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A mapping φ : [−1, 1] → [0,∞) is a curved majorant for a polynomial p in one real variable if
|p(x)| ≤ φ(x) for all x ∈ [−1, 1]. If Pφ

n (R) is the set of all one real variable polynomials of degree at
most n having the curved majorant φ, then we study the problem of determining, explicitly, the best
possible constant Mφ

n(x) in the inequality

|p′(x)| ≤ Mφ
n(x)‖p‖,

for each fixed x ∈ [−1, 1], where p ∈ Pφ
n (R) and ‖p‖ is the sup norm of p over the interval [−1, 1]. These

types of estimates are known as Bernstein type inequalities for polynomials with a curved majorant.
The cases treated in this manuscript, namely φ(x) =

√
1− x2 or φ(x) = |x| for all x ∈ [−1, 1] (circular

and linear majorant respectively), were first studied by Rahman in [10]. In that reference the author
provided, for each n ∈ N, the maximum of Mφ

n(x) over [−1, 1] as well as an upper bound for Mφ
n(x)

for each x ∈ [−1, 1], where φ is either a circular or a linear majorant. Here we provide sharp Bernstein
inequalities for some specific families of polynomials having a linear or circular majorant by means of
classical convex analysis techniques (in particular we use the Krein-Milman approach).
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1. Preliminaries

The problem of estimating the derivative of a polynomial has been studied since the
end of the 19th century. Already in 1892 it was known that, for any real polynomial p
of degree at most n, we have

|p′(x)| ≤ n2‖p‖,
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for all x ∈ [−1, 1], where ‖p‖ is the sup norm of p in the interval [−1, 1]. This result is
due to Markov [2, 3], for which reason these uniform estimates on p′ are called Markov
type inequalities. Although the constant n2 in the previous inequality is optimal, since
equality is attained at x = ±1 for the polynomial Tn(x) = cos(n arccosx) on [−1, 1]
(nth Chebyshev polynomial of the first kind), it may be improved for specific values of
x in (−1, 1). Bernstein [4] (see also [5, 6]) proved in 1912 that

|p′(x)| ≤ n√
1− x2

‖p‖,

for x ∈ (−1, 1) and p having degree at most n. In general, pointwise estimates on the
derivative of a polynomial are called Bernstein type inequalities. Bernstein’s estimate

n√
1−x2

‖p‖ is far from being optimal, specially when x approaches the end points of

[−1, 1]. If Mn(x) is the smallest possible constant in

|p′(x)| ≤ Mn(x)‖p‖,
for all polynomials p of degree at most n and x ∈ [−1, 1] fixed, then there is a method
to obtain Mn(x) (see [11, 12]), but no explicit formula can be given. However a
number of sharp Bernstein type inequalities can be obtained for reduced families of
polynomials. For instance, in [8] the authors provide, explicitly, sharp Markov and
Bernstein estimates for the space of polynomials of the form p(x) = axm+ bxn+ c with
a, b, c ∈ R and m > n endowed with the sup norm over the interval [−1, 1] (Pm,n(R)
for short).

Another interesting question related to the study of Bernstein and Markov inequalities
arises when we consider constraint families of polynomials. Indeed, if we consider a
mapping φ : [−1, 1] → [0,+∞), called majorant in the sequel, and Pφ

n (R) stands for
the space of polynomials on the real line of degree at most n satisfying |p(x)| ≤ φ(x) for
all x ∈ [−1, 1] endowed with the sup norm over that interval, what is the best constant
Mφ

