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Given a multifunction F : Rn

+ →֒ R
n and q ∈ R

n, the multivalued complementarity problem (MCP)
on the positive orthant consists in finding

x̄ ≥ 0, ȳ ∈ F (x̄) : ȳ + q ≥ 0, 〈ȳ + q, x̄〉 = 0.

Such a formulation appears in many applications in Science and Engineering and therefore was the
object of many investigations in the last three decades. Most of the works existing in the literature
deal with the case when F is pseudomonotone (in the Karamardian sense) or quasimonotone, and
only a few assume copositivity. In this work we introduce the notion of asymptotic multifunction
with respect to a class of re-scaling functions including those with slow growth, and the notion of
asymptotic multifunction associated to a sequence of multifunctions rather to a single one. Based
on these two concepts we establish new existence theorems for the MCP for a class of multifunctions
larger than copositive without assuming positive (sub)homogeneity as in a previous work. In addition,
some stability and sensitivity results, as well as a robustness property, are provided. Thus, in this
regard, we unify and generalize some of the results previously established.
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tion, asymptotic analysis
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1. Introduction, notation and basic definitions

Given a multifunction F : Rn
+ →֒ R

n and q ∈ R
n, the multivalued complementarity

problem on the positive orthant consists in finding

x̄ ≥ 0, ȳ ∈ F (x̄) : ȳ + q ≥ 0, 〈ȳ + q, x̄〉 = 0. (1)

It is well documented that such a problem appears in many applications in Science
and Engineering [12, 10, 2] and therefore was the object of many investigations in the
last three decades. Apart from the case when F is pseudomonotone (in the Kara-
mardian sense) or quasimonotone, which have been studied recently in [4, 5, 6, 1, 11],
the work [10] considered the case when F is copositive and not necessarily positively
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homogeneous in a somewhat general framework. Complementarity problems under
copositivity and positive (sub)homogeneity were studied in [9, 7]. The authors in [10]
use asymptotic arguments by comparing the asymptotic behavior of F with that of the
function c(t) = tα, for some α > 0. More precisely, given F : Rn

+ →֒ R
n, they introduce

the following asymptotic multifunction

Γ(v)
.
=

{

w ∈ R
n : λm ↑ +∞, xm ≥ 0,

xm

λm

→ v, ym ∈ F (xm),
ym

λγ
m

→ w

}

.

This mapping is well defined under the following property on F called Upper Limiting
Homogeneity (ULH). First, we consider the set Ω ⊆ R+ consisting of nonnegative
scalars ω such that for every sequence {λm} of positive scalars, every sequence {xm}
of nonnegative vectors, and every sequence {ym} of vectors satisfying

λm ↑ +∞, xm/λm converges, ym ∈ F (xm) ∀ m,

the sequence {ym/λω
m} is bounded. Thus, we say that F posseses the ULH property if

the set Ω is nonempty and the scalar γ = inf{ω : ω ∈ Ω} is in Ω. This scalar being
uniquely defined is called the ULH degree of the multifunction F . For such F , the
mapping Γ is positively homogeneous of degree γ; i.e.,

Γ(tv) = tγΓ(v) ∀ t > 0, ∀ v ≥ 0.

The class of mappings satisfying the above ULH property contains very interesting and
important multifunctions as shown in [10]. However, if we consider the mapping

F1(x) = ln(|x|γ + 1)H(x), or F2(x) =
1

ln(|x|γ + 1)
H(x), (γ ≥ 1)

with H being a positive homogeneous multifunction of degree p > 0, that is, H(tx) =
tpH(x) for all t > 0, x ≥ 0, a comparison (at infinity) with any function of the form
tα provides no information. In these cases, a good choice for F1 is c1(t) = tpln(tγ + 1),
and c2(t) =

tp

ln(tγ+1)
for F2. We have the same situation if one deals with

F3(x) = M1x+ ln(|x|+ 1)M2x,

where Mi, i = 1, 2, is a real-matrix of order n. Here we use c3(t) = t ln(t+1). Another
example is

F4(x) = (〈M1x, x〉, ln(|x|+ 1)〈M2x, x〉) ∈ R
2,

where x ≥ 0, x ∈ R
2, and M1,M2 are matrices or order 2 with real entries. In this case

c(t) = t2 ln(t+ 1) is useful. Our theory will be applicable to these functions.

