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1. Introduction

In this paper we investigate several aspects of the dynamic programming approach to
optimal control of abstract evolution equations. The optimal control problem we have
in mind has the following form. The state equation is

{

�x(t) = Ax(t) + b(t, x(t), u(t)),

x(0) = x,
(1)
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where A is a linear, densely defined maximal dissipative operator in a real separable
Hilbert space H, and we want to minimize a cost functional

J(x;u(·)) =
∫ T

0

L(t, x(t), u(t))dt+ h(x(T )) (2)

over all controls

u(·) ∈ U [0, T ] = {u : [0, T ] → U : u is strongly measurable},

where U is a metric space.

Our problem (1)–(2) is formulated in the standard abstract form (see e.g. [7, 15, 32, 51]
and papers included in the references regarding infinite dimensional systems). It is very
general and it includes optimal control problems of various semilinear partial differential
equations (PDE) treated as abstract evolution equations. The reader may consult for
instance [51] and papers cited in the next paragraph for many concrete examples of
optimal control problems which fall into the framework of (1)–(2) (see also the example
in Section 3.1).

The dynamic programming approach studies the properties of the so called value func-
tion for the problem, identifies it as a solution of the associated Hamilton-Jacobi-
Bellman (HJB) equation through the dynamic programming principle, and then tries
to use this PDE to construct optimal feedback controls, obtain conditions for opti-
mality, do numerical computations, etc.. There exists an extensive literature on the
subject for optimal control of ordinary differential equations, i.e. when the HJB equa-
tions are finite dimensional (see for instance the books [12, 29, 41, 42, 52, 60, 61] and
the references therein). The situation is much more complicated for optimal control of
PDE or abstract evolution equations, i.e. when the HJB equations are infinite dimen-
sional, nevertheless there is by now a large body of results on such HJB equations and
the dynamic programming approach ([2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19, 20, 21,
22, 23, 24, 26, 27, 31, 32, 33, 34, 35, 43, 46, 50, 51, 55, 56, 58, 59] and the references
therein). Above works deal with optimal control problems for parabolic, semilinear and
nonlinear evolutionary PDE, Navier-Stokes equations to name a few. There is also a
growing literature on optimal control of age structured equations arising in population
dynamics and economics [1, 13, 14, 37, 40]. Numerous notions of solutions are intro-
duced in these works, the value functions are proved to be solutions of the dynamic
programming equations, and various verification theorems and results on existence and
explicit forms of optimal feedback controls in particular cases are established. How-
ever, despite of these results, so far the use of the dynamic programming approach
in the resolution of the general optimal control problems in infinite dimensions has
been rather limited. Infinite dimensionality of the state space, unboundedness in the
equations, lack of regularity of solutions, and often complicated notions of solutions
requiring the use of sophisticated test functions are only some of the difficulties.

We will discuss two aspects of the dynamic programming approach for a fairly general
control problem: a verification theorem which gives a sufficient condition for optimality,
and the problem of construction of ǫ-optimal feedback controls.

The verification theorem we prove in this paper (Theorem 3.4) is an infinite dimensional
version of such a result for finite dimensional problems obtained in [62]. It is based on
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the notion of viscosity solution (see Definitions 2.4–2.6). The proof in finite dimensions
uses the Lipschitz continuity of the value function and of the state trajectories. However
these properties, in particular the Lipschitz continuity of trajectories, are rather rare
in the infinite dimensional case. To overcome this difficulty previous results in this
direction assumed that the candidate optimal trajectory belonged to the domain of
the differential operator A; see [23, 24] and the material in Chapter 6 §5 of [51], in
particular Theorem 5.5 there which is based on [23]. Our Theorem 3.4 does not require
this. We briefly discuss these issues in Remarks 3.6 and 3.7.

The construction of ǫ-optimal controls we present here is a fairly explicit procedure
which relies on the proof of superoptimality inequality of dynamic programming for
viscosity supersolutions of the corresponding Hamilton-Jacobi-Bellman equation. It is
a delicate generalization of such a method for the finite dimensional case from [57].
Similar method has been used in [28] to construct stabilizing feedbacks for nonlinear
systems and later in [47] for state constraint problems. The idea here is to approximate
the value function by its appropriate inf-convolution which is more regular and satis-
fies a slightly perturbed HJB inequality pointwise. One can then use this inequality to
construct ǫ-optimal piecewise constant controls. This procedure in fact gives the super-
optimality inequality of dynamic programming and the suboptimality inequality can
be proved similarly. There are other possible approaches to construction of ǫ-optimal
controls. For instance under compactness assumption on the operator B (see Section
2) one can approximate the value function by solutions of finite dimensional HJB equa-
tions with the operator A replaced by some finite dimensional operators An (see [31])
and then use results of [57] directly to construct near optimal controls. Other approx-
imation procedures are also possible. The method we present in this paper seems to
have some advantages: it uses only one layer of approximations, it is very explicit and
the errors in many cases can be made precise, and it does not require any compactness
of the operator B. It does however require some weak continuity of the Hamiltonian
and uniform continuity of the trajectories, uniformly in u(·). Finally we mention that
the sub- and superoptimality inequalities of dynamic programming are interesting on
their own.

The paper is organized as follows. Definitions and the preliminary material is presented
in Section 2. Section 3 is devoted to the verification theorem and an example where it
applies in a nonsmooth case. In Section 4 we prove sub- and superoptimality principles
of dynamic programming and show how to construct ǫ-optimal controls.

2. Notation, definitions and background

Throughout this paper H is a real separable Hilbert space equipped with the inner
product 〈·, ·〉 and the norm ‖ · ‖. We recall that A is a linear, densely defined operator
such that −A is maximal monotone, i.e. A generates a C0 semigroup of contractions
esA, i.e.

‖esA‖ ≤ 1 for all s ≥ 0 (3)

Let B be a bounded, linear, positive, self-adjoint operator onH such that A∗B bounded
on H and let c0 ≤ 0 be a constant such that

〈(A∗B + c0B)x, x〉 ≤ 0 for all x ∈ H. (4)
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Such an operator always exists, for instance

B = ((−A+ I)(−A∗ + I))−1/2 (5)

(see [53], we refer to [31] for various examples). Using the operator B we define for
γ > 0 the space H−γ to be the completion of H under the norm

‖x‖−γ = ‖B γ
2 x‖.

Let Ω ⊂ [0, T ] ×H. We say that u : Ω → R is B-upper-semicontinuous (respectively,
B-lower-semicontinuous) on Ω if whenever tn → t, xn ⇀ x, Bxn → Bx, (t, x) ∈ Ω,
then lim supn→+∞ u(tn, xn) ≤ u(t, x) (respectively, lim infn→+∞ u(tn, xn) ≥ u(t, x)).
The function u is B-continuous on Ω if it is B-upper-semicontinuous and B-lower-
semicontinuous on Ω.

We will say that a function v is Bk-semiconvex (respectively, Bk-semiconcave) for
k > 0 if there exists a constant C ≥ 0 such that v(t, x) + C(‖x‖2−k + t2) is convex
(respectively, v(t, x) − C(‖x‖2−k + t2) is concave). If k = 1 we will call such functions
simply B-semiconvex and B-semiconcave.

We will denote by BR the open ball of radius R centered at 0 in H.

We make the following assumptions on b and L.

Hypothesis 2.1.

b : [0, T ]×H× U → H is continuous

and there exist a constant M > 0 and a local modulus of continuity ω(·, ·) such that

‖b(t, x, u)− b(s, y, u)‖
≤ M‖x− y‖+ ω(|t− s|, ‖x‖ ∨ ‖y‖) for all t, s ∈ [0, T ], u ∈ U x, y ∈ H,

‖b(t, 0, u)‖ ≤M for all (t, u) ∈ [0, T ]× U.

Hypothesis 2.2.

L : [0, T ]×H× U → R and h : H → R are continuous

and there exist M > 0 and a local modulus of continuity ω(·, ·) such that

|L(t, x, u)− L(s, y, u)|, |h(x)− h(y)|
≤ ω(‖x− y‖+ |t− s|, ‖x‖ ∨ ‖y‖) for all t, s ∈ [0, T ], u ∈ U x, y ∈ H,

|L(t, 0, u)|, |h(0)| ≤M for all (t, u) ∈ [0, T ]× U.

Remark 2.3. Notice that if we replace A and b by Ã = A − ωI and b(t, x, u) with
b̃(t, x, u) = b(t, x, u) + ωx the above assumptions would cover a more general case

‖esA‖ ≤ eωs for all s ≥ 0 (6)

for some ω ≥ 0. However such b̃ does not satisfy the assumptions of Section 4 and may
not satisfy the assumptions needed for comparison for equation (10). Alternatively, by
making a change of variables ṽ(t, x) = v(t, eωtx) in equation (10) (see [31], page 275)
we can always reduce the case (6) to the case when A satisfies (3).
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Following the dynamic programming approach we consider a family of problems for
every t ∈ [0, T ], x ∈ H

{

�xt,x(s) = Axt,x(s) + b(s, xt,x(s), u(s))

xt,x(t) = x.
(7)

We recall that if Hypothesis 2.1 is satisfied then (7) has a unique continuous mild
solution. We will write x(·) for xt,x(·) when there is no possibility of confusion. We
consider the function

J(t, x;u(·)) =
∫ T

t

L(s, x(s), u(s))dt+ h(x(T )), (8)

where u(·) is in the set of admissible controls

U [t, T ] = {u : [t, T ] → U : u is strongly measurable}.

The associated value function V : [0, T ]×H → R is defined by

V (t, x) = inf
u(·)∈U [t,T ]

J(t, x;u(·)). (9)

The Hamilton-Jacobi-Bellman (HJB) equation related to such optimal control problems
is

{

vt(t, x) + 〈Dv(t, x), Ax〉+H(t, x,Dv(t, x)) = 0

v(T, x) = h(x),
(10)

where
{

H : [0, T ]×H×H → R,

H(t, x, p) = infu∈U (〈p, b(t, x, u)〉+ L(t, x, u)) .