n in the inequality
‖p′‖ ≤ Mφ

n‖p‖,
for all p ∈ Pφ

n (R)? Similarly, if x ∈ [−1, 1] is fixed, what is the smallest Mφ
n(x) that

fits in the inequality
|p′(x)| ≤ Mφ

n(x)‖p‖,
for every p ∈ Pφ

n (R)? The cases where φ(x) =
√
1− x2 (circular majorant) and

φ(x) = |x| (linear majorant) were studied by Rahman in [10] where the author provides
sharp Markov constants in both cases, but not sharp Bernstein estimates. In this
paper we focus our attention on the problem of finding sharp Bernstein inequalities for
polynomials having a circular or a linear majorant. In Section 2 we study the problem of
finding sharp Bernstein bounds for polynomials of the form p(x) = x(axm+bxn+c) with
a, b, c ∈ R and m,n ∈ N (m > n) having a linear majorant. For simplicity Pℓ

m,n(R) will
represent from now on the set of such polynomials whileM ℓ

m,n and Mℓ
m,n(x) will denote

(respectively) the sharp Markov and Bernstein estimates for polynomials in Pℓ
m,n(R).

If M ℓ
n and Mℓ

n(x) are the sharp Markov and Bernstein estimates for polynomials of
degree not greater than n having a linear majorant, Pℓ

n(R) for short, Rahman showed
in [10] that M ℓ

n = (n− 1)2 + 1 and

Mℓ
n(x) ≤

√

(n− 1)2
x2

1− x2
+ 1,



G. A. Muñoz-Fernández / Estimates on the Derivative of a Polynomial with a ... 243

for all x ∈ (−1, 1). The problem of finding Mℓ
n(x) for every n ∈ N seems to be

extremely difficult, but at least we can give Mℓ
3(x) (notice that Mℓ

3(x) = Mℓ
2,1(x)).

In Section 3 we study Bernstein inequalities for polynomials with a circular majorant.
From now on Pc

n(R) will represent the set of polynomials of degree at most n having a
circular majorant while M c

n and Mc
n(x) will stand for the sharp Markov and Bernstein

estimates for polynomials in Pc
n(R). Rahman showed in [10] that M c

n = 2(n− 1) and

Mc
n(x) ≤

√

x2

1− x2
+ (n− 1)2,

for all x ∈ (−1, 1). The problem of giving an explicit formula for Mc
n(x) for all

n ∈ N may not be solvable, but at least Mc
3(x) can be obtained. We also give a

characterization of the polynomials of degree at most 3 with a circular majorant. This
characterizations holds too for polynomials on a Hilbert space. In order to discuss
polynomials on a Banach space E, the space of polynomials of degree at most n on E
will be denoted by Pn(E).

In the following we will use the notation

Rℓ
n(x) =

√

(n− 1)2
x2

1− x2
+ 1 and Rc

n(x) =

√

x2

1− x2
+ (n− 1)2,

where x ∈ (−1, 1) and n ∈ N for Rahman’s estimates on the derivative of polyno-
mials with linear and circular majorants, respectively. Also, BE and SE will stand,
respectively, for the closed unit ball and the unit sphere of E.

2. Bernstein estimates for polynomials with a linear majorant

Our results in this section rely upon the following easy consequence of the Krein-Milman
Theorem:

If C ⊂ R
n is a convex nonempty set and f : C → R is a convex mapping that

attains its maximum in C, then there exists an extreme point e of C so that

f(e) = max{f(x) : x ∈ C}.
The connection between this result and the problem we are dealing with in this section
is simple. Indeed, first of all notice that if p ∈ Pℓ

m,n(R), then p(x) = xq(x) for all x ∈ R

for some q ∈ Bm,n, where Bm,n is the unit ball of the space Pm,n(R). If x ∈ [−1, 1] is
fixed, taking into consideration that the mapping

Bm,n ∋ q 7→
∣

∣

∣

∣

d

dx
(xq(x))

∣

∣

∣

∣

= |q(x) + xq′(x)| ∈ R

is convex, it follows that

Mℓ
m,n(x) = sup{|q(x)+xq′(x)| : q ∈ Bm,n} = sup{|q(x)+xq′(x)| : q ∈ ext(Bm,n)}, (1)

where ext(Bm,n) is the set of extreme points of Bm,n. A description of ext(Bm,n) can
be found in [9] for all choices of m,n ∈ N. However, only in a few cases the mapping
Mℓ

m,n(x) can be obtained explicitly using the previous idea. We begin by studying the
case where m is odd and n is even, for which the following description of ext(Bm,n) will
be required.
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Figure 2.1: Mℓ
3,2(x). Here M ℓ

3,2 = 6.

