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1. Introduction

Let X be a (real) Hausdorff locally convex space whose topological dual is denoted by
Y. For any (x, y) ∈ X × Y we set y(x) := 〈x, y〉 .

Let h ∈ R
X

be an extended real valued function on X, with R := R ∪ {±∞}.

The closed convex relaxed problem associated with

(P) : minimize h(x) s.t. x ∈ X

is classically defined as

(P ′) : minimize h∗∗(x) s.t. x ∈ X,

where h∗∗ denotes the Legendre-Fenchel bi-conjugate of h. The optimal values of both
problems coincide:

inf
X

h = inf
X

h∗∗ =: m ∈ R.
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Our purpose in this paper is to obtain the optimal set of (P ′), i.e. argmin h∗∗, in terms
of the approximate solutions of (P), i.e. ε−argmin h. For convenience we set ε−argmin
h = ∅ for all ε ≥ 0 whenever m /∈ R, i.e. if h = +∞, in which case m = +∞, or if h is
not bounded from below, which means m = −∞.

The main formulas derived in this paper (Theorem 3.3 and Theorem 4.8) allow us to
state new results for subdifferential calculus. More precisely, Theorem 3.5 and Corollary
4.9 provide the subdifferential of the Legendre-Fenchel conjugate of a (non necessarily
convex) extended-real-valued function in terms of the data function, Theorem 4.1 and
Corollary 4.11 yield a new formula for the subdifferential of the upper-envelope of an
arbitrary family of (non necessarily convex) functions, while Theorem 4.5 deals with
the subdifferential of the sum of two functions, one of which is nonconvex.

2. Notation and basic tools

In this paperX is a (real) Hausdorff locally convex spaces (lcs, for short). Its topological
dual space is denoted by Y , and for any (x, y) ∈ X×Y we set y(x) := 〈x, y〉 . The zero
vector in both spaces is represented by θ.

Let us recall some basic results of convex analysis which can be found, e.g., in [10] (see
also [5] and [7]). Given two nonempty sets A and B in X (or in Y ), we define the
algebraic (or Minkowski) sum by

A+B := {a+ b | a ∈ A, b ∈ B}, A+ ∅ := ∅+ A := ∅. (1)

Moreover, if ∅ 6= Λ ⊂ R we set

ΛA := {λa | λ ∈ Λ, a ∈ A}, Λ∅ := ∅.

Furthermore, Λx := Λ{x}, λA := {λ}A and x+ A := {x}+ A.

By coA, coneA, linA, and affA, we denote the convex hull of the set A, the conic hull
of A (i.e. coneA = [0,+∞[A), the linear subspace spanned by A, and the affine hull of
A, respectively.

In all the paper we will assume that X and Y are equipped with locally convex topolo-
gies compatible with the bilinear coupling 〈·, ·〉 : X × Y → R. Such a scheme covers,
of course, the Euclidean and Hilbert spaces settings, and also the case when X is a
normed space and its topological dual Y is equipped with the weak∗-topology. When X
is a reflexive normed space, the dual norm topology on Y also works. More generally,
one can deal with the weak topologies, σ(X, Y ) and σ(Y,X), or the Mackey topologies,
τ(X, Y ) and τ(Y,X).

If A ⊂ X (or A ⊂ Y ), intA will denote the interior of A, whereas clA and A are
indistinctly used for denoting the closure of A. In this way, we set coA := cl(coA) and
coneA := cl(coneA). Finally, riA denotes the relative interior of A which we define
here as the interior of A in the topology relative to the closed affine hull of A.

If A is convex, we have

λ riA+ (1− λ) clA ⊂ riA, for every λ ∈ ]0, 1]. (2)
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Associated with A 6= ∅ we consider the closed convex cone

A− := {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 0 for all x ∈ A} ,

i.e. the negative dual cone. Further, we have

A−− = cone(coA). (3)

If A ⊂ X and x ∈ X, we define the normal cone to A at x as

NA(x) :=

{

(A− x)− if x ∈ A,

∅ if x ∈ X \ A.

Given a function h ∈ R
X
, its (effective) domain, epigraph, and level set are defined by

domh := {x ∈ X | h(x) < +∞},

epih := {(x, α) ∈ X × R | h(x) ≤ α},

[h ≤ α] := {x ∈ X | h(x) ≤ α}.

The function h is proper if domh 6= ∅ and h(x) > −∞ for every x ∈ X.

We say that h is convex if epih is convex.

The lower semicontinuous envelope of h is the function h ∈ R
X

defined by

h(x) := inf{t | (x, t) ∈ cl(epih)}.

Clearly we have epih = cl (epih), which implies that h is the greatest lower semicon-
tinuous (lsc, in brief) function dominated by h; i.e. h ≤ h.

If h is convex, then h is also convex, and then h does not take the value −∞ if and
only if h admits a continuous affine minorant.