The solution of the above HJB equation is understood in the viscosity sense of Cran-
dall and Lions [31, 32] which is slightly modified here. We consider two sets of tests
functions:

test1 = {ϕ ∈ C1((0, T )×H) : ϕ is weakly sequentially lower

semicontinuous and A∗Dϕ ∈ C((0, T )×H)}

and

test2 = {g ∈ C1((0, T )×H) : ∃g0, : [0,+∞) → [0,+∞),

and η ∈ C1((0, T )) positive s.t. g0 ∈ C1([0,+∞)), g′0(r) ≥ 0 ∀r ≥ 0,

g′0(0) = 0 and g(t, x) = η(t)g0(‖x‖) ∀(t, x) ∈ (0, T )×H}.

We use test2 functions that are a little different from the ones used in [31]. The extra
term η(·) in test2 functions is added to deal with unbounded solutions. Sometimes it is
more convenient to take the finite linear combinations of functions η(t)g0(‖x‖) above
as test2 functions, however this will not be needed here. We recall that Dϕ and Dg
stand for the Fréchet derivatives in space of these functions.
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Definition 2.4. A function v ∈ C((0, T ]×H) is a (viscosity) subsolution of the HJB
equation (10) if

v(T, x) ≤ h(x) for all x ∈ H
and whenever v − ϕ− g has a local maximum at (t̄, x̄) ∈ (0, T )×H for ϕ ∈ test1 and
g ∈ test2, we have

ϕt(t̄, x̄) + gt(t̄, x̄) + 〈A∗Dϕ(t̄, x̄), x̄〉+H(t̄, x̄, Dϕ(t̄, x̄) +Dg(t̄, x̄)) ≥ 0. (11)

Definition 2.5. A function v ∈ C((0, T ]×H) is a (viscosity) supersolution of the HJB
equation (10) if

v(T, x) ≥ h(x) for all x ∈ H
and whenever v + ϕ + g has a local minimum at (t̄, x̄) ∈ (0, T )×H for ϕ ∈ test1 and
g ∈ test2, we have

−ϕt(t̄, x̄)− gt(t̄, x̄)− 〈A∗Dϕ(t̄, x̄), x̄〉+H(t̄, x̄,−Dϕ(t̄, x̄)−Dg(t̄, x̄)) ≤ 0. (12)

Definition 2.6. A function v ∈ C((0, T ] × H) is a (viscosity) solution of the HJB
equation (10) if it is at the same time a subsolution and a supersolution.

We will be also using viscosity sub- and supersolutions in situations where no termi-
nal values are given in (10). We will then call a viscosity subsolution (respectively,
supersolution) simply a function that satisfies (11) (respectively, (12)).

Lemma 2.7. Let Hypotheses 2.1 and 2.2 hold. Let ϕ ∈ test1 and (t, x) ∈ (0, T )×H.
Then for t < s ≤ T

ϕ(s, xt,x(s))− ϕ(t, x) =

∫ s

t

(ϕt(r, xt,x(r)) + 〈A∗Dϕ(r, xt,x(r)), xt,x(r)〉

+ 〈Dϕ(r, xt,x(r)), b(r, xt,x(r), u(r))〉) dr (13)

and

1

s− t
(ϕ(s, xt,x(s))− ϕ(t, x))

= ϕt(t, x) + 〈A∗Dϕ(t, x), x〉+ 1

s− t

∫ s

t

〈Dϕ(t, x), b(t, x, u(r))〉 dr + σx(s− t), (14)

uniformly in u(·) ∈ U [t, T ] for some modulus σx.

Proof. See [51] Proposition 5.5, page 67 and Lemma 3.3, page 240.

Lemma 2.8. Let Hypotheses 2.1 and 2.2 hold. Let g ∈ test2 and (t, x) ∈ (0, T ) ×H.
Then for t < s ≤ T

g(s, xt,x(s))− g(t, x)

≤
∫ s

t

(gt(r, xt,x(r)) + 〈Dg(r, xt,x(r)), b(r, xt,x(r), u(r))〉) dr (15)
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and

1

s− t
(g(s, xt,x(s))− g(t, x))

≤ gt(t, x) +
1

s− t

∫ s

t

〈Dg(t, x), b(t, x, u(r))〉 dr + σx(s− t) (16)

uniformly in u(·) ∈ U [t, T ] for some modulus σx.

Proof. The proof is also standard. (15) is obtained by considering solutions xnt,x(·)
of (7) with A replaced by its Yosida approximations An, writing the formula (15)
for xnt,x(·), using dissipativity of the An and then passing to the limit as n → +∞.
Formula (16) follows from (15) and the (uniform in u(·) ∈ U [t, T ]) continuity of xt,x(s)
at s = t.

Theorem 2.9. Let Hypotheses 2.1 and 2.2 hold. Then the value function V (defined
in (9)) is a viscosity solution of the HJB equation (10).

Proof. The proof is quite standard and can be obtained with small changes (due to
the small differences in the definition of test2 functions) from Theorem 2.2, page 229
of [51] and the proof of Theorem 3.2, page 240 of [51] (or from [32]).

We will need a comparison result in the proof of the verification theorem. There are
various versions of such results for equation (10) available in the literature, several
sufficient sets of hypotheses can be found in [31, 32]. Since we are not interested in
the comparison result itself we choose to assume a form of comparison theorem as a
hypothesis.

Hypothesis 2.10. There exist sets of functions G1,G2 on (0, T ]×H such that:

(i) the value function V is in G1 ∩ G2;

(ii) if v1 ∈ G1, v2 ∈ G2, v1 is a viscosity subsolution of the HJB equation (10) and v2
is a viscosity supersolution of the HJB equation (10) then v1 ≤ v2.

Note that from (i) and (ii) we know that V is the only solution of the HJB equation
(10) in G1 ∩ G2.

Remark 2.11. Conditions that guarantee comparison are well known. For instance,
Hypothesis 2.10 is satisfied (see [32, 48]) if in addition to Hypothesis 2.1 we assume
Hypothesis 4.1 for some B satisfying (4)1,

|h(x)− h(y)| ≤ ω(‖x− y‖−1)

for some modulus ω and all x, y ∈ H, and

|h(x)|, |L(t, x, u)| ≤ C(1 + ‖x‖m) for all (t, x, u) ∈ [0, T ]×H× U

for some C,m ≥ 0. We can then take G1 to be the set of B-upper-semicontinuous
functions v on (0, T ]×H such that

v(t, x) ≤ c(1 + ‖x‖k) for all (t, x) ∈ (0, T ]×H (17)

1Recall that ‖x‖−1 = ‖B1/2x‖.
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for some c, k ≥ 0, and

lim
t→T

(v(t, x)− v(T, x))+ = 0

uniformly on bounded subsets of H, and G2 to be the set of B-lower-semicontinuous
functions v on (0, T ]×H such that −v satisfy (17) and

lim
t→T

(v(t, x)− v(T, x))− = 0

uniformly on bounded subsets of H. These conditions are satisfied for instance for the
vintage capital problem in Section 3.1, where A is the differentiation operator with a
zero order term.

Conditions for Hypothesis 2.10 without Hypothesis 4.1 can be found in [32], Theorem
7.2 under a stronger assumption

〈(A∗B + c0B)x, x〉 ≤ −‖x‖2 for all x ∈ H

and some c0 ≤ 0, which is typically satisfied by second order elliptic operators (see
[31, 51, 53]). For bounded domains and Dirichlet boundary conditions B can then be
taken to be −λ∆−1 for some λ > 0. Other sets of conditions that guarantee Hypothesis
2.10 can be found in [31, 32, 48, 51].

For f ∈ C([t, T ];R) and s ∈ (t, T ) we denote

Df(s) = lim sup
h→0

f(s+ h)− f(s)

h

and

D+f(s) = lim inf
h→0+

f(s+ h)− f(s)

h
.

We state below a hypothesis for an abstract function f ∈ C([t, T ];R). We will require
it to be satisfied for a certain function in the verification theorem of the next section.

Hypothesis 2.12. If

Df(s) ≤ g(s) a.e. s ∈ (t, T ) (18)

for some g ∈ L1(t, T ;R) then for every t ≤ α < β ≤ T

f(β)− f(α) ≤
∫ β

α

g(s)ds. (19)

Remark 2.13. Hypothesis 2.12 guarantees that we can control increments of f by its
upper Dini derivative Df(s). It is obviously satisfied when f is absolutely continuous.
In general (18) is not enough to obtain (19). However, by Theorem 7.3, Chapter VI,
page 204 of [54], if (18) holds and D+f(s) < +∞ at every point s except at most at
those of a countable set then (19) is satisfied. Estimate (19) also holds if there exists

ρ ∈ L1(t, T ;R) such that, for some h0 > 0, we have f(s+h)−f(s)
h

≤ ρ(s), for 0 < h ≤ h0
and s+ h ≤ T .
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3. The verification theorem

We first introduce a set related to a subset of the superdifferential of a function in
C((0, T )×H). Its definition is suggested by the definition of a sub/super solution. We
recall that the superdifferential D1,+v(t, x) of v ∈ C((0, T )×H) at (t, x) is given by the
pairs (q, p) ∈ R×H such that v(s, y)−v(t, x)−〈p, y − x〉−q(s−t) ≤ o(‖x−y‖+|t−s|),
and the subdifferential D1,−v(t, x) at (t, x) is the set of all (q, p) ∈ R × H such that
v(s, y)− v(t, x)− 〈p, y − x〉 − q(s− t) ≥ o(‖x− y‖+ |t− s|).
Definition 3.1. Given v ∈ C((0, T )×H) and (t, x) ∈ (0, T )×H we define E1,+v(t, x)
as

E1,+v(t, x) = {(q, p1, p2) ∈ R×D(A∗)×H : ∃ϕ ∈ test1, g ∈ test2 s.t.

v − ϕ− g attains a local maximum at (t, x), ∂t(ϕ+ g)(t, x) = q,

Dϕ(t, x) = p1, Dg(t, x) = p2 and v(t, x) = ϕ(t, x) + g(t, x)}.
Remark 3.2. If we define

E1,+
1 v(t, x) = {(q, p) ∈ R×H : p = p1 + p2 with (q, p1, p2) ∈ E1,+v(t, x)}

then E1,+
1 v(t, x) ⊆ D1,+v(t, x) and in the finite dimensional case we have E1,+

1 v(t, x) =
D1,+v(t, x). Here we have to use E1,+v(t, x) instead of E1,+

1 v(t, x) because of the
different roles of g and ϕ. It is not clear if the sets E1,+v(t, x) and E1,+

1 v(t, x) are
convex. However if we took finite sums of functions η(t)g0(‖x‖) as test2 functions then
they would be convex. All the results obtained are unchanged if we use the definition
of viscosity solution with this enlarged class of test2 functions.

