion) convex cone with these properties.
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Theorem 6.2. Let S ⊂ Rd be a closed starshaped set with int kerS 6= ?. Then for

each x ∈ bdS there exists a support cone C of S at x.

Proof. Let m ∈ int kerS. We shall prove that the ray [m,x)\[m,x] ⊂ S ′. If there
exists a point p ∈ [m,x)\[m,x] ∩ S, then x ∈ [m, p[⊂ intS by Theorem 5.1, which
contradicts the assumption that x ∈ bdS. By a similar argument, if U ⊂ kerS
is an open ball centered at m, then (opp[x, U)) \ {x} ⊂ S ′. Therefore opp[x, U) is a
pointed convex cone with apex x and non-empty interior such that S ⊂ (int opp[x, U))′.
Therefore, the family F of cones with these properties is non-empty. We consider the
partial order relation ⊂ in F. Then, if C is a linearly ordered subfamily of F, C =

⋃

C
is clearly an element of F which is an upper bound of C. By Zorn’s lemma there exists
a maximal element of F, which by definition is a support cone of S.

Remark 6.3. Indeed, the condition int kerS 6= ? cannot be dropped in Theorem 6.2,
but we mention that it is not necessary. Consider the following examples. The first
one be

S1 =
{

(ξ, ν) : −1 ≤ ξ ≤ 1,−1 ≤ ν ≤
√

|ξ|
}

∪ {(0, ν) : ν ≥ 0}

in R2. Then x = (0, 0) ∈ bdS1, and any cone with apex x has non-empty intersection
with S1. And the second one be

S2 = {(ξ, ν) : −1 ≤ ξ ≤ 1, ν = 0} ∪ {−1 ≤ ν ≤ 1, ξ = 0} ,

also in R2. Then int kerS2 = ?, but for each x ∈ bdS2 there exists a support cone C
of S2 at x.

Let S be a closed starshaped set such that int kerS 6= ? and p /∈ S. Then, given any
m ∈ int kerS, there exists a unique x ∈]m, p[ ∩ bdS. Clearly ]x, p) ⊂ S ′, whence p
is included in all support cones Cx of S at x. Moreover, since m ∈ int kerS, p is an
interior point of Cx. Therefore

S ′ ⊂
⋃

x∈bdS
intCx .

The reverse inclusion is obvious, whence

S ′ =
⋃

x∈bdS
intCx .

Taking complements we get

S =
⋂

x∈bdS
(intCx)

′ .

Theorem 6.4. If S ⊂ Rd is a closed starshaped set with int kerS 6= ?, then

S =
⋂

x∈bdS
(intCx)

′ ,

where Cx is any support cone of S at x.

This theorem generalizes the corresponding theorem for convex sets. Namely, in that
case the support cones are half-spaces, and the complements of the interiors of such
half-spaces are the usual support half-spaces.
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7. Separation of starshaped sets

Disjoint convex sets are usually separated by means of hyperplanes and their associ-
ated half-spaces. As we saw in the last section, for starshaped sets cones and their
complements play a role analogous to the role that half-spaces play for convex sets.

V

S

Figure 7.1

Now we want to derive separation theorems which, in some way, generalize the idea of
separation of convex sets. In general, by a single cone we cannot separate a starshaped
set from a disjoint convex set, even not in the case that both are compact; consider
the simple example in R2 shown in Figure 7.1.

But we have the following

Theorem 7.1. Let S and V be two disjoint sets, where S is starshaped and closed with

int kerS 6= ? and V is compact. Then there exists a finite family of convex cones Ki,

i = 1, · · · , n, such that

V ⊂
⋃n

i=1
Ki,

⋃n

i=1
Ki ∩ S = ?.

Proof. Let p ∈ V and m ∈ int kerS. Let x ∈ S be the last point of [m, p) in S, and

q ∈ ]x, p[⊂ S ′. Let ε > 0 be such that U(m, ε) ⊂ kerS and ρ = ε · ‖p−q‖
‖m−q‖

. Then clearly

[q, U(p, ρ)) ⊂ S ′ because, if z ∈ ]q, U(p, ρ))∩S, then [z, q]∩U(m, ε) 6= ? whence q ∈ S
(see Figure 7.2).

m

q

x p

ρε

Figure 7.2

Let K(p) =]q, U(p, ρ)). Then K(p) is an open convex cone such that p ∈ K(p) ⊂
S ′, and the family of such cones K(p), for p ∈ V , is an open covering of V . Let
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K1, · · · , Kn be a finite subcovering of V . Then K1, · · · , Kn verifies the conclusion of
the theorem.

As seen before, in general there is not a convex cone K disjoint from S that includes
V , even if V is a compact, convex set. But there exist convex tails of cones with these
properties, where a convex conic tail is any set T = V +K, with V compact and convex
and K a convex cone with apex 0. Moreover, by means of such tails we can strictly
separate a closed starshaped set S from a disjoint compact, convex set V , in the sense
that there exists a convex conic tail T such that V ⊂ intT and S ⊂ intT ′.