Lemma 2.1 (Muñoz-Fernández and Seoane-Sepúlveda, [9]). If m,n ∈ N are

such that m is odd, n is even and m > n, then

ext(Bm,n) = {±(2xn − 1),±(xm + xn − 1),±(xm − xn + 1),±1} .

Now we are ready to give the expression of the function Mℓ
m,n(x) for m odd, n even,

m > n.

Theorem 2.2. Let m,n ∈ N be such that m is odd, n is even and m > n. Then

Mℓ
m,n(x) =















(m+ 1)|x|m − (n+ 1)xn + 1 if |x| ≤ t1,

2(n+ 1)xn − 1 if t1 ≤ |x| ≤ m−n

√

n+1
m+1

,

(m+ 1)|x|m + (n+ 1)xn − 1 if m−n

√

n+1
m+1

≤ |x| ≤ 1,

(2)

where t1 ∈ R is the unique solution of

(m+ 1)xm − 3(n+ 1)xn + 2 = 0 (3)

in the interval

(

1
n
√

2(n+1)
, 1

n
√
n+1

)

.

Proof. If x ∈ [−1, 1], by definition we have that

Mℓ
m,n(x) = sup

p∈Pℓ
m,n(R)

|p′(x)|.

Since p is a trinomial and has a linear majorant then it is necessarily of the form
p(x) = xq(x) for some trinomial q ∈ Bm,n. By means of the Krein-Milman theorem,
it suffices to work just with the extreme polynomials of Bm,n, which are given in the
previous Lemma. Notice that the contribution of ±1 to Mℓ

m,n(x) is irrelevant. Thus,
it suffices to consider the polynomials

q1(x)=±(2xn − 1), q2(x) = ±(xm + xn − 1) and q3(x) = ±(xm − xn + 1).
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Without loss of generality, and for simplicity, we can assume that x ≥ 0. Therefore

Mℓ
m,n(x) = max{|p′(x)| : p(x) = xq(x); q ∈ Bm,n}

= max{|q(x) + xq′(x)| : q ∈ ext(Bm,n)}
= max{|q1(x) + xq′1(x)|, |q2(x) + xq′2(x)|, |q3(x) + xq′3(x)|}
= max{|2(n+ 1)xn − 1|, |(m+ 1)xm + (n+ 1)xn − 1|,

| − (m+ 1)xm + (n+ 1)xn − 1|}
= max{|2(n+ 1)xn − 1|, (m+ 1)xm + |(n+ 1)xn − 1|}.

Now, let us divide the interval [0, 1] as follows:

[0, 1] =

[

0,
1

n
√

2(n+ 1)

)

∪
[

1
n
√

2(n+ 1)
,

1
n
√
n+ 1

]

∪
(

1
n
√
n+ 1

, 1

]

:= A ∪B ∪ C,

and let us work on each of the elements of the partition separately. Clearly, when
x ∈ A, it follows immediately that

(m+ 1)xm + |(n+ 1)xn − 1| = (m+ 1)xm − (n+ 1)xn + 1

> 1− 2(n+ 1)xn

= |2(n+ 1)xn − 1|,

thus, Mℓ
m,n(x) = (m+ 1)xm − (n+ 1)xn + 1 over A. Next, when working on B, let us

notice that, if we define

f(x) = (m+ 1)xm − 3(n+ 1)xn + 2,

then a straight forward calculation gives that

f

(

1
n
√

2(n+ 1)

)

> 0.