Definition 3.3. A trajectory-strategy pair (x(·), u(·)) will be called an admissible cou-
ple for (t, x) if u ∈ U [t, T ] and x(·) is the corresponding solution of the state equation
(7).

A trajectory-strategy pair (x∗(·), u∗(·)) will be called an optimal couple for (t, x) if it
is admissible for (t, x) and if we have

−∞ < J(t, x;u∗(·)) ≤ J(t, x;u(·))
for every admissible control u(·) ∈ U [t, T ].

We can now state and prove the verification theorem. Its main strength is that it holds
under relatively weak assumptions on A and it does not assume that the (optimal)
trajectory lies in the domain of A.

Theorem 3.4. Let Hypotheses 2.1, 2.2 and 2.10 hold. Let v ∈ G1 be a subsolution of
the HJB equation (10) such that

v(T, x) = h(x) for all x in H. (20)

(a) We have v(t, x) ≤ V (t, x) ≤ J(t, x, u(·)) ∀(t, x) ∈ (0, T ]×H, u(·) ∈ U [t, T ].
(b) Let (t, x) ∈ (0, T ) × H and let (xt,x(·), u(·)) be an admissible couple for (t, x).

Assume that the function f(s) := v(s, xt,x(s)) satisfies Hypothesis 2.12 and that
there exist q ∈ L1(t, T ;R), p1 ∈ L1(t, T ;D(A∗)) and p2 ∈ L1(t, T ;H) such that

(q(s), p1(s), p2(s)) ∈ E1,+v(s, xt,x(s)) for almost all s ∈ (t, T ) (21)
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and that

∫ T

t

(〈p1(s) + p2(s), b(s, xt,x(s), u(s))〉+ q(s) + 〈A∗p1(s), xt,x(s)〉)ds

≤
∫ T

t

−L(s, xt,x(s), u(s))ds. (22)

Then (xt,x(·), u(·)) is an optimal couple for (t, x) and v(t, x) = V (t, x). Moreover we
have equality in (22).

Remark 3.5. It is tempting to try to prove, along the lines of Theorem 3.9, p. 243
of [61], that a condition like (22) can also be necessary if v is a viscosity solution (or
maybe simply a supersolution). However this is not an easy task: the main problem
is that E1,+ and the analogous subdifferential object2 E1,− are fundamentally different
and it is not clear if a broad natural generalization of a result like Theorem 3.9, p. 243
of [61] is possible in this context. The reader may notice that the p2 components of
E1,+ consist of derivatives of radially increasing functions while the p2 components of
E1,− consist of derivatives of radially decreasing functions.

Remark 3.6. Our verification theorem has some drawbacks.

• Hypothesis 2.12 for f(s) := v(s, xt,x(s)) is not easy to check. Therefore it is
important to know when it is verified. We mention three cases in which this can
be done:
(i) When u, q, p1, p2, A

∗p1 are continuous and (21) is satisifed for every s ∈ (t, T )
except at most for those of a countable set. If the candidate optimal couple
is found solving a closed loop equation as in [39], Section 4.3 and the feedback
map is continuous, this guarantees the continuity of the candidate optimal
control u. The continuity of the other functions q, p1, p2, A

∗p1 can follow (as
in [39], Section 4.3) from mild regularity assumptions on the superdifferen-
tials of the value function. This is the case of our example developed in
Subsection 3.1.

(ii) When the value function and the candidate optimal state trajectories are
Lipschitz continuous. The Lipschitz continuity of the candidate optimal
state trajectories is guaranteed e.g. when they belong to the domain of A in
particular when the semigroup generated by A is analytic.

(iii) When v in Theorem 3.4 is Lipschitz in | · |×‖ ·‖−2 norm and B-semiconcave.
In this case E1,+v(t, x) is always nonempty and it contains a closed and
convex subset of R×D(A∗)×{0}. It is then easy to see using the definition
of B-semiconcavity that D+f(s) < +∞ for every s. Since E1,+v(t, x) is
nonempty for every (t, x) we can thus always apply the verification theorem.

2Following the definition of viscosity supersolution we define

E1,−v(t, x) = {(q, p1, p2) ∈ R×D(A∗)×H : ∃ϕ ∈ test1 g ∈ test2 s.t. v + ϕ+ g attains a local

minimum at (t, x), −∂t(ϕ+ g)(t, x) = q, −Dϕ(t, x) = p1, −Dg(t, x) = p2

and v(t, x) = −ϕ(t, x)− g(t, x)}.
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We remark that for a minimization problem it is often natural to expect
that the value function may be B-semiconcave (see Example 3.11).

• Condition (22) implicitly implies that 〈p2(r), Axt,x(r)〉 = 0 a.e. if the trajec-
tory is in the domain of A. This follows from the fact that in such a case the
limit in the left hand side of (24) in the proof of Theorem 3.4 can be explicitly
computed and the result is the right hand side of (24) plus the negative term
η(r)g′0(|xt,x(r)|) 〈Axt,x(r), xt,x(r)〉. Using this one would get from (26) that

V (t, x) ≥ J(t, x, u)−
∫ T

t

η(s)g′0(|xt,x(s)|) 〈Axt,x(s), xt,x(s)〉 ds

which implies the claim. Therefore the applicability of the theorem is somehow
limited as in practice (22) may be satisfied only if the function is “nice� (i.e. its
superdifferential should really only consist of points p1 belonging to the domain
of A∗).

• From the statement of the theorem it follows that the superdifferential of v must
be nonempty at almost every point of the admissible trajectory considered. So if
an optimal trajectory on a set of positive measure goes through a set where the
superdifferential of v is empty it cannot be discovered with such a condition.

However, despite all of the drawbacks our verification theorem still can be applied
in some cases where other results fail (see Remarks 3.7 and 3.9). Perhaps when the
operator A is more coercive a better result is possible. We plan to investigate such
cases in the future. However our assumptions on A here are very weak.

Proof. The first statement (v ≤ V ) is just a restatement of Hypothesis 2.10. It
remains to prove the second one. The function

s 7→ b(s, xt,x(s), u(s))

in view of Hypotheses 2.1 and 2.2 is in L1(t, T ;H× R) (in fact it is bounded). So the
set of points which are both left- and right-Lebesgue points of this function that in
addition satisfy (21) is of full measure. We choose t < r < T to be a point in this set.
We will denote y = xt,x(r).

Consider now two functions ϕr,y ∈ test1 and gr,y ∈ test2 such that (we will avoid the
index r,y in the sequel) v ≤ ϕ+g in a neighborhood of (r, y), v(r, y)−ϕ(r, y)−g(r, y) =
0,(∂t)(ϕ + g)(r, y)) = q(r), Dφ(r, y) = p1(r) and Dg(r, y) = p2(r). Then for τ ∈ (r, T ]
such that (τ − r) is small enough we have by Lemmas 2.7, 2.8 and the continuity of
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xt,x(s)

v(τ, xt,x(τ))− v(r, y)

τ − r
≤ g(τ, xt,x(τ))− g(r, y)

τ − r
+
ϕ(τ, xt,x(τ))− ϕ(r, y)

τ − r

≤ 1

τ − r

∫ τ

r

(gt(s, xt,x(s)) + 〈Dg(s, xt,x(s)), b(s, xt,x(s), u(s))〉

+ ϕt(s, xt,x(s)) + 〈Dϕ(s, xt,x(s)), b(s, xt,x(s), u(s))〉
+ 〈A∗Dϕ(s, xt,x(s)), xt,x(s)〉) ds

≤ 1

τ − r

(
∫ τ

r

(gt(r, y) + 〈Dg(r, y), b(s, xt,x(s), u(s))〉+ ϕt(r, y)

+ 〈Dϕ(r, y), b(s, xt,x(s), u(s))〉+ 〈A∗Dϕ(r, y), y〉) ds+ o(τ − s)

)

(23)

In view of the choice of r we know that
∫ τ

r
〈Dg(r, y), b(r, xt,x(s), u(s))〉 ds

τ − r

τ→r−−→ 〈Dg(r, y), b(r, y, u(r))〉

and
∫ τ

r
〈Dϕ(r, y), b(r, xt,x(s), u(s))〉 ds

τ − r

τ→r−−→ 〈Dϕ(r, y), b(r, y, u(r))〉

and thus we can pass to the limsup in (23) to obtain that

lim sup
τ↓r

v(τ, xt,x(τ))− v(r, xt,x(r)))

τ − r

≤ 〈Dg(r, xt,x(r)) +Dϕ(r, xt,x(r)), b(r, xt,x(r), u(r))〉
+ gt(r, xt,x(r)) + ϕt(r, xt,x(r)) + 〈A∗Dϕ(r, xt,x(r)), xt,x(r)〉

= 〈p1(r) + p2(r), b(r, xt,x(r), u(r))〉+ q(r) + 〈A∗p1(r), xt,x(r)〉 . (24)

Repeating the above procedure for τ < r we can also obtain (24) with lim supτ↓r
replaced by lim supτ↑r. Then, Hypothesis 2.12 and (22) yield

v(T, xt,x(T ))− v(t, x)

≤
∫ T

t

(〈p(r), b(r, xt,x(r), u(r))〉+ q(r) + 〈A∗p1(r), xt,x(r)〉)dr

≤
∫ T

t

−L(r, xt,x(r), u(r))dr. (25)

Thus, using (a), we finally arrive at

V (T, xt,x(T ))− V (t, x) = h(xt,x(T ))− V (t, x) ≤ h(xt,x(T ))− v(t, x)

= v(T, xt,x(T ))− v(t, x) ≤
∫ T

t

−L(r, xt,x(r), u(r))dr (26)

which implies that (xt,x(·), u(·)) is an optimal pair and that v(t, x) = V (t, x).
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Remark 3.7. In the book [51] (page 263, Theorem 5.5) the authors present a verifi-
cation theorem (based on a previous result of [24], see also [23] for similar results) in
which it is required that the trajectory of the system remains in the domain of A a.e.
for the admissible control u(·) in question. This is not required here and in fact this is
not satisfied in the example of the next section.