Thus, the purpose of the present paper is, on one hand, to introduce a notion of
asymptotic multifunction with respect to a class of re-scaling functions larger than tα,
and on the other hand, having in mind to discussing existence, sensibility, stability
and also perturbation results, we introduce the notion of c-asymptotic multifunction
associated to a sequence of multifunctions {F k} rather than to a single F . Here c
belongs to a certain class of real functions containing those of the form tα, α > 0. Based
on these two concepts we estalish new existence theorems for problem (1) for a class of
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multifunctions larger than copositive without assuming positive (sub)homogeneity as
imposed for instance in the recent paper [7].

This approach allows us to unify and generalize some of the existence results in [7] and
[10]: the authors in [7] extended the results in [10] to a class of mappings larger than
copositive, but they required to satisfy a kind of positive homogeneity which is not
assumed in [10]. This latter assumption will be not imposed here.

We end this section by stating some notation and basic definitions well known in Set-
valued analysis. In Section 2 we introduce our main notion of c-asymptotic multifunc-
tion associated to a sequence of multifunctions {F k}, and the property of c-Asymptotic
boundedness. Some related results based on the previous two notions are described as
well. Section 3 presents a preliminary lemma which describes the asymptotic behavior
of some approximate solutions to (1), and establishes various equivalent conditions for
the unboundedness of the solution set. In Section 4 we introduce two classes of asymp-
totically well-behaved multifunctions together with the main existence theorems. The
notion of asymptotically regular mappings is introduced, and a relationship with a ro-
bustness property is discussed in Section 5. Finally, Section 6 presents some sensitivity
results through a metric defined for positive homogeneous-type multifunctions.

Throughout this paper we will deal with multifunctions F : R
n
+ →֒ R

n such that
F (x) 6= ∅ for all x ≥ 0. The set F (x) is called the image of x under F , or the value of
F at x. As usual the set gphF

.
= {(x, y) ∈ R

n
+ × R

n : y ∈ F (x)} is termed the graph
of F .

A multifunction F : Rn
+ →֒ R

n is said to be:

• compact (convex/nonempty) valued if, for each x ≥ 0, the image F (x) is a compact
(convex/nonempty) subset of Rn;

• upper semicontinuous (shortly usc) at x̄ ≥ 0 if for any open set V containing
F (x̄), there is an open set U containing x such that F (U ∩ R

n
+) ⊆ V ; F is upper

semicontinuous (on R
n
+) if it is at every x̄ ≥ 0;

• cusco if it is upper semicontinuous and nonempty compact convex valued;

• sequentially bounded at v ∈ R
n
+ if for any sequence {xk} ⊆ R

n
+ converging to v, any

sequence {yk} with yk ∈ F (xk) for all k, is bounded. This is equivalent to saying,
if for some neighborhood U of v the set F (U ∩ R

n
+) is bounded. Some authors

also use the term locally bounded at v. Such a multifunction will be sequentially
bounded on R

n
+ if it is at every v ∈ R

n
+;

• uniformly bounded if there exists a bounded set C ⊆ R
n such that F (x) ⊆ C for

all x ≥ 0;

• graph-closed if its graph is closed.
Furthermore, some algebraic notions are also needed. For any function c : R+ →
R+, the multifunction F is said to be:

• c-subhomogeneous if F (λx) ⊆ c(λ)F (x) ∀ λ > 0, ∀ x ≥ 0;

• c-homogeneous if F (λx) = c(λ)F (x) ∀ λ > 0, ∀ x ≥ 0;

• zero-subhomogeneous if F (λx) ⊆ F (x) ∀ λ > 0, ∀ x ≥ 0;

• c-Moré [7]: if ∀ x ≥ 0, ∀ λ > 0, ∀ y ∈ F (λx), ∃ z ∈ F (x) such that

〈y, x〉 ≥ c(λ)〈z, x〉.
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We set
X .