Given h ∈ R
X
, the lsc convex hull of h is the convex lsc function coh ∈ R

X
such that

epi(coh) = co(epih).

Obviously coh ≤ h ≤ h.

We shall denote by Λ(X) the set of all the proper convex functions on X and by Γ(X)
the subset of Λ(X) consisting of the lsc functions; the sets Λ(Y ) and Γ(Y ) are defined
similarly.

Given h ∈ R
X
, the Legendre-Fenchel conjugate of h is the function h∗ ∈ R

Y
given by

h∗(y) = sup{〈x, y〉 − h(x) : x ∈ X}

= sup{〈x, y〉 − h(x) : x ∈ domh}.

The function h∗ is convex and lsc. If h takes the value −∞, then h∗ = +∞, and if
domh = ∅ we have h∗ = −∞. Moreover, h∗ = h

∗
= (coh)∗, and h∗ ∈ Γ(Y ) if and only

if domh 6= ∅ and h admits a continuous affine minorant.
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The bi-conjugate of h is the function h∗∗ ∈ R
X

given by h∗∗ = (h∗)∗, i.e.

h∗∗(x) := sup{〈x, y〉 − h∗(y) : y ∈ domh∗}.

We have
{h ∈ R

X
: h = h∗∗} = Γ(X) ∪ {+∞}X ∪ {−∞}X .

Moreover, h∗∗ ≤ coh, and the equality holds if h admits a continuous affine minorant.

The indicator and the support functions of A ⊂ X are respectively defined as

iA(x) :=

{

0 if x ∈ A,

+∞ if x ∈ X \ A,

and
i∗A(y) := sup{〈x, y〉 : x ∈ A}, for y ∈ Y,

with the convention sup ∅ = −∞. The function i∗A is obviously the Legendre-Fenchel
conjugate of iA. It is sublinear, lsc, and satisfies i∗A = i∗coA.

If h ∈ R
X
and ε ≥ 0, the ε−subdifferential (see, for instance, [6]) of h at a point x ∈ X

such that h(x) ∈ R is the w(Y,X)–closed convex set

∂εh(x) := {y ∈ Y : h(z) ≥ h(x) + 〈z − x, y〉 − ε for all z ∈ X}.

In particular, for ε = 0 we get ∂h(x) := ∂0h(x), the subdifferential of h at x.

If h(x) /∈ R we set ∂εh(x) := ∅. Observe that h is proper if ∂εh(x) 6= ∅ for a certain
x ∈ X and certain ε ≥ 0.

Given x ∈ X we recall the following properties:

∂h(x) = ∩ε>0∂εh(x)

and, for any ε ≥ 0,
0 ∈ ∂εh(x) ⇔ x ∈ ε− argminh.

Moreover, if h is proper and x ∈ domh, then

∂εh(x) = {y ∈ Y : h(x) + h∗(y) ≤ 〈x, y〉+ ε}, for all ε ≥ 0. (4)

If h ∈ R
X

is convex, then we have ∂εh(x) 6= ∅ for all ε > 0 if and only if h is lsc and
finite at x.

If x ∈ A,
∂iA(x) = (cone(A− x))− = NA(x).

3. A formula for the optimal set of (P ′)

Before establishing the main result in this paper (Theorem 3.3), we need two technical
lemmas (see also [4, Lemma 1] for the first one, and [3, Lemma 1] for the second). Let
us recall that the relative interior riB of a set B is the topological relative interior with
respect to the closed affine hull of B.
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Lemma 3.1. For any convex set B ⊂ Y and any convex function g ∈ R
Y
such that

(riB) ∩ dom g 6= ∅,

one has
inf
riB

g = inf
clB

g = inf
B

g. (5)

Proof. For any y ∈ clB one has to prove that

inf
riB

g ≤ g(y). (6)

This is obvious if infriB g = −∞ or g(y) = +∞. Otherwise let v ∈ (riB)∩dom g. From
(2), one has

vλ := λv + (1− λ)y ∈ riB, for all λ ∈]0, 1],

and so, for all λ ∈]0, 1],

−∞ < inf
riB

g ≤ g(vλ) ≤ λg(v) + (1− λ)g(y) < +∞.

Accordingly, g(v) ∈ R and g(y) ∈ R. Hence, we get (6) by taking λ ↓ 0.

Lemma 3.2. For any h ∈ R
X
, ε ≥ 0, one has

cone(domh∗) ⊂ dom
(

i∗ε−argminh

)

. (7)

Proof. If m = infX h /∈ R, we have ε− argmin h = ∅ and, so, i∗ε−argminh = −∞, which

entails dom
(

i∗ε−argminh

)

= Y, and (7) is trivially satisfied. Assume, then, that m ∈ R.

