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The purpose of this paper is to follow the spirit of the Chakerian-Klamkin’s characterization of central
symmetry to give characterizations of projective centers and hyperplanes of symmetry. We use them
to give a new and unexpected characterization of ellipsoids. We also prove two geometric colored
theorems in the spirit of Lovász-Bárány.

1. Introduction

Let K ⊂ R
n be a compact, convex set and let L ⊂ R

n be a compact set. If x is a point
of Rn and Kx is the set of all vectors that translates x into K, then clearly Kx = K−x

is a compact, convex set. Consider the family of compact, convex sets F = {Kx}x∈L.
A vector v belongs to the intersection of all members of F if and only if the vector
v translates L into K, that is, v + L ⊂ K. By Helly’s Theorem, there is a point in
the intersection of the family F if and only if there is a point in the intersection of
every subfamily of F of size n+ 1. So, if for every {x0, x1, ..., xn} ⊂ L, there is v such
that {x0 + v, x1 + v, ..., xn + v} ⊂ K, then there exists v0, such that v0 + L ⊂ K. Or,
in other words: if for every {x0, x1, ..., xn} ⊂ L, there is a translated copy of K that
contains {x0, x1, ..., xn}, then there is a translated copy of K that contains L. This
implies that a compact, convex set, K is centrally symmetric if and only if for every
n-simplex T ⊂ K , there is a translated copy of −T contained in K.

In fact, this result can be improved substantially if we consider the fact that L is equal
to K, up to translation, if and only if π(L) is equal to π(K), up to translation, for
every orthogonal projection π into a two dimensional plane. This implies that K is
centrally symmetric if and only if for every triangle T ⊂ K, there is a translated copy
of −T contained in K.

It is a little surprising that Chakerian and Klamkin [5] had obtained this result for
non necessarily convex sets using a very simple argument. Similarly, using Helly’s
Theorem again, we may show how to characterize a direction in which a orthogonal
hyperplane of symmetry may occur: If K ⊂ R

n is a compact, convex set and v ∈ S
n−1
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is a fixed direction such that for every pair of points {a, b} ⊂ K there is a hyperplane Γ,
orthogonal to v, with the property that the orthogonal reflections of a and b with respect

to Γ are also contained in K. Then K has an orthogonal hyperplane of symmetry

orthogonal to v. The proof of this statement is very simple: Let L be a line parallel to
v. For every x ∈ K, define Kx as the set of points y ∈ L, such that the reflected point of
x with respect to the hyperplane through y, orthogonal to v, is also in K. Clearly, Kx is
a segment contained in L. In this way we have obtained a pairwise intersecting family
of segments contained in L. Hence, by Helly’s Theorem we have that ∩x∈KKx 6= ∅.
Consider z ∈ ∩x∈KKx, then the hyperplane through z, orthogonal to v, is a hyperplane
of symmetry for K. It is not difficult to see that this hyperplane of symmetry is unique.

Moreover, after some definitions, we will be ready to use Helly’s Theorem to give a
Chakerian-Klamkin type characterization of projective centers and hyperplanes of pro-
jective symmetry. In order to do this, we complete Rn to the n-dimensional projective
space P

n by adding the hyperplane at infinity. Let O ∈ {Pn \ bdK}. According to [7],
we say that O is a pole of K if there is a hyperplane H of Pn with the property that
for every line L through O such that bdK ∩ L = {A,B}, we have that the cross ratio
of A,B,O and the intersection of L and H, C = L ∩H, is minus one. That is,

[A,B;O,C] =
AO

OB
·
CB

AC
= −1,

where XY stands for the directed segment from X to Y. If this is so, we say that A

and B are harmonic conjugate points with respect to O and C. Clearly, O and C are
also harmonic conjugate with respect to A and B. Moreover, in this case we say that
H is a polar hyperplane of K and also that H is the polar of the pole O. If O ∈ intK
is a pole of K, we then say that O is a projective center of symmetry of K because,
in this case, the polar of K is a hyperplane H that does not intersect K and if π is
a projective isomorphism that sends H to the hyperplane at infinity, then π(K) is a
centrally symmetric, convex body with centre π(O). If O ∈ {Pn \K} is a pole of K,
then its polar H will be called a projective hyperplane of symmetry of K, because in
this case K ∩ H 6= ∅ and there is a projective isomorphism π that sends O to the
hyperplane at infinity and we get that π(H) is an affine hyperplane of symmetry for
the convex body π(K).