Theorem 7.2. Let S and V be two disjoint sets, where S is starshaped and closed,

with int kerS 6= ?, and V is compact and convex. Then

(a) there exists a convex cone K with apex 0 such that V ⊂ V +K and (V +K)∩S =
?,

(b) there exist a compact, convex set W % V and a convex cone K with apex 0 such

that V ⊂ W +K, (W +K) ∩ S = ?, V ⊂ int(W +K), and S ⊂ int(W +K)′.

Proof. (a) Since kerS is closed and V is compact, there exist m ∈ kerS, p ∈ V that
realize the minimal distance between kerS and V . Since V is a compact, convex set,
[m,V ) is a closed convex cone [1], and for every p ∈ V the half-line [m, p)\[m, p] ⊂ S ′.
Let [m,V )0 be the witness cone of V from m. Then V ⊂ V + [m,V )0 ⊂ S ′, so that
K = [m,V )0 verifies the assertion.

(b) Let ε > 0 be the minimal distance between S and V . Then W = V + B(0, ε/2) is
a compact, convex set disjoint from S. From (a) there exists a closed convex cone K
with apex 0 such that W ⊂ W +K and (W +K) ∩ S = ?. It is clear that W +K
verifies the assertion.

8. Dispensable points

A basic theorem of classical convexity theory, usually referred to as Minkowski’s theo-
rem, states that a compact, convex subset of Rd may be “recovered� from the set of its
extreme points, in the sense that the set itself is the convex hull of its extreme points.
This theorem was generalized in several directions, e.g. with respect to unbounded sets
by Klee (see [4] and [5]), subsets of spaces of infinite dimension by Krein and Milman
(see [6]), etc., and today it is common to call it in general the Krein-Milman theorem
for convex sets; see, e.g., §4 in [7], §1.4 in [11], and §2.6 in [13]. We intend to get a
similar result for starshaped subsets of Rd. For related (but different) results we refer
to [8], [9], and [10].

We begin by asking for a useful analogue to extreme points of convex sets for the
starshaped case. A suitable property is well known: a point x is an extreme point of a
closed, convex set A if and only if the set A\ {x} is also convex. In this sense extreme
points are dispensable points of the set although, paradoxically, in another sense they
are the essential points of the set (in view of Minkowski’s theorem).

In the case of a closed starshaped set S we shall say that a point d is dispensable if and
only if kerS\ {d} = ker (S\ {d}). This is a direct generalization of the above property
of extreme points of closed, convex sets. The points of S that are not dispensable will
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be called indispensable, and the set of dispensable points of a given starshaped set S
will be denoted by dispS.

S

dispensable

dispensable

indispensable

kerS

Figure 8.1

Roughly speaking, a point p ∈ S is indispensable if there exist points m ∈ kerS and
q ∈ S\ {p} such that p ∈ [m, q] (see Figure 8.2).

S

p

q

mkerS

Figure 8.2

Remark 8.1. Being an extreme point of a convex set is a local property; that is, if
p ∈ C is an extreme point of a closed, convex set C, then there exists a neighborhood
U of p such that, no matter how C is altered without losing convexity outside of U ,
p still is an extreme point of the (new) set. This is not true for dispensable points.
They strongly depend on the convex kernel of the set, and this convex kernel can be
altered completely by changing the set far from the point. The examples in Figure
8.3 illustrate this: the “upper part� of the set remains unaltered. Nevertheless, some
points of this upper part change their character from one set to the other; see Figure
8.3.

If S is convex, the condition “d ∈ S is indispensable� (i.e., S\ {d} is not convex) is
clearly equivalent to the condition that there exist points x, y ∈ S such that d ∈]x, y[.
For starshaped sets this translates to
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S

dispensable

kerS S

indispensable

kerS

Figure 8.3

Proposition 8.2. Let S be a closed starshaped set. Then d ∈ S is indispensable if and

only if there exist points x ∈ kerS and y ∈ S such that d ∈]x, y[.

Proof. In any case it is clear that if d ∈ S, then

ker (S\ {d}) ⊂ (kerS) \ {d} .

(⇒) d is indispensable if and only if the above inclusion is strict. Therefore there exists
a point x ∈ (kerS) \ {d} such that x /∈ ker (S\ {d}), whence there exists a point y ∈ S
such that d ∈]x, y[.

(⇐) If there exist points x ∈ kerS, y ∈ S such that d ∈]x, y[, then x ∈ (kerS) \ {d}
and x /∈ ker (S\ {d}).

Proposition 8.3. Let S be a closed starshaped set. Then p ∈ S is dispensable if for

every m ∈ kerS the point p is the last point of [m, p) in S. As an easy consequence,

dispS ⊂ bdS.