On the other hand, and by performing simple calculations, one can also arrive at the
fact that

f

(

1
n
√
n+ 1

)

< 0

if and only if (m+1)n < (n+1)m, which is always true since the sequence
(

log(k+1)
k

)

k
is

strictly decreasing. Bolzano’s Theorem then gives that f(x) = 0 (equation (3)) has, at
least, one solution in B. On the other hand, if (3) had two solutions then, necessarily,
it would have at least three and this is impossible, since the functions 3(n + 1)xn − 2
and (m+ 1)xm are both convex on [0,∞). Then, let t1 ∈ B be the unique solution of
equation (3) which, in general, cannot be obtained explicitly. Thus, now we can write

B := B1 ∪B2 :=

[

1
n
√

2(n+ 1)
, t1

)

∪
[

t1,
1

n
√
n+ 1

]

.
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Also, since f(B1) ⊂ R
+ and f(B2) ⊂ R

− it follows that Mℓ
m,n(x) = (m+ 1)xm − (n+

1)xn+1 over B1 and Mℓ
m,n(x) = 2(n+1)xn−1 over B2. Finally, if x ∈ C, some simple

calculations show that |2(n+ 1)xn − 1| and (m+ 1)xm + |(n+ 1)xn − 1| only intercept

at t0 =
m−n

√

n+ 1

m+ 1
≥ 1

n
√
n+ 1

, from which C can be expressed as

C := C1 ∪ C2 :=

(

1
n
√
n+ 1

, t0

]

∪ (t0, 1].

To finish the proof it suffices with noticing that on C1 we haveMℓ
m,n(x) = 2(n+1)xn−1

and Mℓ
m,n(x) = (m+ 1)xm + (n+ 1)xn − 1 over C2.

The graph of Mℓ
3,2(x) can be seen in Figure 2.1. From the previous result we can

obtain straightforwardly the following.

Corollary 2.3. If m,n ∈ N with m odd and n even, then

M ℓ
m,n = m+ n+ 1.

The same idea can be applied to other choices of m and n, but in those cases we
haven’t been able to obtain an explicit solution. However we can still derive Mℓ

m,n(x)
for specific choices of m and n in relatively simple terms. For instance, the following
characterization of the extreme points of B2,1 will help us to obtain Mℓ

2,1(x).

Lemma 2.4 (Aron and Klimek, [1]). The extreme points of the unit ball of P2,1(R)
are given by

{

tx2 ± 2
(√

2t− t
)

x+ 1 + t− 2
√
2t : t ∈ [1/2, 2]

}

.

Theorem 2.5. If x ∈ [−1, 1] then

Mℓ
2,1(x) =







∣

∣

∣

3x2−1
2

∣

∣

∣
+ 2|x| if |x| ∈

[√
13−2
9

,
√
13+2
9

]

,

|6x2 − 1| if |x| ∈
[

0,
√
13−2
9

]

∪
[√

13+2
9

, 1
]

.

Proof. Let us fix x ∈ [0, 1]. We have

Mℓ
2,1(x) = sup{|q(x) + xq′(x)| : q ∈ ext(B2,1)}

= sup
{
∣

∣

∣
3tx2 ± 4

(√
2t− t

)

x+ 1 + t− 2
√
2t
∣

∣

∣
: t ∈ [1/2, 2]

}

.

If we define f+(t) = 3tx2 + 4(
√
2t − t)x + 1 + t − 2

√
2t and f−(t) = 3tx2 − 4(

√
2t −

t)x+ 1+ t− 2
√
2t, we obtain that f ′

+(t) = 0 if and only if t = t+ = 2
(

2x+1
3x2+4x+1

)2
, and

f ′
−(t) = 0 if and only if t = t− = 2

( −2x+1
3x2−4x+1

)2
. It is easy to check that t+ ∈ [1/2, 2] if

and only if x ∈
[

0,
√
3
3

]

, and t− ∈ [1/2, 2] if and only if x ∈
[

3−
√
3

3
, 4−

√
7

3

]

∪
[√

3
3
, 2
3

]

.