Proposition 1.1. Let K ⊂ R
n be a convex body and let H be a fixed hyperplane. Then

H is a polar of K if and only if for every (n+1)-tuple of points {α0, ..., αn} ⊂ K there

is a point β such that the corresponding harmonic conjugate points {α′
0, ...α

′
n} with

respect to β and H, are also contained in K.

Proof. For every point x ∈ K, let Kx be the set of all points β such that the harmonic
conjugate of x with respect to β and H lies in K. First note that Kx is convex, because
if β, γ ∈ Kx, then the harmonic conjugate x′ of x with respect to β and H lies in K and
the harmonic conjugate x′′ of x with respect to γ and H lies in K. So, by elementary
geometry, if δ ∈ [β, γ], then the harmonic conjugate of x with respect to δ and H

lies in [x′, x′′] which is contained in K. Next observe that Kx is compact, because it
is clearly closed and for every line L through Kx, the set L ∩Kx is bounded. Let us
consider the family of compact, convex sets F = {Kx | x ∈ K}. By hypothesis, given
{α0, ..., αn} ⊂ K, there exists β ∈ Kα0

∩ ... ∩ Kαn
, so by Helly’s Theorem there is a
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point β0 ∈ ∩{Kx | x ∈ K}. This implies that the harmonic conjugate K ′ of K with
respect to β0 and H is contained in K. Therefore, β0 is a pole of K and H its polar.

The purpose of this paper is to follow the spirit of the Chakerian-Klamkin’s character-
ization of central symmetry to give new characterizations of ellipsoids and spheres (in
Section 2). Furthermore, in Section 3 we will prove two colored theorems in the spirit
of Lovász-Bárány.

2. Characterizations of Ellipsoids

We start by proving the following characterization of ellipsoids. We shall give two
different proofs, the first one of them uses Proposition 1.1 and the second one uses a
very simple extremal principle.

Theorem 2.1. Let K ⊂ R
n be a convex body. Then, K is an ellipsoid if and only if

for every triple T := {a, b, c} ⊂ K, there is an ellipse E such that T ⊂ E ⊂ K.

First proof. We will prove first the case n = 2. In order to prove that K is an ellipse
it is sufficient to prove, by a theorem proved in [7], that for any line L that does not
intersect K, the line L is a polar of K. So, consider a fixed line L with L ∩ K = ∅.
We will prove that L is a polar of K by using our Proposition 1.1. Consider a triple
T := {a, b, c} ⊂ K and by hypothesis let E be an ellipse such that T ⊂ E ⊂ K. Since
L is a polar for E , there exists the corresponding pole β. Hence, the corresponding
harmonic conjugate points {a′, b′, c′} with respect to β and L are also contained in
E ⊂ K. This proves that L is a polar of K, therefore K is an ellipse.

Now, for the case n > 2, we proceed as follows: let H be a 2-dimensional plane and let
KH = K∩H. If we restrict ourselves to consider triples of points contained in KH then
it is easy to prove that KH is an ellipse. It follows that every 2-dimensional section of
K is an ellipse, therefore K is an ellipsoid.

Second proof. We will prove only the case n = 2, the proof for the case n > 2 is
exactly the same as above. For this, let T ⊂ K be a triangle with the largest area and
let {a, b, c} be its vertices. Clearly, {a, b, c} ⊂ bdK. Now, let T ′ be the triangle with
vertices a+b−c, b+c−a, and c+a−b. This triangle is inversely homothetic to T and
its sides are tangent to K at the points a, b, c. The condition of the theorem implies the
existence of an ellipse E with T ⊂ E ⊂ K ⊂ T ′. Since E contains the midpoints of the
sides of T ′ then it is the unique ellipse contained in T ′ and passing through the points
a, b, c. It is well-known that this ellipse is the one with maximum area contained in T ′.

Let x ∈ bdE be an arbitrary point different of a, b, and c. It is very easy to see that
there are points y, z ∈ bdE such that the triangle with vertices x, y, z has maximum
area. Since |xyz| = |abc|, where |mnp| stands for the area of a triangle with vertices
m,n, p, we then have that {x, y, z} ⊂ bdK. Since x is an arbitrary point in bdE we
have that bdE = bdK.

Similarly, we have the following.