For any y ∈ domh∗, if we take u ∈ ε− argminh we have

〈u, y〉 ≤ h(u) + h∗(y) ≤ m+ ε+ h∗(y),

and therefore
i∗ε−argminh(y) ≤ m+ ε+ h∗(y) < +∞.

Hence we have
domh∗ ⊂ dom

(

i∗ε−argminh

)

,

and we are done since the set on the right-hand side is a cone.

We now state the main result of the paper. Although it concerns any extended-real-
valued function which admits a continuous affine minorant, it is mainly addressed to
the functions that are proper and bounded from below.

Let us recall that the current topologies on X and Y are locally convex topologies
compatible with the primal-dual bilinear coupling 〈·, ·〉 : X × Y → R.

Theorem 3.3. For any function h ∈ R
X

such that domh∗ 6= ∅ one has

argmin h∗∗ =
⋂

ε>0
y∈domh∗

co
(

ε− argminh+ {y}−
)

. (8)
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If cone(domh∗) is closed or ri(cone(domh∗)) 6= ∅, then

argmin h∗∗ =
⋂

ε>0

co
(

(ε− argminh) + (domh∗)−
)

. (9)

In particular, if cone(domh∗) = Y, we have

argmin h∗∗ =
⋂

ε>0

co (ε− argminh) . (10)

Proof. First we analyze the case h = +∞, i.e. h∗ = −∞ and h∗∗ = +∞. It is obvious
(by the conventions taken above), that both (8) and (9) hold trivially (all the sets are
empty).

If, alternatively, h∗ 6= −∞, the assumption domh∗ 6= ∅ gives rise to the existence of
y0 ∈ Y such that h∗(y0) ∈ R, and 〈·, y0〉 − h∗(y0) is a continuous affine minorant of
h (which, consequently, will be proper). Now two possibilities arise. The first one
correspond to the case that m = infX h = infX h∗∗ = −∞, in which case (8) and (9)
hold again due to the convention on ε− argmin h.

So, we have only to study the unique remaining case in which h is bounded from below
(m ∈ R). We shall decompose the proof in different steps.

Step 1. We proof first the inclusion "⊇" in (8).

We are assuming that m = infX h = infX h∗∗ ∈ R. Then, for any ε > 0, y ∈ domh∗,
u ∈ ε− argminh, and z ∈ {y}− one has

〈u+ z, y〉 − h∗(y) ≤ 〈z, y〉+ h(u) ≤ h(u) ≤ m+ ε;

in other words
ε− argminh+ {y}− ⊆ [〈·, y〉 − h∗(y) ≤ m+ ε] .

Since the set on the right-hand side is closed and convex one has

co
(

ε− argminh+ {y}−
)

⊆ [〈·, y〉 − h∗(y) ≤ m+ ε] .

By taking the intersection over y ∈ domh∗ we get

⋂

y∈domh∗

co
(

ε− argminh+ {y}−
)

⊆

[

sup
y∈domh∗

{〈·, y〉 − h∗(y)} ≤ m+ ε

]

.

The set on right-hand side is nothing else but

[h∗∗ ≤ m+ ε] = ε− argminh∗∗.

We finish this part of the proof by taking the intersection over ε > 0.

Step 2. Next we proof the converse inclusion "⊆" in (8).

Let ε0 > 0 and y0 ∈ domh∗ such that

a /∈ co
(

ε0 − argminh+ {y0}
−
)

.
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We have to check that
h∗∗(a) > m.

By the Hahn-Banach separation theorem, there is v ∈ Y�{θ} such that

〈a, v〉 > i∗(ε0−argminh+{y0}−)(v)

= i∗ε0−argminh(v) + i∗{y0}−(v),

and this implies that v ∈ R+y0 and

〈a, y0〉 > i∗ε0−argminh(y0). (11)

Now, for any ρ > 0 one gets

h∗∗(a) ≥ 〈a, ρy0〉 − h∗(ρy0), (12)

with
−h∗(ρy0) = α(ρ) ∧ β(ρ) := min{α(ρ), β(ρ)},

where
α(ρ) := inf

u∈ε0−argminh
{h(u)− 〈u, ρy0〉} ,

and
β(ρ) := inf

u∈X�ε0−argminh
{h(u)− 〈u, ρy0〉} .

On one hand, from (11):

α(ρ) ≥

(

inf
u∈ε0−argminh

h(u)

)

− ρi∗ε0−argminh(y0) (13)

>

(

inf
u∈ε0−argminh

h(u)

)

− ρ 〈a, y0〉

≥ m− ρ 〈a, y0〉 .

On the other hand, if we take ρ ∈]0, 1[,

β(ρ) = inf
u∈X�ε0−argminh

{ρ (h(u)− 〈u, y0〉) + (1− ρ)h(u)} (14)

≥ − ρh∗(y0) + (1− ρ)(m+ ε0).