It is shown in [51] (under assumptions similar to and in some aspects slightly stronger
than Hypotheses 2.1 and 2.2) that the couple (x(·), u(·)) is optimal if and only if

u(s) ∈
{

u ∈ U : lim
δ→0

V ((s+ δ), x(s) + δ(Ax(s) + b(s, x(s), u)))− V (s, x(s))

δ

= −L(s, x(s), u)
}

(27)

for almost every s ∈ [t, T ], where V is the value function.

3.1. An example

We present an example of a control problem for which the value function is a nons-
mooth viscosity solution of the corresponding HJB equation, however we can apply our
verification theorem. The problem can model a number of phenomena, for example
in age-structured population models (see [1, 44, 45]), in population economics [40],
optimal technology adoption in a vintage capital context [13, 14].

Consider the state equation

{

�x(s) = Ax(s) +Ru(s)

x(t) = x
(28)

whereA is a linear, densely defined maximal dissipative operator inH, R is a continuous
linear operator R : R → H, so it is of the form R : u 7→ uβ for some β ∈ H. Let B be
an operator as in Section 2 satisfying (4).

We will assume that A∗ has an eigenvalue λ with an eigenvector α belonging to the
range of B.

We consider the functional to be minimized

J(x, u(·)) =
∫ T

t

(

− |〈α, x(s)〉|+ 1

2
u(s)2

)

ds. (29)

We define

ᾱ(t)
def
=

∫ T

t

e(s−t)A∗

αds

and we take M
def
= supt∈[0,T ] | 〈ᾱ(t), β〉 |. We consider as control set U the compact

subset of R given by U = [−M − 1,M + 1]. So we specify the general problem char-
acterized by (1) and (2) taking b(t, x, u) = Ru, L(t, x, u) = − |〈α, x(t)〉| + (1/2)u(t)2,
h = 0, U = [−M − 1,M + 1].
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The HJB equation (10) becomes

{

vt + 〈Dv,Ax〉 − |〈α, x〉|+ infu∈U
(

〈u,R∗Dv〉
R
+ 1

2
u2
)

= 0

v(T, x) = 0.
(30)

Note that the operator R∗ : H → R can be explicitly expressed using β which was used
to define the operator R: R∗x = 〈β, x〉.
Now we observe that for 〈α, x〉 < 0 (respectively > 0) the HJB equation is the same

as the one for the optimal control problem with the objective functional
∫ T

t
(〈α, x(s)〉

+1
2
u(s)2

)

ds (respectively
∫ T

t

(

−〈α, x(s)〉+ 1
2
u(s)2

)

ds) and it is known in the literature
(see [38] Theorem 5.5) that its solution is

v1(t, x) = 〈ᾱ(t), x〉 −
∫ T

t

1

2
(R∗ᾱ(s))2 ds

(respectively

v2(t, x) = −〈ᾱ(t), x〉 −
∫ T

t

1

2
(R∗ᾱ(s))2 ds).

Note that on the separating hyperplane 〈α, x〉 = 0 the two functions assume the same
values. Indeed, since α an eigenvector for A∗,

ᾱ(t) = G(t)α

where

G(t) =

∫ T

t

eλ(s−t)ds.

So, if 〈α, x〉 = 0,
〈ᾱ(t), x〉 = 0 for all t ∈ [0, T ].

Therefore we can glue v1 and v2 writing

W (t, x) =

{

v1(t, x) if 〈α, x〉 ≤ 0

v2(t, x) if 〈α, x〉 > 0.
(31)

It is easy to see that W is continuous and concave in x. We claim that W is a viscosity
solution of (30). For 〈α, x〉 < 0 and 〈α, x〉 > 0 it follows from the fact that v1 and v2
are explicit regular solutions of the corresponding HJB equations.

For the points x where 〈α, x〉 = 0 it is not difficult to see that

{

D1,+W (t, x) =
{(

1
2
(R∗ᾱ(t))2 , γG(t)α

)

: γ ∈ [−1, 1]
}

⊆ D(A∗)

D1,−W (t, x) = ∅.

So we have to verify that W is a subsolution on 〈α, x〉 = 0. If W − ϕ − g at-

tains a maximum at (t, x) with 〈α, x〉 = 0 we have that p
def
= (p1 + p2)

def
= D(ϕ +

g)(t, x) ∈ {γG(t)α : γ ∈ [−1, 1]} ⊆ D(A∗). From the definition of test1 function
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p1 = Dϕ(t, x) ∈ D(A∗) so η(t)g′0(|x|) x
|x|

= p2 = Dg(t, x) ∈ D(A∗). W (·, x) is a C1

function and then, recalling that 〈ᾱ(t), x〉t = 〈G′(t)α, x〉 = 0, we have

∂t(ϕ+ g)(t, x) = ∂tW (t, x) =
1

2
(R∗ᾱ(t))2 , (32)

and for p = γᾱ(t) we have

inf
u∈U

(

〈Ru, p〉+ 1

2
u2
)

= −1

2
γ2 (R∗ᾱ(t))2 . (33)

Moreover, recalling that g′0(|x|) ≥ 0 and −A∗ is monotone, we have

〈A∗p1, x〉 = 〈A∗(p− p2), x〉 = 〈A∗γG(t)α, x〉 − g′0(|x|)
|x| 〈A∗x, x〉

≥ γG(t) 〈A∗α, x〉 = 0. (34)

So, by (32), (33) and (34),

∂t(ϕ+ g)(t, x) + 〈A∗p1, x〉 − |〈α, x〉|+ inf
u∈U

(

〈Ru,D(ϕ+ g)(t, x)〉+ 1

2
u2
)

≥ 1

2
(1− γ2) (R∗ᾱ(s))2 ≥ 0 (35)

and so the claim in proved.

It is easy to see that both W and the value function V for the problem are continuous
on [0, T ]×H and moreover ψ = W and ψ = V satisfy

|ψ(t, x)− ψ(t, y)| ≤ C‖x− y‖−1 for all t ∈ [0, T ], x, y ∈ H

for some C ≥ 0. In particular W and V are B-continuous and have at most linear
growth as ‖x‖ → ∞. By Theorem 2.9, the value function V is a a viscosity solution
of the HJB equation (30) in (0, T ] × H. Moreover, since α = By for some y ∈ H,
comparison holds for equation (30) which yields W = V on [0, T ] × H. (Comparison
theorem can be easily obtained by a modification of techniques of [32] but we cannot
refer to any result there since both V and W are unbounded. However the result
follows directly from Theorem 3.1 together with Remark 3.3 of [48], see Remark 2.11
here. The reader can also consult the proof of Theorem 4.4 of [49]. We point out that
our assumptions are different from the assumptions of the uniqueness Theorem 4.6 of
[51], page 250).

Therefore we have an explicit formula for the value function V given by V (t, x) =
W (t, x). We see that V is differentiable at points (t, x) if 〈α, x〉 6= 0 and

DV (t, x) =

{

ᾱ(t) if 〈α, x〉 < 0

−ᾱ(t) if 〈α, x〉 > 0

and is not differentiable whenever 〈α, x〉 = 0. However we can apply Theorem 3.4 and
prove the following result.
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Proposition 3.8. The feedback map given by

uop(t, x) =

{

−〈β, ᾱ(t)〉 if 〈α, x〉 ≤ 0

〈β, ᾱ(t)〉 if 〈α, x〉 > 0

is optimal. Similarly, also the feedback map

ūop(t, x) =

{

−〈β, ᾱ(t)〉 if 〈α, x〉 < 0

〈β, ᾱ(t)〉 if 〈α, x〉 ≥ 0

is optimal.

Proof. Let (t, x) ∈ (0, T ] × H be the initial datum. If 〈α, x〉 ≤ 0, taking the control
−〈β, ᾱ(t)〉 the associated state trajectory is

xop(s) = e(s−t)Ax−
∫ s

t

e(s−r)AR(〈β, ᾱ(r)〉)dr

and it is easy to check that it satisfies 〈α, xop(s)〉 ≤ 0 for every s ≥ t. Indeed, using
the form of R and the fact that α is an eigenvector of A∗ we get

〈α, xop(s)〉 = eλ(s−t) 〈α, x〉 − 〈α, β〉
∫ s

t

eλ(s−r) 〈β, ᾱ(r)〉 dr

= eλ(s−t) 〈α, x〉 − 〈α, β〉2
∫ s

t

eλ(s−r)G(r)dr.

Similarly if 〈α, x〉 > 0, taking the control 〈β, ᾱ(t)〉 the associated state trajectory is

xop(s) = e(s−t)Ax+

∫ s

t

e(s−r)AR(〈β, ᾱ(r)〉)dr

and it easy to check that it satisfies 〈α, xop(s)〉 > 0 for every s ≥ t.