Theorem 2.2. Let K ⊂ R
2 be a convex body. Then, K is an ellipse if and only if for

every triangle T which contains K there is an ellipse E such that K ⊂ E ⊂ T.
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Proof. The proof is very similar to the second proof of the previous theorem but in
this case we must consider the triangle T with minimum area which contains K. Let
a, b, c, be the midpoints of the sides of T. It is a well-known result that {a, b, c} ⊂ bdK.

By the condition of the theorem there is an ellipse E such that K ⊂ E ⊂ T. Again, E
is the unique ellipse which contains a, b, c, and is contained in T . Let T ′ be a triangle
such that |T ′| = |T |, T ′ ⊃ E, and makes contact with E in the points x, y, z, different
of a, b, and c. Clearly {x, y, z} ⊂ bdK, otherwise we may obtain a triangle with its
sides parallel to the sides of T ′ and with smaller area. Therefore, K coincides with
E.

We also may add an additional restriction to the triples of considered points.

Theorem 2.3. Let K ⊂ R
n, n ≥ 3, be a convex body. Suppose that there exists a

number ǫ > 0, such that for every triangle T with vertices a, b, c ∈ K, of area smaller

than ǫ, there is an ellipse E such that T ⊂ E ⊂ K. Then K is an ellipsoid.

Proof. First note that our hypotheses clearly imply that K is strictly convex and
smooth. Let H be a two dimensional plane such that K ∩ H has area smaller than
ǫ. Given any triangle T ⊂ K ∩ H, since the area of T is smaller than ǫ, there is an
ellipse E such that T ⊂ E ⊂ K ∩H. Therefore, by Theorem 2.1, we have that K ∩H is
an ellipse, but the same holds for every section which is close enough to a supporting
hyperplane of K. Hence, by Theorem 2 of [3], K is an ellipsoid.

Consider a triangle T , outside a convex body K ⊂ R
3, sufficiently small in comparison

with K. We would like to know how much could the triangle penetrate into the convex
body K without the sides of T touching K.

Let T by a directed triangle, that is, we consider T together with a normal vector for
it. So, if T is a directed triangle, by T+ we denote rotation of T by 90◦, where the
rotation takes in count the normal vector of T and the right-hand rule. So, the directed
triangle −T = T++ has the same normal vector as T .

LetK be a convex body and let T be a directed triangle with normal vector v. Consider
a translated copy T ′ of T on the supporting plane H of K that shares v as its outer
normal vector, in such a way that the relative interior of T ′ contains H∩K. Let ι(T,K)
be the largest number such that H ′ = H + ι(T,K)(−v) contains a translated copy T ′′

of T, in such a way that we can move continuously the triangle T from the position
of T ′ to the position of T ′′, and keeping always the translated copy of T parallel to T.

We will call the number ι(T,K) the penetration depth of T in K.

Formally and in all dimensions, if v ∈ S
n−1 is the unit normal vector of the directed

(n−1)-simplex T and H is the supporting hyperplane of K ⊂ R
n with normal vector v,

then ι(T,K) is the supreme of all positive numbers t > 0, such that for every 0 ≤ t′ < t,

there is a translated copy T ′ of T contained in the hyperplane (H − t′v) and with the
property that the relative interior of T ′ contains T ′ ∩K. Furthermore, as above, if T
is a directed (n − 1)-simplex, by −T we denote the usual inverse (n − 1)-simplex but
with the same normal vector as T .

We shall prove that if for every sufficiently small directed (n−1)-simplex T , ι(T,K) =
ι(−T,K), then K is an ellipsoid. Furthermore, if K ⊂ R

3 and if for every sufficiently
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small directed triangle T, ι(T,K) = ι(T+, K), then K is a solid sphere.

For that purpose, we will give another proof of a theorem of Lutwak [6], that claims
that if for every n-simplex σ that contains L, we have that K ⊂ σ + v, for some
translation vector v, then K ⊂ L+ v0 for some vector v0.

Theorem 2.4. Let L and K be convex bodies in R
n. If for every n-simplex σ that

contains L there is a translated copy of σ that contains K, then there is a translated

copy of L that contains K.