Therefore, for any ρ ∈]0, 1[, (12) and (14) yield

h∗∗(a) ≥ {ρ 〈a, y0〉+ α(ρ)} ∧ {ρ 〈a, y0〉+ β(ρ)}

≥ {ρ 〈a, y0〉+ α(ρ)} ∧ {ρ 〈a, y0〉 − ρh∗(y0) + (1− ρ)(m+ ε0)}.

By (13) one has
ρ 〈a, y0〉+ α(ρ) > m.

Therefore, in order to achieve the aimed conclusion, one has to choose ρ ∈]0, 1[ such
that

ρ 〈a, y0〉 − ρh∗(y0) + (1− ρ)(m+ ε0) > m,
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or equivalently,
ρ {〈a, y0〉 − h∗(y0)−m− ε0} > −ε0,

which is always possible by taking ρ small enough.

Step 3. Now we prove (9) under the assumption that cone(domh∗) is σ(Y,X)−closed
or ri(cone(domh∗)) 6= ∅.

From (8) it is obvious that the inclusion "⊇" in (9) holds. Now let us consider ε0 > 0
such that

a /∈ co
(

(ε0 − argminh) + (domh∗)−
)

.

By the Hahn-Banach separation theorem, there must exist w ∈ Y�{θ} such that

〈a, w〉 > i∗(ε0−argminh)+(domh∗)−(w)

= i∗ε0−argminh(w) + i∗(domh∗)−(w),

and this entails that
w ∈ (domh∗)−− = cone(domh∗), (15)

and that
〈a, w〉 > i∗ε0−argminh(w). (16)

Now we make the following discussion:

Case 1. If cone(domh∗) is closed, we have that w0 = w ∈ cone(domh∗) satisfies

〈a, w0〉 > i∗ε0−argminh(w0). (17)

Case 2. If ri(cone(domh∗)) 6= ∅, the reasoning is the following:

From Lemma 3.2 one has

cone(domh∗) ⊆ dom
(

i∗ε0−argminh

)

.

Now we can apply Lemma 3.1 to the function g = i∗ε0−argminh(·)−〈a, ·〉 and the convex set
B = cone(domh∗) to conclude, from (15) and (16), the existence of w0 ∈ cone(domh∗)
such that (17) is also satisfied.

Hence, in both cases, there will exist λ > 0 and y0 ∈ domh∗ such that w0 = λy0, and
so

〈a, y0〉 > i∗ε0−argminh(y0).

As a consequence of that

i∗(ε0−argminh+{y0}−)(y0) = i∗ε0−argminh(y0) < 〈a, y0〉 ,

and again, by Hahn-Banach theorem we reach the aimed conclusion

a /∈ co
(

(ε0 − argminh) + {y0}
−
)

so that, by (8),
a /∈ argmin h∗∗.
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Hence, we have proved the inclusion

argmin h∗∗ ⊆ co
(

(ε− argminh) + (domh∗)−
)

, for all ε > 0.

Step 4. If cone(domh∗) = Y, we have (domh∗)− = {θ}, and (10) is a trivial consequence
of (9).

Remark 3.4. In the finite dimensional setting it has been observed in [1, Comment
4-8, 3, p. 1672] that under the additional assumptions

a) h is lsc,

b) h is asymptotically epi-pointed,

the following formula holds:

argminh∗∗ = co(argminh) + co(argminh∞),

where h∞ is the asymptotic function of h, namely

h∞(x) = lim inf
u→x
t↓0

th(u/t),

and asymptotically epi-pointed means

co(epih∞) ∩ (− co(epih∞)) = {(0, 0)}.

Now we proceed with a relevant application of Theorem 3.3 to obtain the subdifferential

of the Legendre-Fenchel conjugate of h ∈ R
X
, not necessarily convex, in terms of the

inverse multivalued mappings

Mεh = (∂εh)
−1, ε ≥ 0,

of the ε−subdifferentials of h.

If −∞ ∈ h(X), one has ∂εh(x) = ∅ for all x ∈ X and, so, dom(Mεh) = ∅. If h = +∞,
we also have dom(Mεh) = ∅. If h is proper, for any y ∈ Y,

Mεh(y) = {x ∈ X : y ∈ ∂εh(x)}

= {x ∈ X : h(x)− 〈x, y〉 ≤ −h∗(y) + ε}

= ε− argmin (h(·)− 〈·, y〉) .

It is obvious that, according to our convention, Mεh(y) = ∅ whenever h∗(y) /∈ R and
ε ≥ 0. Moreover, Mεh(y) 6= ∅ whenever h∗(y) ∈ R and ε > 0. Finally, we also have
(see, for instance, [10, Theorem 2.4.2 (ii)])

Mεh(y) ⊂ ∂εh
∗(y), for all y ∈ Y and every ε ≥ 0,

and the inclusion above becomes an equality whenever h = h∗∗.