We now apply Theorem 3.4 taking q(s) = ∂tV (s, xop(s)),

p1(s) =

{

ᾱ(s) if 〈α, xop(s)〉 ≤ 0

−ᾱ(s) if 〈α, xop(s)〉 > 0

and p2(s) = 0. It is easy to see that (q(s), p1(s), p2(s)) ∈ E1,+V (s, xop(s)) and that the
right hand side of (24) is finite at every point in this case. Therefore Hypothesis 2.12
is satisfied. The argument for ūop is completely analogous.

We continue by giving a specific example of the Hilbert space H, the operator A, and
the data α and β.

This example is related to the vintage capital problem in economics in particular with
the model used in [13] (see also [14, 40]): x(t)[s] represents the amount of capital of
vintage s at time t, s̄ is the maximal age of the capital (we take s̄ = 1 for simplicity),
u(t) is the amount of investment at time t, its contribution to the capital is u(t)β(s),
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and µ > 0 is the rate of depreciation. Let H = W 1,2(0, 1) and let {etA; t ≥ 0} be the
semigroup onW 1,2(0, 1) defined as follows: for every f ∈W 1,2(0, 1) and every s ∈ [0, 1]

(etAf)[s] :=

{

e−µtf(s− t) if s− t ≥ 0

e−µtf(0) if s− t < 0.

The domain of A will be

D(A) =
{

f ∈W 2,2(0, 1) : f ′(0) = 0
}

and, for all f in D(A), A(f)[s] = − d
ds
f(s)− µf(s). The expression for A∗ is

{

D(A∗) = {f ∈W 2,2(0, 1) : f ′(1) = 0}
A∗(f)[s] = f ′(s)− f(1)h1(s) + f(0)h0(s)− µf(s)

(as proved in [13] Appendix B), where

h0(s) :=
cosh(1− s)

sinh(1)
, h1(s) :=

cosh(s)

sinh(1)
for s ∈ [0, 1].

Using the fact that 〈h0, f〉W 1,2 = f(0) for all f ∈ W 1,2(0, 1) it is easy to check that A
is maximal dissipative for µ ≥ µ0 =

1
2
‖h0‖2W 1,2 =

1
2
coth(1). By [53], if µ > µ0, we can

simply take B = (AA∗)−1/2. We choose α to be the constant function equal to 1 at
every point of the interval [0, 1]. Again it is easy to verify that α is in the image of B
and the hypotheses of Remark 2.11 are satisfied. Consequently (thanks to the explicit
form of V given in (31)) we can conclude that Hypothesis 2.10 is satisfied with the sets
G1 and G2 described in Remark 2.11.

We now choose β(s) = χ[0, 1
2
](s) − χ[ 1

2
,1](s) (χΩ is the characteristic function of a set

Ω). Consider an initial datum (t, x) such that 〈α, x〉 = 0. In view of Proposition 3.8
an optimal strategy uop is

uop(s) = −〈β, ᾱ(s)〉 = 0.

The related optimal trajectory is

xop(s) = e(s−t)Ax.

Remark 3.9. We observe that, using such strategy, if the initial datum x is such that
〈x, α〉 = 0 then 〈α, xop(t)〉 = 0 for all s ≥ t. So the trajectory remains for the whole
interval in a set in which the value function is not differentiable. Anyway, applying
Theorem 3.4, the optimality is proved. Moreover x can be chosen out of the domain of
A and so the assumptions of the verification theorem given in [51] (page 263, Theorem
5.5) are not verified in this case.

Remark 3.10. Note that, if we consider the functional

J(x, u(·)) =
∫ T

t

(

− |〈α, x(s)〉|σ + 1

2
u(s)2

)

ds.
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with σ ∈ (0, 1), when 〈α, β〉 = 0, we can easily see that the optimal control is always
u ≡ 0 and then the value function (that is the only viscosity solution of the HJB
equation) is

V (t, x) =

∫ T

t

−|
〈

α, esAx
〉

|σds.

V is not semiconcave but Theorem 3.4 can be applied as well. In particular if for the
initial datum x we have 〈α, x〉 = 0 the same pathology described in Remark 3.9 holds.

Example 3.11. In this example we present a class of problems for which the value
functions are B-semiconcave. We do not consider the most general case as we just
want to show that this property is not unnatural.

Consider the dynamics
{

�x(s) = Ax(s) + b(u(s)),

x(t) = x,
(36)

where A = A∗ on H, and b : U → H is bounded and continuous. We will denote
the solution of (36) by x(s; t, x, u(·)). Suppose there is no running cost and we want
to minimize a cost functional J(t, x;u(·)) = h(x(T ; t, x, u(·))). We assume that A
commutes with B, h is B2-semiconcave and

|h(x)− h(y)| ≤ C‖x− y‖−4. (37)

Using (4) it is easy to see that

‖x(s; t, x, u(·))− x(s; t, y, u(·))‖−k ≤ C‖x− y‖−k (38)

for s ∈ [t, T ] for every k ≥ 1. Therefore it follows from (37) and (38) that

|V (t, x)− V (t, y)| ≤ C‖x− y‖−4 (39)

for all t ∈ [0, T ], x, y ∈ H, where V is the value function.

Let t ∈ [0, T ], x, h ∈ H and let u(·) be an ǫ-optimal control for (t, x). Then using the
B2-semiconcavity of h we have

V (t, x+ h) + V (t, x− h)− 2V (t, x)

≤ h(x(T ; t, x+ h, u(·))) + h(x(T ; t, x− h, u(·)))− 2h(x(T ; t, x, u(·))) + 2ǫ

≤ C‖x(T ; t, x+ h, u(·))− x(T ; t, x− h, u(·)‖2−2 + 2ǫ ≤ C‖h‖2−2 + 2ǫ. (40)

To show the full B-semiconcavity of V we adapt the strategy of [25], p. 198–199.

Let x, h ∈ H, 0 ≤ t − τ ≤ t + τ ≤ T , and let u(·) be a control from the dynamic
programming principle such that

V (t, x) ≥ V (t+ τ, x(t+ τ ; t, x, u(·)))− ǫ. (41)

Define

ū(s) = u

(

t+ τ + s

2

)

, s ∈ [t− τ, t+ τ ].
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After some computations we obtain

‖x+ h− x(t+ τ ; t− τ, x− h, ū(·))‖−2 ≤ 2‖h‖−2 + Cτ, (42)

and

‖x+ h+ x(t+ τ ; t− τ, x− h, ū(·))− 2x(t+ τ ; t, x, u(·))‖−4

= 2‖
∫ t+τ

t

AB2(x(2s− t− τ ; t− τ, x− h, ū(·))− x(s; t, x, u(·)))ds‖

≤ Cτ(‖h‖−2 + τ). (43)

It therefore follows from (39)–(43) that

V (t+ τ, x+ h) + V (t− τ, x− h)− 2V (t, x)

≤ V (t+ τ, x+ h) + V (t+ τ, x(t+ τ ; t− τ, x− h, ū(·)))
− 2V (t+ τ, x(t+ τ ; t, x, u(·))) + 2ǫ

≤ V (t+ τ, x+ h) + V (t+ τ, x(t+ τ ; t− τ, x− h, ū(·)))

− 2V

(

t+ τ,
x+ h+ x(t+ τ ; t− τ, x− h, ū(·))

2

)

+ 2ǫ

+ 2V

(

t+ τ,
x+ h+ x(t+ τ ; t− τ, x− h, ū(·))

2

)

− 2V (t+ τ, x(t+ τ ; t, x, u(·)))
≤ C‖x+ h+ x(t+ τ ; t− τ, x− h, ū(·))‖2−2 + 4ǫ

+ C‖x+ h+ x(t+ τ ; t− τ, x− h, ū(·))− 2x(t+ τ ; t, x, u(·))‖−4

≤ C(‖h‖−2 + τ)2 + Cτ(‖h‖−2 + τ) + 4ǫ (44)

and we conclude sending ǫ → 0. This inequality shows that V is B2-semiconcave.
Similar result would also hold for a more general case under appropriate assumptions
on b and L.

4. Sub- and superoptimality principles and construction of ǫ-optimal con-

trols

The construction of ǫ-optimal feedback controls is a consequence of the proof of the
superoptimality principle of dynamic programming. It is similar to a method used in
the finite dimensional case in [57]. This method relied on the regularization of the
value function by its inf-convolution which satisfies a slightly perturbed HJB inequal-
ity, and integration along trajectories obtained by choosing piecewise constant controls
that approximately minimized the Hamiltonian. A generalization of this procedure to
the infinite dimensional case is very delicate because of the presence of the unbounded
operator A. First we have to employ an appropriate modification of the ‖ · ‖−1 norm
inf-convolution introduced in [32]. We then show that this inf-convolution is a super-
solution of a perturbed HJB inequality in a sense that a pointwise inequality holds at
every point at properly chosen elements of its superdifferential. This is part of Lemmas
4.3 and 4.5 which generalize a result from [32]. The last step is the proper selection
of piecewise constant feedback controls and a careful integration along trajectories.
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Overall the procedure is very technical and is not a straightforward generalization of
the finite dimensional technique.

Throughout this section B is a bounded, linear, positive, self-adjoint operator intro-
duced in Section 2 satisfying (4).

To study the construction of ǫ-optimal controls we need to impose another set of
assumptions on b and L:

Hypothesis 4.1. The functions b, L : [0, T ] × H × U → R are continuous and there
exist a constant K > 0 and a local modulus of continuity ω(·, ·) such that

‖b(t, x, u)− b(s, y, u)‖ ≤ K‖x− y‖−1 + ω(|t− s|, ‖x‖ ∨ ‖y‖)

and

|L(t, x, u)− L(s, y, u)| ≤ ω(‖x− y‖−1 + |t− s|, ‖x‖ ∨ ‖y‖)
for all t, s ∈ [0, T ], x, y ∈ H, u ∈ U .