Proof. Let L be the family of all supporting closed half-spaces of L. For every ∆ ∈ L,
letK∆ be the set of vectors that translate ∆ to a closed half-space that containsK, that
is: K∆ = {v ∈ R

n | K ⊂ v+∆}. Notice that K∆ is a closed half-space. If v0 ∈ ∩{K∆ |
∆ ∈ L}, then clearly K ⊂ L + v0, as we wish. By Helly’s Theorem such a vector v0
exists if ∩{K∆ | ∆ ∈ L} is bounded and for every subfamily {∆0, ...,∆n} ⊂ L, we have
thatK∆0

∩...∩K∆n
6= ∅. If ∆0∩...∩∆n is an n-simplex σ, then L ⊂ σ and by hypothesis

there is v such that K ⊂ v + σ, but this implies that v ∈ K∆0
∩ ... ∩ K∆n

6= ∅. If
∆0∩...∩∆n is an unbounded set then it is easy to find v such thatK ⊂ v+(∆0∩...∩∆n).
So, in both cases K∆0

∩ ... ∩K∆n
6= ∅. Finally, we have to prove that ∩{K∆ | ∆ ∈ L}

is bounded, but this is so if for some {∆0, ...,∆n} ⊂ L, we have that K∆0
∩ ...∩K∆n

is
bounded. Assume that ∆0 ∩ ... ∩∆n is an n-simplex σ, then the set of vectors v such
that K ⊂ v + σ is clearly bounded, therefore K∆0

∩ ... ∩K∆n
is bounded.

As a corollary we have the following result proved in [4].

Corollary 2.5. Let K ⊂ R
n be a convex body. Assume that for every n-simplex σ

that contains K, there is a translated copy of −σ that contains K. Then K is centrally

symmetric.

In what follows we will say that every section of a convex body, which is close enough
to a supporting hyperplane of the body, is a superficial section. We use the penetration
depth to give the following characterization of the ellipsoid.

Theorem 2.6. Let K ⊂ R
n be a convex body and suppose that for every directed

(n− 1)-simplex T ,

ι(T,K) = ι(−T,K).

Then K is an ellipsoid.

Proof. The idea is simple. Our assumption precisely implies, using Corollary 2.5, that
every superficial section of K is centrally symmetric, hence, by Theorem 2 of Burton
[3] we have that K is an ellipsoid.

Theorem 2.7. Let K ⊂ R
3 be a convex body and suppose that for every directed

triangle T ,

ι(T,K) = ι(T+, K).

Then K is a solid sphere.

Proof. If ι(T,K) = ι(T+, K), then ι(T,K) = ι(T+, K) = ι(T++, K) = ι(−T,K), and
hence by the above theorem K is an ellipsoid. Now, notice that for an ellipsoid K,
different of a sphere, we have that ι(T,K) 6= ι(T+, K).
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3. Colored Theorems

An interesting role in combinatorial geometry is played now by the colored Helly’s
theorem. Results of the type "if every subfamily of size at most k of a family F has
property P then F has property P" are called Helly-type theorems. Associated with
every Helly-type theorem we have its colorful version. Suppose in addition that every
object of the family F is painted with at least one color among the colors {1, ..., k} and
also that every rainbow subset of size at most k of F has property P. Then it is too
much to expect that the whole family F has property P . What usually happens, but
not always, is that there is a color i ∈ {1, ..., k} with the property that the subfamily
of all members of F of color i has property P . If this is so, we say that this Helly-
type theorem is colorable (see [1]). The first colorable theorem was discovered by L.
Lovász and it is the colorful version of Helly’s Theorem. Independently, searching for a
mathematical game, Bárány found the colorful version of Caratheódory’s Theorem [2].
To be more precise, what is usually called the colored Helly’s Theorem states that if a
family of compact convex sets in R

d is painted with d + 1 colors and if every rainbow
subfamily of size d + 1 has a non-empty intersection, then there is a color with the
property that all convex sets painted with this color have a non-empty intersection.
Using this colored version instead of the regular Helly’s Theorem, and arguing as in
the introduction we end up with the following unexpected result: Let A1, A2 and A3 be
three compact convex sets in the plane. Suppose that for every triple T := {a1, a2, a3},
with a1 ∈ A1, a2 ∈ A2 and a3 ∈ A3, there is T ′ := {−a1 + v,−a2 + v,−a3 + v} a
translation of −T, such that −a1 + v ∈ A1, −a2 + v ∈ A2 and −a3 + v ∈ A3. Then one
of the sets Ai, for some i ∈ {1, 2, 3}, is centrally symmetric. It is doubly unexpected
that in fact what is true is the following theorem.