We are now in a position to state the following result:
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Theorem 3.5. For any function h ∈ R
X

such that domh∗ 6= ∅ one has

∂h∗(y) =
⋂

ε>0
v∈domh∗

co
(

Mεh(y) + {v − y}−
)

, for all y ∈ Y. (18)

If cone(domh∗ − y) is closed or ri(cone(domh∗ − y)) 6= ∅, then

∂h∗(y) =
⋂

ε>0

co (Mεh(y) + Ndomh∗(y)) . (19)

Proof. We first observe that

∂h∗(y) = argmin{h∗∗(·)− 〈., y〉}

= argmin{h(·)− 〈., y〉}∗∗.

Then we apply Theorem 3.3 to the function f(·) := h(·) − 〈., y〉 taking into account
that f ∗(·) = h∗(·+ y).

All the results above can be equivalently stated for functions defined on Y, instead of
X. In particular we have a dual version of Theorem 3.5:

Theorem 3.6. For any function g ∈ R
Y
such that dom g∗ 6= ∅ one has

∂g∗(x) =
⋂

ε>0
z∈dom g∗

co
(

Mεg(x) + {z − x}−
)

, for all x ∈ X. (20)

If cone(dom g∗ − x) is closed or ri(cone(dom g∗ − x)) 6= ∅, then

∂g∗(x) =
⋂

ε>0

co (Mεg(x) + Ndom g∗(x)) . (21)

4. Some applications to subdifferential calculus

Next we give an important application of Theorem 3.6.

Theorem 4.1. For a given nonempty family of functions {ft, t ∈ T} ⊂ R
X
, let us

consider the supremum function
f := sup

t∈T
ft,

and assume that dom f 6= ∅. If the following condition is satisfied

f ∗∗ ≡

(

sup
t∈T

ft

)∗∗

= sup
t∈T

f ∗∗
t , (22)

the subdifferential of the supremum function at any point x ∈ X is given by the formula

∂f(x) =
⋂

ε>0
z∈dom f

co





⋃

t∈Tε(x)

∂εft(x) + {z − x}−



 , (23)
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where

Tε(x) :=

{

{t ∈ T : ft(x) ≥ f(x)− ε}, if f(x) ∈ R,

∅, if f(x) /∈ R.
(24)

If, moreover, cone(dom f − x)) is convex and either cone(dom f − x)) is closed or
ri(cone(dom f − x)) 6= ∅, then

∂f(x) =
⋂

ε>0

co





⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)



 . (25)

Proof. First, we shall prove the inclusion "⊇" in (23). To this aim, let ε > 0, z ∈
dom f,

v ∈
⋃

t∈Tε(x)

∂εft(x) and w ∈ {z − x}−.

Accordingly, there will exist t0 ∈ Tε(x) such that

v ∈ ∂εft0(x),

and therefore, for every z ∈ X,

f(z) ≥ ft0(z) ≥ ft0(x) + 〈z − x, v〉 − ε ≥ f(x) + 〈z − x, v〉 − 2ε,

i.e.
v ∈ ∂2εf(x). (26)

As a consequence of (26),

〈z, v + w〉 − f(z) = 〈z − x, v + w〉+ 〈x, v + w〉 − f(z)

≤ 〈z − x, v〉 − f(z) + 〈x, v + w〉

≤ 〈x, v + w〉 − f(x) + 2ε.

In other words, for any ε > 0 and z ∈ dom f, one has

⋃

t∈Tε(x)

∂εft(x) + {z − x}− ⊆ [〈z − x, ·〉 − f(z) ≤ −f(x) + 2ε] ,

and since the set on the right-hand side is closed and convex, we have

co





⋃

t∈Tε(x)

∂εft(x) + {z − x}−



 ⊆ [〈z − x, ·〉 − f(z) ≤ −f(x) + 2ε] .

By taking the intersection over z ∈ dom f we get

⋂

z∈dom f

co





⋃

t∈Tε(x)

∂εft(x) + {z − x}−



 ⊆ [f ∗(·)− 〈x, ·〉 ≤ −f(x) + 2ε] ,
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and so

⋂

z∈dom f
ε>0

co





⋃

t∈Tε(x)

∂εft(x) + {z − x}−



 ⊆ [f ∗(·)− 〈x, ·〉 ≤ −f(x)] .

Since the set on the right hand side is just ∂f(x) we are done.

The proof of the converse inclusion "⊆" in (23) is based on the application of Theorem
3.6 to the function

g := inf
t∈T

f ∗
t .

From (22) one has g∗ = f ∗∗. Moreover,

dom g∗ = dom

(

sup
t∈T

f ∗∗
t

)

⊇ dom

(

sup
t∈T

ft

)

= dom f 6= ∅.