Let m ≥ 2. Modifying slightly the functions introduced in [32] we define for a function
w : (0, T )×H → R and ǫ, β, λ > 0 its sup- and inf-convolutions by

wλ,ǫ,β(t, x) = sup
(s,y)∈(0,T )×H

{

w(s, y)− ‖x− y‖2−1

2ǫ
− (t− s)2

2β
− λe2mK(T−s)‖y‖m

}

,

wλ,ǫ,β(t, x) = inf
(s,y)∈(0,T )×H

{

w(s, y) +
‖x− y‖2−1

2ǫ
+

(t− s)2

2β
+ λe2mK(T−s)‖y‖m

}

.

Lemma 4.2. Let w be such that

w(t, x) ≤ C(1 + ‖x‖k) (respectively, w(t, x) ≥ −C(1 + ‖x‖k)) (45)

on (0, T )×H for some k ≥ 0. Let m > k,m ≥ 2. Then:

(i) For every R > 0 there exists MR,ǫ,β such that if v = wλ,ǫ,β (respectively, v =
wλ,ǫ,β) then

|v(t, x)− v(s, y)| ≤MR,ǫ,β(|t− s|+ ‖x− y‖−2) on (0, T )×BR. (46)

(ii) The function

wλ,ǫ,β(t, x) +
‖x‖2−1

2ǫ
+
t2

2β

is convex (respectively,

wλ,ǫ,β(t, x)−
‖x‖2−1

2ǫ
− t2

2β

is concave). In particular wλ,ǫ,β (respectively, wλ,ǫ,β) is B-semiconvex (respec-
tively, B-semiconcave).

(iii) If v = wλ,ǫ,β (respectively, v = wλ,ǫ,β) and v is differentiable at (t, x) ∈ (0, T )×BR

then |vt(t, x)| ≤MR,ǫ,β, and Dv(t, x) = Bq, where ‖q‖ ≤MR,ǫ,β.
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Proof. (i) Consider the case v = wλ,ǫ,β. Observe first that if ‖x‖ ≤ R then

wλ,ǫ,β(t, x)

= sup
(s,y)∈(0,T )×H, ‖y‖≤N

{

w(s, y)− ‖x− y‖2−1

2ǫ
− (t− s)2

2β
− λe2mK(T−s)‖y‖m

}

, (47)

where N depends only on R and λ.

Now suppose wλ,ǫ,β(t, x) ≥ wλ,ǫ,β(s, y). We choose a small σ > 0 and (t̃, x̃) such that

wλ,ǫ,β(t, x) ≤ σ + w(t̃, x̃)− ‖x− x̃‖2−1

2ǫ
− (t− t̃)2

2β
− λe2mK(T−t̃)‖x̃‖m.

Then

|wλ,ǫ,β(t, x)− wλ,ǫ,β(s, y)|

≤ σ − ‖x− x̃‖2−1

2ǫ
− (t− t̃)2

2β
+

‖x̃− y‖2−1

2ǫ
+

(t̃− s)2

2β

≤ σ − 〈B(x− y), x+ y〉
2ǫ

+
〈B(x− y), x̃〉

ǫ
+

(2t̃− t− s)(t− s)

2β

≤ (2R +N)

2ǫ
‖B(x− y)‖+ 2T

2β
|t− s|+ σ (48)

and we conclude because of the arbitrariness of σ. The case of wλ,ǫ,β is similar.

(ii) It is a standard fact, see for example the Appendix of [30].

(iii) The fact that |vt(t, x)| ≤MR,ǫ,β is obvious. Moreover if α > 0 is small and ‖y‖ = 1
then

αMR,ǫ,β‖y‖−2 ≥ |v(t, x+ αy)− v(x)| = α| 〈Dv(t, x), y〉 |+ o(α)

which upon dividing by α and letting α→ 0 gives

| 〈Dv(t, x), y〉 | ≤MR,ǫ,β‖y‖−2

which then holds for every y ∈ H. This implies that 〈Dv(t, x), y〉 is a bounded linear
functional in H−2 and so Dv(t, x) = Bq for some q ∈ H. Since | 〈q, By〉 | ≤MR,ǫ,β‖By‖
we obtain ‖q‖ ≤MR,ǫ,β.

Lemma 4.3. Let Hypotheses 2.1, 2.2 and 4.1 be satisfied. Let w be a B-upper-semi-
continuous viscosity subsolution (respectively, a B-lower-semicontinuous viscosity su-
persolution) of (10) satisfying (45). Let m > k,m ≥ 2. Then for every R, δ > 0 there
exists a non-negative function γR,δ(λ, ǫ, β), where

lim
λ→0

lim sup
ǫ→0

lim sup
β→0

γR,δ(λ, ǫ, β) = 0, (49)

such that wλ,ǫ,β (respectively, wλ,ǫ,β) is a viscosity subsolution (respectively, supersolu-
tion) of

vt(t, x) + 〈Dv(t, x), Ax〉+H(t, x,Dv(t, x)) = −γR,δ(λ, ǫ, β) in (δ, T − δ)×BR (50)
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(respectively,

vt(t, x) + 〈Dv(t, x), Ax〉+H(t, x,Dv(t, x)) = γR,δ(λ, ǫ, β) in (δ, T − δ)×BR) (51)

for β sufficiently small (depending on δ), in the sense that if v−ψ has a local maximum
(respectively, v + ψ has a local minimum) at (t, x) for a test function ψ = ϕ+ g then

ψt(t, x) + 〈A∗Dψ(t, x), x〉+H(t, x,Dψ(t, x)) ≥ −γR,δ(λ, ǫ, β) (52)

(respectively,

−ψt(t, x)− 〈A∗Dψ(t, x), x〉+H(t, x,−Dψ(t, x)) ≤ γR,δ(λ, ǫ, β)). (53)

Proof. The proof is similar to the proof of Proposition 5.3 of [32]. We notice that
wλ,ǫ,β is bounded from above.

Let (t0, x0) ∈ (δ, T−δ)×H be a local maximum of wλ,ǫ,β−ϕ−g. We can assume that the
maximum is global and strict (see Proposition 2.4 of [32]) and that wλ,ǫ,β−ϕ−g → −∞
as ‖x‖ → ∞ uniformly in t. In view of these facts and (47) we can choose S > 2‖x0‖,
depending on λ such that, for all ‖x‖+ ‖y‖ > S − 1 and s, t ∈ (0, T ),

w(s, y)− 1

2ǫ
‖(x− y)‖2−1 −

(t− s)2

2β
− λe2mK(T−s)‖y‖m − ϕ(t, x)− g(t, x)

≤ w(t0, x0)− λe2mK(T−t0)‖x0‖m − ϕ(t0, x0)− g(t0, x0)− 1. (54)

We can then use a perturbed optimization technique of [32] (see page 424 there), which
is a version of the Ekeland-Lebourg Lemma [36], to obtain for every α > 0 elements
p, q ∈ H and a, b ∈ R with ‖p‖, ‖q‖ ≤ α and |a|, |b| ≤ α such that the function

φ(t, x, s, y)
def
= w(s, y)− 1

2ǫ
‖(x− y)‖2−1 −

(t− s)2

2β
− λe2mK(T−s)‖y‖m

− g(t, x)− ϕ(t, x)− 〈Bp, y〉 − 〈Bq, x〉 − at− bs (55)

attains a local maximum (t̄, x̄, s̄, ȳ) over [δ/2, T − δ/2]× BS × [δ/2, T − δ/2]× BS. It
follows from (54) that if α is sufficiently small then ‖x̄‖, ‖ȳ‖ ≤ S − 1.

By possibly making S bigger we can assume that (0, T ) × BS contains a maximizing
sequence for

sup
(s,y)∈(0,T ), ‖y‖≤N

{

w(s, y)− ‖x0 − y‖2−1

2ǫ
− (t0 − s)2

2β
− λe2mK(T−s)‖y‖m

}

.

Then
φ(t̄, x̄, s̄, ȳ) ≥ wλ,ǫ,β(t0, x0)− ϕ(t0, x0)− g(t0, x0)− Cα

where the constant C does not depend on α > 0, and

φ(t̄, x̄, s̄, ȳ) ≤ wλ,ǫ,β(t̄, x̄)− ϕ(t̄, x̄)− g(t̄, x̄) + Cα.

Therefore, since (t0, x0) is a strict maximum, we have that (t̄, x̄)
α↓0−−→ (t0, x0) and so for

small α, t̄ ∈ (δ, T − δ). It then easily follows that if β is big enough (depending on λ
and δ) then s̄ ∈ (δ/2, T − δ/2).
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Moreover, standard arguments (see for instance [46]) give us

lim
β→0

lim sup
α→0

|s̄− t̄|2
2β

= 0, (56)

lim
ǫ→0

lim sup
β→0

lim sup
α→0

|x̄− ȳ|2−1

2ǫ
= 0. (57)

We can now use the fact that w is a subsolution to obtain

− (t̄− s̄)

β
− 2λmKe2mK(T−s̄)‖ȳ‖m + b− 〈A∗B(x̄− ȳ), ȳ〉

ǫ
+ 〈A∗Bp, ȳ〉

+H

(

s̄, ȳ,
1

ǫ
B(ȳ − x̄) + λme2mK(T−s̄)‖y‖m−1 y

‖y‖ +Bp

)

≥ 0. (58)

We notice that

−(t̄− s̄)

β
= ϕt(t̄, x̄) + gt(t̄, x̄) + a

and
1

ǫ
B(ȳ − x̄) = Dϕ(t̄, x̄) +Dg(t̄, x̄) +Bq (59)

which in particular implies that Dg(t̄, x̄) ∈ D(A∗), i.e. x̄ ∈ D(A∗). Therefore using
this, the assumptions on b and L, and (56) and (57) we have, denoting ψ = ϕ+ g,

ψt(t̄, x̄) + 〈x̄, A∗Dψ(t̄, x̄)〉+H (t̄, x̄, Dψ(t̄, x̄))

≥ 2λmKe2mK(T−s̄)‖ȳ‖m − 〈A∗Bp, ȳ〉 − a− b

− 1

ǫ
〈(ȳ − x̄), A∗B(ȳ − x̄)〉 − 〈x̄, A∗Bq〉+H

(

t̄, x̄,
1

ǫ
B(ȳ − x̄)−Bq

)

−H

(

s̄, ȳ,
1

ǫ
B(ȳ − x̄) + λme2mK(T−s̄)‖y‖m−1 y

‖y‖

)

≥ 2λmKe2mK(T−s̄)‖ȳ‖m − Cλ,ǫα+
c0
ǫ
‖x̄− ȳ‖2−1 −K‖x̄− ȳ‖−1

‖B(x̄− ȳ)‖
ǫ

− γλ,ǫ(|t̄− s̄|)− λm(M +K‖ȳ‖)e2mK(T−s̄)‖ȳ‖m−1

≥ − Cλ,ǫα− γ(λ, ǫ, β, α) (60)

for some γ(λ, ǫ, β, α) such that

lim
λ→0

lim sup
ǫ→0

lim sup
β→0

lim sup
α→0

γ(λ, ǫ, β, α) = 0.