On the other hand, we have f+(1/2) =
3x2−1

2
+ 2x, f−(1/2) =

3x2−1
2

− 2x and f+(2) =

f−(2) = 6x2−1. Since |6x2−1| ≥
∣

∣

∣

3x2−1
2

∣

∣

∣
+2|x| if and only if x ∈

[

0,
√
13−2
9

]

∪
[√

13+2
9

, 1
]

,
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Figure 2.2: Mℓ
3(x) (in black) vs. Rℓ

3(x) (in gray). Here M ℓ
3 = 5.

we obtain that

Mℓ
2,1(x) =







































































max {|6x2 − 1|, |f+(t+)|} if |x| ∈
[

0,
√
13−2
9

]

,

max
{
∣

∣

∣

3x2−1
2

∣

∣

∣
+ 2|x|, |f+(t+)|

}

if |x| ∈
[√

13−2
9

, 3−
√
3

3

]

,

max
{
∣

∣

∣

3x2−1
2

∣

∣

∣
+ 2|x|, |f+(t+)|, |f−(t−)|

}

if |x| ∈
[

3−
√
3

3
, 4−

√
7

3

]

,

max
{
∣

∣

∣

3x2−1
2

∣

∣

∣
+ 2|x|, |f+(t+)|

}

if |x| ∈
[

4−
√
7

3
,
√
3
3

]

,

max
{
∣

∣

∣

3x2−1
2

∣

∣

∣
+ 2|x|, |f−(t−)|

}

if |x| ∈
[√

3
3
,
√
13+2
9

]

,

max {|6x2 − 1|, |f−(t−)|} if |x| ∈
[√

13+2
9

, 2
3

]

,

|6x2 − 1| if |x| ∈
[

2
3
, 1
]

.

Performing some technical, but simple, calculations we achieve the desired result.

The graphs of Mℓ
3(x) and Rℓ

3(x) are compared in Figure 2.2.

3. Bernstein estimates for polynomials with a circular majorant

Next we investigate the norm ‖ · ‖∞,c on R
2 defined by

‖(a, b)‖∞,c := sup
{
∣

∣

∣

√
1− x2(ax+ b)

∣

∣

∣
: x ∈ [−1, 1]

}

.

If we identify (a, b) with the polynomial pa,b(x) := (1− x2)(ax+ b), then the fact that
(a, b) is in the unit ball of the space (R2, ‖ · ‖∞,c) is equivalent to

∣

∣

∣

√
1− x2(ax+ b)

∣

∣

∣
≤ 1, for every x ∈ [−1, 1],

i.e. |(1− x2)(ax+ b)| ≤
√
1− x2 for every x ∈ [−1, 1]. In other words, the polynomial

pa,b has a circular majorant. On the other hand, all polynomials of degree not greater
than 3 with a circular majorant are of the form pa,b for some a, b ∈ R. In order to
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see this just notice that if p has a circular majorant then p has roots at ±1. Thus
we can identify the unit ball of the space (R2, ‖ · ‖∞,c) with the set of polynomials of
degree not greater than 3 with a circular majorant. Polynomials in one real variable
with a circular majorant have been studied several times in the past, see for instance
Rahman’s work [10]. Rahman’s results were generalized for polynomials on a Hilbert
space in [7]. At the end of this section we will also characterize the set of polynomials
in Pc

3(H) where H is any real Hilbert space.

First of all we will find a formula for ‖ · ‖∞,c.

Theorem 3.1. For every (a, b) ∈ R
2 we have

‖(a, b)‖∞,c =







(3|b|+
√
8a2+b2)

√
4a2−b2+|b|

√
8a2+b2

8
√
2|a| if a 6= 0,

|b| if a = 0.
(4)

Proof. If a = 0, the proof is trivial. Otherwise, since f vanishes at ±1, the sup norm
of f(x) =

√
1− x2(ax+ b), namely ‖f‖∞, is attained at a critical point of f in (−1, 1).

It can be easily seen that the only critical points of f are

r1 =
−b−

√
8a2 + b2

4a
and r2 =

−b+
√
8a2 + b2

4a
.