If ∂f(x) 6= ∅, one has, by (22) and Theorem 2.4.1(ii) in [10],

∂f(x) = ∂f ∗∗(x) = ∂g∗(x).

In this proof we shall use the indices set

T ′
ε(x) := {t ∈ T : f ∗∗

t (x) ≥ f(x)− ε}.

Obviously T ′
ε(x) ⊆ Tε(x), and we observe that, for any ε > 0,

Mεg(x) ⊆
⋃

t∈T ′

2ε
(x)

M2εf
∗
t (x). (27)

In fact

y ∈ Mεg(x) ⇔ x ∈ ∂εg(y) ⇔ g(u) ≥ g(y) + 〈x, u− y〉 − ε, for all u ∈ Y.

If t0 ∈ T satisfies

g(y) = inf
t∈T

f ∗
t (y) ≥ f ∗

t0
(y)− ε, (28)

we can write, for all u ∈ Y ,

f ∗
t0
(u) ≥ g(u) ≥ g(y) + 〈x, u− y〉 − ε ≥ f ∗

t0
(y) + 〈x, u− y〉 − 2ε,

i.e.

x ∈ ∂2εf
∗
t0
(y),

and

y ∈ M2εf
∗
t0
(x).

Moreover, also by Theorem 2.4.1(ii) in [10],

x ∈ ∂εg(y) ⇔ g(y) + g∗(x) = g(y) + f(x) ≤ 〈x, y〉+ ε,
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and, from the last inequality and from (28)

f ∗∗
t0
(x) ≥ 〈x, y〉 − f ∗

t0
(y)

≥ 〈x, y〉 − g(y)− ε

≥ f(x)− 2ε.

Thus

t0 ∈ T ′
2ε(x),

and we have proved the inclusion (27).

Now, for any t ∈ T ′
2ε(x) one has

y ∈ ∂2εf
∗∗
t (x) ⇔ f ∗∗

t (z) ≥ f ∗∗
t (x) + 〈z − x, y〉 − 2ε for all z ∈ X

⇒ f ∗∗
t (z) ≥ f(x) + 〈z − x, y〉 − 4ε for all z ∈ X

⇒ f ∗∗
t (z) ≥ ft(x) + 〈z − x, y〉 − 4ε for all z ∈ X,

and we have shown that

M2εf
∗
t (x) = ∂2εf

∗∗
t (x) ⊆ ∂4εft(x).

This inclusion leads us to

⋃

t∈T ′

2ε
(x)

M2εf
∗
t (x) ⊆

⋃

t∈T ′

2ε
(x)

∂4εft(x) ⊆
⋃

t∈T4ε(x)

∂4εft(x).

From Theorem 3.6 we get (taking into account that dom g∗ ⊇ dom f)

∂f(x) = ∂g∗(x) ⊆
⋂

ε>0
z∈dom f

co





⋃

t∈Tε(x)

∂εft(x) + {z − x}−



 .

Finally, (25) follows from (23) by a similar reasoning to the one used in the proof of
(9).

Remark 4.2. Observe that in (23) one may have ∂f(x) = ∅ (this is for instance the
case if f(x) /∈ R).

Remark 4.3. Under the assumption (22) and if cone(dom f −x) = X we obtain from
(23) or (25)

∂f(x) =
⋂

ε>0

co





⋃

t∈Tε(x)

∂εft(x)



 .

This formula was established by Volle in [9] when the functions ft, t ∈ T, are convex
and f is finite and continuous at x. (See also [4, Corollary 10] and [8] for a related
formula.)
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Our purpose now is to illustrate condition (22) by a relevant example. Recall that for

any convex function k ∈ R
X

such that dom k∗ 6= ∅, one has

k = k∗∗ ∈ Γ(X) ∪ {+∞}X . (29)

In variational analysis there are important functions that satisfy (29) despite that they
are nonconvex (see, for instance, [2, Propositions (IX)1.2 (X)2.15.]).

We begin with an elementary lemma.

Lemma 4.4. Let h, k ∈ R
X

be proper functions. Assume that h is continuous on X
and that k is also proper. Then

h+ k = h+ k.

Proof. Since h and k are both proper and lsc, h+ k is lsc too (it is well-defined). As
h+ k ≤ h+ k, we thus have

h+ k ≤ h+ k.

In order to prove the opposite inequality, let x ∈ X and r ∈ R such that r > h(x)+k(x).
One has to prove that r ≥ (h+ k)(x). To this aim, let U be an arbitrary neighborhood
of x; one has to check that r ≥ infU(h+ k).

Now it is possible to choose s, t ∈ R such that r = s + t, s > h(x), and t > k(x).
Since h is continuous at x, there must exist a neighborhood V ⊂ U of x such that
s > supV h, while there must exist v ∈ V such that t > k(v). Finally

inf
U
(h+ k) ≤ inf

V
(h+ k) ≤ h(v) + k(v) ≤ s+ t = r.