Since (t̄, x̄) → (t0, x0) as α → 0 we have that Dψ(t̄, x̄) → Dψ(t0, x0), and from (59)
that, possibly along a subsequence, A∗Dg(t̄, x̄) ⇀ z̄ for some z̄. But this obviously
implies that z̄ = A∗Dg(t0, x0). We therefore obtain the claim by letting α → 0. The
proof for wλ,β,ǫ is similar.
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Remark 4.4. Similar argument would also work for problems with discounting if w
was uniformly continuous in | · |×‖ ·‖−1 norm uniformly on bounded sets of (0, T )×H.
Moreover in some cases the function γR,δ could be explicitly computed. For instance if
w is bounded and

|w(t, x)− w(s, y)| ≤ σ(‖x− y‖−1) + σ1(|t− s|; ‖x‖ ∨ ‖y‖) (61)

for t, s ∈ (0, T ), ‖x‖, ‖y‖ ∈ H, we can replace λe2mK(T−s̄)‖ȳ‖m by λµ(y) for some radial
nondecreasing function µ such that Dµ is bounded and µ(y) → +∞ as ‖y‖ → ∞ (see
[32], page 446). If we then replace the order in which we pass to the limits we can get
an explicit (but complicated) form for γR,δ satisfying

lim
ǫ→0

lim sup
λ→0

lim sup
β→0

γR,δ(ǫ, λ, β) = 0.

The proofs of Theorem 3.7 and Proposition 5.3 in [32] can give hints how to do this.

Lemma 4.5. Let the assumptions of Lemma 4.3 be satisfied. Then:

(a) If (a, p) ∈ D1,−wλ,ǫ,β(t, x) for (t, x) ∈ (δ, T − δ)×BR then

a+ 〈A∗p, x〉+H(t, x, p) ≥ −γR,δ(λ, ǫ, β) (62)

for β sufficiently small.

(b) If in addition H(s, y, q) is weakly sequentially lower-semicontinuous with respect
to the q-variable and (a, p) ∈ D1,+wλ,ǫ,β(t, x) for (t, x) ∈ (δ, T − δ)× BR is such
that (wλ,ǫ,β)t(tn, xn) → a,Dwλ,ǫ,β(tn, xn) ⇀ p for some (tn, xn) → (t, x), where
(tn, xn) are points of Fréchet differentiability of wλ,ǫ,β, then

a+ 〈A∗p, x〉+H(t, x, p) ≤ γR,δ(λ, ǫ, β)

for β sufficiently small.

Remark 4.6. The Hamiltonian H is weakly sequentially lower-semicontinuous with
respect to the q-variable for instance if U is compact. To see this we observe that
thanks to the compactness of U the infimum in the definition of the Hamiltonian is a
minimum. Let now qn ⇀ q and let

H(s, y, qn) = 〈qn, b(s, y, un)〉+ L(s, y, un)

for some un ∈ U . Passing to a subsequence if necessary we can assume that un −→ ū,
and then passing to the limit in the above expression we obtain

lim inf
n→∞

H(s, y, qn) = 〈q, b(s, y, ū)〉+ L(s, y, ū) ≥ H(s, y, q).

We also remark that since H is concave in q it is weakly sequentially upper-semi-
continuous in q. Therefore in (b) the Hamiltonian H is assumed to be weakly sequen-
tially continuous in q.

Proof of Lemma 4.5. Recall first that for a convex/concave function v its sub/super-
differential at a point (s, z) is equal to

conv{(a, p) : vt(sn, zn) → a,Dv(sn, zn)⇀ p, sn → s, zn → z}, (63)
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where (sn, zn) above are points of Fréchet differentiability of v (see [16], page 522).

(a) Step 1. Denote v = wλ,ǫ,β. Let (t, x) ∈ (δ, T − δ) × BR be a point of dif-
ferentiability of v. It is easy to see, taking test functions of the form ψ(s, y) =
α(s − t0)

2 + β‖y − x0‖2, where α, β > 0, t0 ∈ (0, T ), x0 ∈ D(A∗), and applying
perturbed optimization technique as in the proof of Lemma 4.3, that the set E+ =
{(s, y) : E1,+v(s, y) 6= ∅} is dense in (0, T ) × H. Let (tn, xn) ∈ E+ be such that
(tn, xn) → (t, x). By the B-semisemiconvexity, v it is differentiable at (tn, xn) and, from
Lemma 4.2 (iii), |vt(tnk

, xnk
)| ≤ MR,ǫ,β and Dv(tn, xn) = Bqn for some ‖qn‖ ≤ MR,ǫ,β.

Therefore we can extract a subsequence nk such that vt(tnk
, xnk

) → a and qnk
⇀ q

for some (a, q) ∈ (δ, T − δ) × BR. Then Dv(tnk
, xnk

) = Bqnk
⇀ Bq. Moreover

a = vt(t, x), Bq = Dv(t, x) by (63). Therefore

A∗Dv(tnk
, xnk

) = A∗Bqnk
⇀ A∗Bq = A∗Dv(t, x).

Also, since H is concave in p it is weakly sequentially upper-semicontinuous, so we
have

H(t, x,Dv(t, x)) ≥ lim sup
k→+∞

H(tnk
, xnk

, Dv(tnk
, xnk

)).

It now follows from Lemma 4.3 that

vt(t, x) + 〈A∗Dv(t, x), x〉+H(t, x,Dv(t, x)) ≥ −γR,δ(λ, ǫ, β). (64)

Step 2. If (a, p) is such that vt(tn, xn) → a,Dv(tn, xn) ⇀ p with (tn, xn) → (t, x), the
claim follows from (64) and the same arguments as in Step 1.

Step 3. Let (a, p) be a generic point of D1,−v(t, x), i.e. p = limn→∞

∑n
i=1 λ

n
i Bq

n
i , where

∑n
i=1 λ

n
i = 1, ‖qni ‖ ≤ MR,ǫ,β, and the Bqni are weak limits of gradients. By passing to

a subsequence if necessary we can assume that
∑n

i=1 λ
n
i q

n
i ⇀ q and p = Bq. But then

〈

A∗

(

n
∑

i=1

λni Bq
n
i

)

, xn

〉

=

〈

A∗B

(

n
∑

i=1

λni q
n
i

)

, xn

〉

→ 〈A∗Bq, x〉 = 〈A∗p, x〉

as n→ ∞. The result now follows from Step 2 and the concavity of

p 7→ 〈A∗p, x〉+H(t, x, p).

(b) Denote v = wλ,ǫ,β. If (t, x) is a point of differentiability of v then, similarly as in
Step 1 of (a), we can choose a sequence (tn, xn) ∈ E− = {(s, y) : E1,−v(s, y) 6= ∅} such
that (tn, xn) → (t, x), vt(tn, xn) → vt(t, x), Dv(tn, xn)⇀ Dv(t, x) and A∗Dv(tn, xn)⇀
A∗Dv(t, x). Lemma 4.3 and the weak sequential lower-semicontinuity of the Hamilto-
nian now yield that

vt(t, x) + 〈A∗Dv(t, x), x〉+H(t, x,Dv(t, x)) ≤ γR,δ(λ, ǫ, β). (65)

The general case when (a, p) is such that vt(tn, xn) → a,Dv(tn, xn) ⇀ p for some
(tn, xn) → (t, x) follows from (65) and the same arguments.
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Theorem 4.7. Let the assumptions of Lemma 4.3 be satisfied and let w be a function
such that for every R > 0 there exists a modulus σR such that

|w(t, x)− w(s, y)| ≤ σR(|t− s|+ ‖x− y‖−1) for t, s ∈ (0, T ), ‖x‖, ‖y‖ ≤ R. (66)

Then:

(a) If w is a viscosity subsolution of (10) satisfying w(t, x) ≤ C(1 + ‖x‖k) for some
k ≥ 0 then for every 0 < t < t+ h < T , x ∈ H

w(t, x) ≤ inf
u(·)∈U [t,T ]

{
∫ t+h

t

L(s, x(s), u(s))ds+ w(t+ h, x(t+ h))

}

. (67)

(b) Assume in addition that H(s, y, q) is weakly sequentially lower-semicontinuous in
q and that for every (t, x) there exists a modulus ωt,x such that

‖xt,x(s2)− xt,x(s1)‖ ≤ ωt,x(s2 − s1) (68)

for all t ≤ s1 ≤ s2 ≤ T and all u(·) ∈ U [t, T ], where xt,x(·) is the solution of (7).
If w is a viscosity supersolution of (10) satisfying w(t, x) ≥ −C(1 + ‖x‖k) for
some k ≥ 0 then for every 0 < t < t + h < T, x ∈ H, and ν > 0 there exists a
piecewise constant control uν ∈ U [t, T ] such that

w(t, x) ≥
∫ t+h

t

L(s, x(s), uν(s))ds+ w(t+ h, x(t+ h))− ν. (69)

In particular we obtain the superoptimality principle

w(t, x) ≥ inf
u(·)∈U [t,T ]

{
∫ t+h

t

L(s, x(s), u(s))ds+ w(t+ h, x(t+ h))

}

(70)

and if w is the value function V we have existence (together with the explicit
construction) of piecewise constant ν-optimal controls.