Theorem 3.1. Let A1,A2 and A3 be three compact sets in R
n and suppose that for

every triple T := {a1,a2, a3} with a1 ∈ A1, a2 ∈ A2 and a3 ∈ A3, there is a translated

copy {−a1 + a,−a2 + a,−a3 + a} of −T, with −a1 + a ∈ A1, −a2 + a ∈ A2 and

−a3 + a ∈ A3. Then A1,A2 and A3 are concentric centrally symmetric sets.

Proof. Let [x1, x2], with x1 ∈ A1 and x2 ∈ A2, be the directed, closed interval
with maximum length d, among all directed intervals with extreme points in A1 and
A2. Let v = x2−x1

||x2−x1||
∈ S

n−1 be the direction of [x1, x2]. Notice that if [y1, y2], with

y1 ∈ A1 and y2 ∈ A2, has the same length and is parallel to [x1, x2], then its direction
w = y2−y1

||y2−y1||
∈ S

n−1 is equal to −v, otherwise, one of the diagonals: [x1, y2] or [y2, x1],

of the parallelogram determined by [x1, x2] and [y1, y2] had length greater than d.

Let x ∈ A3, and let us consider the triple T := {x1,x2, x}. Then, by hypothesis, there
is a vector a(x) ∈ R

n, depending on x such that −x1 + a(x) ∈ A1, −x2 + a(x) ∈ A2

and −x+ a(x) ∈ A3. But hence, the parallel closed intervals [−x1 + a(x),−x2 + a(x)]
have length d and the same direction. This implies that a(x) = a, a constant vector a,
for every x ∈ A3. Therefore A3 is centrally symmetric with centre a

2
. Similarly, A1 and

A2 are centrally symmetric sets.

Now we will prove that A1, A2, and A3 are concentric. In order to prove this, first note
that convAi is a centrally symmetric convex set for i = 1, 2. Moreover, the centre of
Ai and convAi is the same. So, let H1 and H2, be the hyperplanes orthogonal to the
interval [x1, x2], through x1 and x2, respectively. Clearly, Hi is a supporting hyperplane
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of convAi, andHi∩convAi = {xi}, i = 1, 2. Similarly, let Γ1 and Γ2, be the hyperplanes
orthogonal to the interval [x1, x2], through −x1+a and −x2+a, respectively. Again, Γi

is a supporting hyperplane of convAi, and Γi∩convAi = {−xi+a}, i = 1, 2. Therefore,
the chord [x1,−x1 + a] is a diametral chord of convA1, furthermore, it is the unique
diametral chord of convA1, with respect to the parallel supporting hyperplanes H1 and
Γ1. This implies that the centre of convA1 is the middle point of [x1,−x1 + a]. The
above proves that a

2
is the centre of A1 and similarly, a

2
is the centre of A2.

Theorem 3.1 has the following interesting corollary.

Corollary 3.2. Let A1,A2 and A3 be three compact, convex sets in R
n and let Fi be the

family of homothetic copies of Ai with centre of homothecy in Ai and ratio of homothecy
1

2
, i = 1, 2, 3. Suppose that for every triple of sets {α1, α2, α3}, with α1 ∈ F1, α2 ∈ F2

and α3 ∈ F3, the intersection α1 ∩ α2 ∩ α3 6= ∅. Then the intersection of all members

of the family F1 ∪ F2 ∪ F3 is non-empty.

Proof. A set αi belongs to the family Fi if and only if αi =
ai
2
+ Ai

2
, for some ai ∈ Ai.

Furthermore, a triple of sets {α1, α2, α3}, with α1 ∈ F1, α2 ∈ F2 and α3 ∈ F3, is such
that α1 ∩ α2 ∩ α3 6= ∅ if and only if given a triple T := {a1,

2
, a2

2
, a3

2
} with a1

2
∈ A1

2
,

a2
2
∈ A2

2
and a3

2
∈ A3

2
, there is a translated copy {−a1

2
+ a,−a2

2
+ a,−a3

2
+ a} of −T,

with −a1
2
+ a ∈ A1

2
, −a2

2
+ a ∈ A2

2
and −a3

2
+ a ∈ A3

2
. Consequently, by Theorem 3.1,

A1

2
, A2

2
and A3

2
are concentric centrally symmetric convex sets. But if this is so, the

intersection of all members of the family F1 ∪ F2 ∪ F3 is non-empty.
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[1] J. Arocha, I. Bárány, J. Bracho, R. Fábila, L. Montejano: Very colorful theorems, Dis-
crete Comput. Geom. 42 (2009) 142–154.
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