It is also simple to check that

r1 ∈ (−1, 1) ⇔ b < |a| and r2 ∈ (−1, 1) ⇔ b > −|a|.

Therefore

‖(a, b)‖∞,c = ‖f‖∞ =











|f(r1)| if b ≤ −|a|,
max{|f(r1)|, |f(r2)|} if |b| < |a|,
|f(r2)| if b ≥ |a|.

Now, since |f(r1)| ≤ |f(r2)| if and only if b ≥ 0, it follows that

‖(a, b)‖∞,c =

{

|f(r1)| if b ≤ 0,

|f(r2)| if b ≥ 0,

=



















|−3b+
√
8a2+b2|

√

4a2−b2−b
√

8a2+b2

a2

8
√
2

if b ≤ 0,

|3b+
√
8a2+b2|

√

4a2−b2+b
√

8a2+b2

a2

8
√
2

if b ≥ 0,

which concludes the proof.

By means of (4) we obtain the following characterization of the unit ball of the space
(R2, ‖ · ‖∞,c).

Corollary 3.2. If a, b ∈ R, then ‖(a, b)‖∞,c ≤ 1 if and only if

(√
8a2 + b2 + 3|b|

)3

≤ 32
(√

8a2 + b2 + |b|
)

.
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Figure 3.1: Unit sphere of the space (R2, ‖ · ‖∞,c).

Remark 3.3. Equation

(√
8a2 + b2 + 3|b|

)3

= 32
(√

8a2 + b2 + |b|
)

(5)

defines implicitly an even function Γ : [−2, 2] → [0, 1], b = Γ(a), such that Γ(±2) = 0,
Γ(0) = 1 and the unit sphere of the space (R2, ‖ · ‖∞,c) is given by

{(a,±Γ(a)) : a ∈ [−2, 2]}.

A sketch of the unit sphere of (R2, ‖ · ‖∞,c) can be found in Figure 3.1. It is straight-
forward that the polynomials pa,b with a and b satisfying (5) are the extreme points of
the convex set Pc

3(R).

If H is a real Hilbert space, using (4) we can obtain an explicit formula for the norm
of any polynomial P ∈ P3(H) with a circular majorant, i.e., satisfying |P (x)| ≤
√

1− ‖x‖2 for all x ∈ BH . Indeed, a formula for the norm of such a P can be de-
duced from the following result.

Proposition 3.4. If E is a real Banach space, L is a continuous linear form on E,

b ∈ R and we define f(x) :=
√

1− ‖x‖2(L(x) + b), then

sup{|f(x)| : x ∈ BE} = ‖(‖L‖, |b|)‖∞,c,

where ‖L‖ denotes the sup norm of L over BE.

Proof. Let ‖f‖∞ := sup{|f(x)| : x ∈ BE}. A simple application of the triangle
inequality shows that

‖f‖∞ ≤ sup
{√

1− r2(‖L‖r + |b|) : r ∈ [−1, 1]
}

= ‖(‖L‖, |b|)‖∞,c.

Now, let ε > 0 be arbitrarily small with ε < ‖L‖ (the case L ≡ 0 is trivial) and choose
x0 ∈ SE such that ‖L‖ − ε < L(x0). Then for 0 ≤ r ≤ 1 we have

‖f‖∞ ≥ |f(sign(b)x0r)| =
√
1− r2|L(sign(b)x0r) + b|

=
√
1− r2(rL(x0) + |b|) >

√
1− r2[(‖L‖ − ε)r + |b|].
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Finally, letting ε → 0 and taking the sup over all r’s in [0, 1], we obtain

‖f‖∞ ≥ sup
{√

1− r2(‖L‖r + |b|) : r ∈ [0, 1]
}

= sup
{√

1− r2(‖L‖r + |b|) : r ∈ [−1, 1]
}

.