Proof. We will only prove (b) as the proof of (a) follows the same strategy after we
fix any control u(·) and is in fact much easier. We follow the ideas of [57] (that treats
the finite dimensional case).

Step 1. Let n ≥ 1 and let δ be such that 0 < δ < t < t+ h < T − δ. We approximate
w by wλ,ǫ,β with m > k. We will always take β small enough so that the conclusion of
Lemma 4.5(b) is satisfied on (δ, T − δ) × BR. We notice that for any u(·) if xt,x(·) is
the solution of (7) then

sup
t≤s≤T

‖xt,x(s)‖ < R = R(T, ‖x‖).

Step 2. Take any (a, p) ∈ D1,+wλ,ǫ,β(t, x) as in Lemma 4.5(b) (i.e. p is the weak limit of
derivatives nearby). Such elements always exist because wλ,ǫ,β is B-semiconcave. Then
we choose u1 ∈ U such that

a+ 〈A∗p, x〉+ 〈p, b(t, x, u1)〉+ L(t, x, u1) ≤ γR,δ(λ, ǫ, β) +
1

n2
. (71)
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By the B-semiconcavity of wλ,ǫ,β

wλ,ǫ,β(s, y) ≤ wλ,ǫ,β(t, x) + a(s− t) + 〈p, y − x〉+ ‖x− y‖2−1

2ǫ
+

(t− s)2

2β
. (72)

But the right hand side of the above inequality is a test1 function so if s ≥ t and
x(s) = xt,x(s) with constant control u(s) = u1, we can use (13) and write

∣

∣

∣

∣

∣

∣

a(s− t) + 〈p, x(s)− x〉+ ‖x(s)−x‖2
−1

2ǫ
+ (s−t)2

2β

s− t
− (a+ 〈p, b(t, x, u1)〉+ 〈A∗p, x〉)

∣

∣

∣

∣

∣

∣

≤ |t− s|
2β

+

∣

∣

∣

∣

∫ s

t
〈A∗p, x(r)− x〉 dr

s− t

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

t
〈p, b(r, x(r), u1)− b(t, x, u1)〉 dr

s− t

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

t
〈A∗B(x(r)− x), x(r)〉 dr

ǫ(s− t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s

t
〈B(x(r)− x), b(r, x(r), u1)〉 dr

ǫ(s− t)

∣

∣

∣

∣

≤ ω′
t,x

(

|s− t|+ sup
t≤r≤s

‖x(r)− x‖
)

≤ ω̃t,x(s− t) (73)

for some moduli ω′
t,x and ω̃t,x that depend on (t, x), ǫ, β but not on u1. We can now

use (71), (72) and (73) to estimate

wλ,ǫ,β(t+
h
n
, x(t+ h

n
))− wλ,ǫ,β(t, x)

h/n

≤ ω̃t,x

(

h

n

)

+ γR,δ(λ, ǫ, β) +
1

n2
− L(t, x, u1). (74)

Step 3. Denote ti = t + (t−1)h
n

for i = 1, ..., n. We now repeat the above procedure
starting at x(t2) to aobtainbtain u2 satisfying (74) with (t2, x(t2)) replaced by (t3, x(t3)),
(t, x) = (t1, x(t1)) replaced by (t2, x(t2)), and u1 replaced by u2. After n iterations of
this process we obtain a piecewise constant control u(n), where u(n)(s) = ui if s ∈
[ti, ti+1). Then if x(r) solves (7) with the control u(n) we have

wλ,ǫ,β(t+ h, x(t+ h))− wλ,ǫ,β(t, x)

h/n

≤ ω̃t,x

(

h

n

)

n+ γR,δ(λ, ǫ, β)n+
n

n2
−

n
∑

i=1

L(ti−1, x(ti−1), ui).

We remind that (68) is needed here to guarantee that supti−1≤r≤ti
‖x(r) − x(ti−1)‖ is

independent of ui and x(ti−1) and depends only on x and t. We then easily obtain

wλ,ǫ,β(t+ h, x(t+ h))− wλ,ǫ,β(t, x)

≤ ω̃t,x

(

h

n

)

h+ γR,δ(λ, ǫ, β)h+
h

n2
−
∫ t+h

t

L(r, x(r), u(n)(r))dr + ω̃′
t,x

(

h

n

)

h (75)

for some modulus ω̃′
t,x, where we have used Hypothesis 4.1 and (68) to estimate how

the sum converges to the integral. It now remains to observe that it follows from (66)
that

|wλ,ǫ,β(s, y)− w(s, y)| ≤ σ̃R(λ+ ǫ+ β) for s ∈ (δ, T − δ), ‖y‖ ≤ R,



638 G. Fabbri, F. Gozzi, A. Świȩch / Verification Theorem and Construction of ...

where the modulus σ̃R can be explicitly calculated from σR. We thus obtain

w(t+ h, x(t+ h)) +

∫ t+h

t

L(r, x(r), u(n)(r))dr

≤ w(t, x) + 2σ̃R(λ+ ǫ+ β) + ω̃t,x

(

h

n

)

h+ γR,δ(λ, ǫ, β)h+
h

n2
+ ω̃′

t,x

(

h

n

)

h.

Now, given ν > 0, we first have to use (49) and take λ, ǫ, β small so that

γR,δ(λ, ǫ, β)h+ 2σ̃R(λ+ ǫ+ β) ≤ ν

2
,

and then we need to take n such that

ω̃t,x

(

h

n

)

h+
h

n2
+ ω̃′

t,x

(

h

n

)

h ≤ ν

2

to arrive at (69) and consequently (70).

Finally we notice that if w is the value function V then, in virtue of the dynamic
programming principle, the control u(n) constructed above is ν-optimal on the interval
[t, t+h]. If h is such that t+h is sufficiently close to T then obviously this construction,
together with (66), gives us a nearly optimal piecewise constant control on the whole
interval [t, T ] whose value on [t+ h, T ] can be arbitrary.

Condition (68) is restrictive, however it seems necessary to obtain uniform estimates
on the error terms ω̃t,x

(

h
n

)

and ω̃′
t,x

(

h
n

)

in (74) and (75). We present below an example
when it is satisfied. In general one may expect it to hold when the semigroup etA has
some regularizing properties.

Example 4.8. Condition (68) holds for example ifA = A∗, it generates a differentiable
semigroup, and ‖AetA‖ ≤ C/tδ for some δ < 2. Indeed under these assumptions, if
u(·) ∈ U [t, T ] and writing x(s) = xt,x(s), we have

‖(−A+ I)
1

2x(s)‖ ≤ ‖(−A+ I)
1

2 e(s−t)Ax‖+
∫ s

t

‖(−A+ I)
1

2 e(s−τ)Ab(τ, x(τ), u(τ))‖dτ.

However for every y ∈ H and 0 ≤ τ ≤ T

‖(−A+ I)
1

2 eτAy‖2 ≤ ‖(−A+ I)eτAy‖ ‖y‖ ≤ C1

τ δ
‖y‖2.

This yields

‖(−A+ I)
1

2 eτA‖ ≤
√
C1

τ
δ
2

and therefore

‖(−A+ I)
1

2x(s)‖ ≤ C2

(

1

(s− t)
δ
2

+ (s− t)1−
δ
2

)

≤ C3

(s− t)
δ
2

.
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We will first show that for every ǫ > 0 there exists a modulus σǫ (also depending
on x but independent of u(·)) such that ‖e(s2−s1)Ax(s1) − x(s1)‖ ≤ σǫ(s2 − s1) for all
t+ ǫ ≤ s1 < s2 ≤ T . This is now rather obvious since

e(s2−s1)Ax(s1)− x(s1) =

∫ s2−s1

0

AesAx(s1)ds

=

∫ s2−s1

0

(−A+ I)
1

2 esA(−A+ I)
1

2x(s1)ds−
∫ s2−s1

0

esAx(s1)ds

and thus

‖e(s2−s1)Ax(s1)− x(s1)‖ ≤ ‖(−A+ I)
1

2x(s1)‖
∫ s2−s1

0

√
C1

s
δ
2

ds+ (s2 − s1)‖x(s1)‖

≤ C4

ǫ
δ
2

(s2 − s1)
1− δ

2 + C5(s2 − s1).

We also notice that there exists a modulus σ, depending on x and independent of u(·),
such that

‖x(s)− x‖ ≤ σ(s− t).

Let now t ≤ s1 < s2 ≤ T . Denote s̄ = max(s1, t+ ǫ). If s2 ≤ t+ ǫ then

‖x(s2)− x(s1)‖ ≤ 2σ(ǫ).

Otherwise

‖x(s2)− x(s1)‖ ≤ 2σ(ǫ) + ‖x(s2)− x(s̄)‖

≤ 2σ(ǫ) + ‖e(s2−s̄)Ax(s1)− x(s̄)‖+
∫ s2

s̄

‖e(s2−τ)Ab(τ, x(τ), u(τ))‖dτ

≤ 2σ(ǫ) + σǫ(s2 − s1) + C4(s2 − s1) (76)

for some constant C4 independent of u(·). Therefore (68) is satisfied with the modulus

ωt,x(τ) = inf
0<ǫ<T−t

{2σ(ǫ) + σǫ(τ) + C4τ} .
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[43] F. Gozzi, S. S. Sritharan, A. Świȩch: Viscosity solutions of dynamic-programming equa-
tions for the optimal control of the two-dimensional Navier-Stokes equations, Arch. Ra-
tion. Mech. Anal. 163(4) (2002) 295–327.
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