Theorem 4.5. Let h ∈ Γ(X) and k ∈ R
X

satisfying k = k∗∗ ∈ Γ(X). Let us assume
that (domh) ∩ (dom k) 6= ∅ and that h is continuous on X. Then, for any x ∈ X,

∂(h+ k)(x) =
⋂

ε>0,
u∈(domh)∩(dom k)

cl
(

∂εh(x) + ∂εk(x) + {u− x}−
)

. (30)

If, moreover, cone((domh)∩(dom k)−x)) is convex and either cone((domh)∩(dom k)−
x)) is closed or ri(cone((domh) ∩ (dom k)− x)) 6= ∅, then

∂(h+ k)(x) =
⋂

ε>0

cl
(

∂εh(x) + ∂εk(x) + N(domh)∩(dom k)(x)
)

. (31)

Proof. Observe that h+ k = h+ k∗∗ ∈ Γ(X) and

h+ k = sup
y∈domh∗

(〈·, y〉 − h∗(y) + k∗∗) (32)

= sup
y∈domh∗

(〈·, y〉 − h∗(y) + k)∗∗ .
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On the other hand, since h is continuous, one has by Lemma 4.4

h+ k = h+ k ≥ (h+ k)∗∗ ≥ (h+ k)∗∗ = h+ k. (33)

Setting

f := h+ k,

we get

f = sup
y∈domh∗

{〈·, y〉 − h∗(y) + k} ,

and from (32) and (33),

f ∗∗ = sup
y∈domh∗

{〈·, y〉 − h∗(y) + k}∗∗ .

Therefore, we can apply Theorem 4.1 to the function f above. To this aim, we identify
T := domh∗ and, for any y ∈ T,

fy := 〈·, y〉 − h∗(y) + k.

Then we have

dom f = (domh) ∩ (dom k) 6= ∅,

together with

Tε(x) = {y ∈ T | fy(x) ≥ f(x)− ε}

= {y ∈ domh∗ | 〈x, y〉 − h∗(y) + k(x) ≥ f(x)− ε}

= {y ∈ domh∗ | h(x) + h∗(y) ≤ 〈x, y〉+ ε}

= ∂εh(x),

and

∂εfy(x) = y + ∂εk(x).

Replacing in (23) and in (25) we get (30) and (31), respectively.

Remark 4.6. Let us observe that in Theorem 4.5 the function k ∈ R
X

is continuous
but not necessarily finite-valued.

We shall proceed by giving some consequences of Theorem 4.1.

Corollary 4.7. Let C ⊂ Y and h ∈ R
X

be a convex set and a function, respectively,
such that

ri (cone(C ∩ domh∗)) 6= ∅. (34)

Then we have

argmin h∗∗ ⊆
⋂

ε>0

co
(

ε− argminh+ (C ∩ domh∗)−
)

.
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Proof. We shall approach the non-trivial case in which h is bounded from below and
h 6= +∞, i.e. infX h = m ∈ R.

Let ε0 > 0 and
a /∈ co

(

ε0 − argminh+ (C ∩ domh∗)−
)

. (35)

By Theorem 3.3, it will be enough to find y0 ∈ domh∗ such that

a /∈ co
(

ε0 − argminh+ {y0}
−
)

.

By the Hahn-Banach separation theorem applied to (35), we know that there exists
w ∈ Y�{θ} such that

〈a, w〉 > i∗(ε0−argminh+(C∩domh∗)−)(w)

= i∗ε0−argminh(w) + i∗(C∩domh∗)−(w),

and this entails that

w ∈ (C ∩ domh∗)−− = cone(C ∩ domh∗),

and additionally we have
〈a, w〉 > i∗ε0−argminh(w). (36)

From Lemma 3.2 the following inclusions hold

cone(C ∩ domh∗) ⊆ cone(domh∗) ⊆ dom i∗ε0−argminh.

Now we apply Lemma 3.1 to the function g = i∗ε0−argminh(·)− 〈a, ·〉 and the convex set
B = cone(C ∩ domh∗) to conclude the existence of w0 ∈ cone(C ∩ domh∗) such that

〈a, w0〉 > i∗ε0−argminh(w0).

Hence, there will exist λ > 0 and y0 ∈ C ∩ domh∗ ⊆ domh∗ such that w0 = λy0, and
so

〈a, y0〉 > i∗ε0−argminh(y0).

As a consequence of that

i∗(ε0−argminh+{y0}−)(y0) = i∗ε0−argminh(y0) < 〈a, y0〉 ,

and again, by Hahn-Banach theorem we reach the aimed conclusion

a /∈ co
(

ε0 − argminh+ {y0}
−
)

.