It was proved in [7, Lemma 9] that, if H is a real Hilbert space, then for any polynomial
P ∈ Pn(H) with a circular majorant there exists Q ∈ Pn−2(H) such that

P (x) = (1− ‖x‖2)Q(x),

for every x ∈ H. Hence, if P ∈ P3(H), then there exist a linear form L on H and
b ∈ R such that

P (x) = (1− ‖x‖2)(L(x) + b).

Using this together with Corollary 3.2, we derive the following consequence.

Corollary 3.5. If H is a real Hilbert space and P ∈ P3(H) is of the form P (x) =
(1− ‖x‖2)(L(x) + b) with L being a bounded linear form on H and b ∈ R, then P has

circular majorant if and only if

(

√

8‖L‖2 + b2 + 3|b|
)3

= 32
(

√

8‖L‖2 + b2 + |b|
)

.

Now we are going to obtain a sharp Bernstein type inequality for the polynomials in
Pc

3(R).

Theorem 3.6. For each x ∈ [−1, 1] we have

Mc
3(x) =















2|1− 3x2| if |x| ∈
[

0,

√
4−

√
7

3

]

∪
[√

4+
√
7

3
, 1

]

,

4x2

√
−9x4 + 10x2 − 1

if |x| ∈
[√

4−
√
7

3
,

√
4+

√
7

3

]

.

Proof. Let us fix x ∈ [0, 1] and consider pa,b ∈ Pc
3(R) with pa,b(x) = (1− x2)(ax+ b).

Then according to Remark 3.3 and using the symmetry of Pc
3(R),

Mc
3(x)

= sup{|p′a,b(x)| : pa,b ∈ Pc
3(R)}

= sup

{

|(1− 3x2)a− 2xb| :
(√

8a2 + b2 + 3|b|
)3

= 32
(√

8a2 + b2 + |b|
)

}

= sup

{

|1− 3x2|a+ 2|x|b :
(√

8a2 + b2 + 3|b|
)3

= 32
(√

8a2 + b2 + |b|
)

, a, b ≥ 0

}

.

Call F (a, b) = |1− 3x2|a+ 2|x|b. In order to maximize F over the a, b’s such that

(√
8a2 + b2 + 3|b|

)3

= 32
(√

8a2 + b2 + |b|
)

and a, b ≥ 0,
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we perform the following change of variables

a =
r

2
√
2
cos t,

b = r sin t,

where t ∈ [0, π/2] and r ≥ 0. These new variables applied to

(√
8a2 + b2 + 3|b|

)3

= 32
(√

8a2 + b2 + |b|
)

and a, b ≥ 0,

yield

r =

√

32(1 + sin t)

(1 + 3 sin t)3
.

Hence, maximizing F (a, b) over the considered domain reduces to maximize

g(t) =

√

32(1 + sin t)

(1 + 3 sin t)3

( |1− 3x2| cos t
2
√
2

+ 2|x| sin t
)

,

for t ∈ [0, π/2]. It can be proved that g′(t) = 0 is equivalent to

2|x| cos t−
√
2|1− 3x2|(1 + sin t) = 0,

from which we have that g has a unique critical point at a t0 ∈ [0, π/2] such that

sin t0 =
−9x4 + 8x2 − 1

9x4 − 4x2 + 1
.

It can be shown that sin t0 ≥ 0 on the interval

[√
4−

√
7

3
,

√
4+

√
7

3

]

and

g(t0) =
4x2

√
−9x4 + 10x2 − 1

.

Therefore

Mc
3(x) = max{g(t) : t ∈ [0, π/2]}

= max{|g(0)|, |g(π/2)|, |g(t0)|}

= max

{

2|1− 3x2|, 2|x|, 4x2

√
−9x4 + 10x2 − 1

}

.

From here the interested reader can easily verify, after some technical but simple cal-
culations, that the result follows.

Remark 3.7. Notice that the estimate Rc
3(x) =

√

x2

1−x2 + 4 only agrees with the op-

timal Mc
3(x) at the points x = 0,±

√

5
6
.
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Figure 3.2: Mc
3 (in black) vs. Rc
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