This proposition follows directly from the defnitions, like also the next one.

Proposition 8.4. Let S be a closed starshaped set. If p ∈ bdS is indispensable, then

there exist different points a, b ∈ bdS such that p ∈ [a, b] ⊂ bdS.

9. Structure theorems

As was stated before (and despite their name), dispensable points of a starshaped set
are the essential ones for recovering the set, as extreme points are the essential points
for convex sets.

Lemma 9.1. Let S be a closed starshaped set with kerS compact. Then

S = (kerS + rcS) ∪ [kerS, dispS]

Proof. The ⊃ inclusion is obvious. Let us prove the converse. Let p ∈ S\ kerS.
Then there exists a hyperplane H which strictly separates p from kerS. Parametrize
the translates Hλ of H so that H = H0 and p ∈ Hλ for some λ > 0. The cone
[p, 2p− kerS) opposite to [p, kerS) is closed, and so is

S ∩ [p, 2p− kerS).
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Moreover, [p, 2p − kerS)\ {p} ⊂ H+
λ , where H+

λ is the open half-space determined by
Hλ towards the side of increasing λ. For ρ > λ consider the intersections

Hρ ∩ S ∩ [p, 2p− kerS).

There are two possibilities: Hρ∩S∩[p, 2p−kerS) 6= ? for every ρ > λ, or there exists a
largest ρ0 > λ such that Hρ0∩S∩ [p, 2p−kerS) 6= ? but Hρ∩S∩ [p, 2p−kerS) = ? for
every ρ > ρ0. In the first case there exists a half-line [p, 2p −m), for some m ∈ kerS,
such that ]p, 2p) ⊂ S ∩ [p, 2p − kerS). Then its translate [0, p − m) ⊂ rcS, and
therefore p ∈ kerS + rcS. In the other case Hρ0 is a support hyperplane of the convex
set S ∩ [p, 2p− kerS) at a point

d ∈ S ∩ [p, 2p− kerS) ∩Hρ0 .

We shall prove that in this case d is a dispensable point of S. If d would be indispens-
able, then there would exist points n ∈ kerS, q ∈ S such that q 6= d and d ∈ [n, q]
(Figure 9.1).

q

d

p

n

m

H0

Hρ0

kerS

Figure 9.1

Note that m, n, d, p, and q belong to the plane determined by m, n and d. We repeat
the drawing, now in that plane (Figure 9.2).

q

d

p

n

m

Hρ0

s

Figure 9.2

The half-line [q, p) intersects the segment [m,n] at a point s which belongs to kerS, by
convexity. Then q ∈ S ∩ [p, 2p− kerS). This contradicts the fact that Hρ0 is a support
hyperplane of S ∩ [p, 2p− kerS) at d.



670 G. Hansen, H. Martini / On Closed Starshaped Sets

Theorem 9.2. Let S be a closed starshaped set with kerS compact. Then

S = (kerS + rcS) ∪ [conv(ext kerS), dispS].

Theorem 9.3. Let S be a compact starshaped set. Then

(a) S = [conv(ext kerS), dispS].

(b) If f is a real linear functional, then there exists a point x ∈ ext kerS ∪ dispS
such that

f(x) = sup
y∈S

f(y).

Proof. (a) This is a consequence of the last theorem.

(b) Since S is compact, there exists a point m ∈ S such that f(m) = supx∈S f(x).
Assume that f(m) > f(x) for every x ∈ ext kerS ∪ dispS. By (a) there exists a point
p ∈ dispS such that m ∈ [conv(ext kerS), p], whence there exist x1, · · · , xr ∈ ext kerS
and λ0, · · · , λr ≥ 0 such that

m = λ0p+
r
∑

i=1

λixi,
r
∑

i=0

λi = 1.

Therefore

f(m) = λ0f(p) +
r
∑

i=1

λif(xi) < λ0f(m) +
r
∑

i=1

λif(m)

= f(m)

(

r
∑

i=0

λi

)

= f(m),

a contradiction.

10. The final cut

Our final theorem says that from the set of stars of the dispensable points of a compact
starshaped set one can recover this set and, moreover, even its kernel.

Theorem 10.1. Let S be a compact starshaped set. Then

S =
⋃

x∈dispS

st (x, S) ,

kerS =
⋂

x∈dispS

st (x, S) .

Proof. The first assertion follows from the remark that if x ∈ S, then

conv (x ∪ kerS) ⊂ st (x, S) ⊂ S.

Let y ∈ S be an arbitrary point of S. By Theorem 9.3 there exist points p ∈ dispS and
m ∈ kerS such that y ∈ [m, p]. Let z ∈

⋂

x∈dispS st (x, S). Then z ∈ st (p, S) whence
[z, p] ⊂ S. Therefore [z, y] ⊂ [m, [z, p]] ⊂ S whence z ∈ kerS. The reverse inclusion is
obvious.
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