Theorem 4.8. For any function h ∈ R
X
and any family {Ci, i ∈ I} of convex subsets

of Y satisfying

domh∗ ⊆
⋃

i∈I

Ci, (37)

and
ri (cone(Ci ∩ domh∗)) 6= ∅, for all i ∈ I, (38)

one has
argmin h∗∗ =

⋂

ε>0
i∈I

co
(

ε− argminh + (Ci ∩ domh∗)−
)

.
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Proof. From Corollary 4.7 and (38) the inclusion "⊆" follows.

Moreover, for any y ∈ domh∗ there will exist, in virtue of (37), i0 ∈ I such that y ∈ Ci0 .
Hence,

{y}− ⊇ (Ci0 ∩ domh∗)−,

and the reverse inclusion "⊇" follows from Theorem 3.3.

Corollary 4.9. For any function h ∈ R
X

with domh∗ 6= ∅, if

Fy := {L ⊂ Y | L is a finite-dimensional linear subspace such that y ∈ L},

one has
∂h∗(y) =

⋂

ε>0
L∈Fy

co (Mεh(y) + NL∩domh∗(y)) for all y ∈ Y, (39)

where
Mεh(y) = ε− argmin (h(·)− 〈·, y〉) .

Proof. Since
∂h∗(y) = argmin{h(·)− 〈., y〉}∗∗,

then we shall apply Theorem 4.8 to the function f(·) := h(·)−〈., y〉 taking into account
that f ∗(·) = h∗(·+ y) and, consequently, dom f ∗ = domh∗ − y.

For this purpose, let us verify that Fy satisfies conditions (37) and (38) of the family
{Ci, i ∈ I} in Theorem 4.8. In fact, (37) now reads

dom f ∗ = domh∗ − y ⊆
⋃

L∈Fy

L,

and this inclusion holds trivially because, for any v ∈ domh∗, one has

v − y ∈ lin{v, y} ∈ Fy.

Additionally, (38) also holds automatically because, for every L ∈ Fy, the nonempty
convex set

L ∩ (domh∗ − y)

is finite dimensional.

Now we apply Theorem 4.8 and get

∂h∗(y) =
⋂

ε>0
L∈Fy

co
(

Mεh(y) + {L ∩ (domh∗ − y)}−
)

=
⋂

ε>0
L∈Fy

co
(

Mεh(y) + {(L ∩ domh∗)− y}−
)

=
⋂

ε>0
L∈Fy

co (Mεh(y) + NL∩domh∗(y)) .
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Corollary 4.10. For any function g ∈ R
Y
with dom g∗ 6= ∅, if

Fx := {L ⊂ X | L is a finite-dimensional linear subspace such that x ∈ L},

one has
∂g∗(x) =

⋂

ε>0
L∈Fx

co (Mεg(x) + NL∩dom g∗(x)) , for all x ∈ X, (40)

where
Mεg(x) = ε− argmin (g(·)− 〈x, ·〉) .

Now we derive another version of Theorem 4 in [4], in which the functions ft, t ∈ T ,
are not necessarily convex.

Corollary 4.11. Given a non-empty family {ft : t ∈ T} ⊂ R
X
, and the associated

supremum function, f := supt∈T ft, if we assume that dom f 6= ∅ and that (22) is
satisfied, i.e.

f ∗∗ = sup
t∈T

f ∗∗
t ,

then we have, for any x ∈ X,

∂f(x) =
⋂

L∈Fx,ε>0

cl

(

co

(

⋃

t∈Tε(x)

∂εft(x)

)

+NL∩dom f (x)

)

. (41)

Proof. The proof of the inclusion "⊇" is straightforward (see [4, p. 871]), and the
proof of the converse inclusion "⊆" is based on the application of Corollary 4.10 to the
function

g := inf
t∈T

f ∗
t .

In fact, one can assume that ∂f(x) 6= ∅. Therefore

f(x) = f ∗∗(x) = g∗(x) and ∂f(x) = ∂g∗(x).

Let us now observe that
Mε/2g(x) ⊂

⋃

t∈Tε(x)

∂εft(x). (42)

In fact, if y ∈ Mε/2g(x), then

g(y) + g∗(x) < 〈x, y〉+ ε,

and there will exist t ∈ T such that

f ∗
t (y) + g∗(x) = f ∗

t (y) + f(x) ≤ 〈x, y〉+ ε. (43)

By the Fenchel-Legendre inequality, it follows that

−ft(x) + f(x) ≤ ε,

and so t ∈ Tε(x).

From (43) one also has
f ∗
t (y) + ft(x) ≤ 〈x, y〉+ ε,

and this means y ∈ ∂εft(x). Finally, the inclusion "⊂" in (41) follows from (40), (42),
and from the inclusion dom g∗ ⊇ dom f.
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