=
{

F : Rn
+ →֒ R

n : F is cusco
}

.

Given A ⊆ R
n, we set

A# .
= {x ∈ R

n : 〈u, x〉 > 0 ∀ u ∈ A, u 6= 0},
A∗ .

= {x ∈ R
n : 〈u, x〉 ≥ 0 ∀ u ∈ A}.

Obviously A# ⊆ A∗, and since A∗ is always a convex closed cone and A ⊆ A∗∗, we have
int A∗ ⊆ A#, where int A stands for the topological interior of A; ri A, co A, pos A,
pos+A mean, respectively, for the relative interior, the convex hull, the positive hull
and the strictly positive hull of A, i.e., pos+A = {tx : t > 0, x ∈ A}; S(q, F ) stands
for the solution set to problem (1).

2. Asymptotically bounded multifunctions and related properties

Set R++ = ]0,+∞[. Let us consider

C .
= {c : R++ → R++ : lim

t→+∞
c(t) = +∞}

and

C0 .
=

{

c ∈ C : lim
t→+∞

c(λt)

c(t)
∈ R for all λ > 0

}

.

For c ∈ C0, set
c∞(λ)

.
= lim

t→+∞

c(λt)

c(t)
.

Thus, one immediately obtains that for all c ∈ C0,

c∞(1) = 1, +∞ > c∞(t) > 0 ∀ t > 0 (2)

c∞(ξ)c∞(λ) = c∞(ξλ), ξ > 0, λ > 0. (3)

Although we would desire that (2) and (3) imply that for some α > 0, c∞(t) = tα, ∀ t >
0, we will need only the property

c∞(t)c∞(1/t) = 1 ∀ t > 0 (4)

in the next sections. Some examples for c are:

c1(t) = tp(p > 0), c∞1 (t) = tp; c2(t) = tp ln(tγ + 1)(p > 0, γ ≥ 1), c∞2 (t) = tp;

c3(t) =
tp

ln(tγ + 1)
(p > 0, γ ≥ 1), c∞3 (t) = tp.

Given a sequence of multifunctions F k : Rn
+ →֒ R

n, k ∈ N, with nonempty values, and
c ∈ C, the c-asymptotic multifunction associated to {F k} is defined by

lim sup
k

∞,cF k(v)

.
=

{

w ∈ R
n : λkm ↑ +∞, xkm ≥ 0,

xkm

λkm

→ v, ykm ∈ F km(xkm),
ykm

c(λkm)
→ w

}
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When c(t) = tγ for some γ > 0, we denote simply lim sup∞,γ
k F k instead of lim sup∞,c

k F k.
Observe in this case, that if |v| = 1, one reduces to considering sequences xkm with

|xkm| → +∞ such that xkm

|xkm |
→ v, thus taking λkm = |xkm| suffices.

We can easily check that

gph(lim sup
k

∞,cF k) is closed and lim sup
k

∞,cF k(v) is closed ∀ v ≥ 0. (5)

For a given multifunction F : Rn
+ →֒ R

n and c ∈ C, we set

AF (x)
.
= sup

y∈F (x)

|y|;

lim sup
k

∞AFk,c(v)

.
= sup

{

lim sup
m→+∞

1

c(λkm)
AFkm (λkmx

km) : km ↑ +∞, λkm ↑ +∞, xkm → v

}

.

If we consider F k = F for all k, we set

F∞
c (v)

.
= lim sup

k

∞,cF k(v), A∞
F,c(v)

.
= lim sup

k

∞AFk,c(v).

The finiteness of the latter function is related to the property c-asymptotically bounded
at v (c-AB) which means: for every km → +∞ as m → +∞, every λkm ↑ +∞, every
xkm ≥ 0, every ykm ∈ F km(xkm), such that {xkm/λkm} converges to v, the sequence
{ykm/c(λkm)} is bounded. More precisely, one has the following lemma.

Lemma 2.1. Let F k : Rn
+ →֒ R

n with nonempty compact values, c ∈ C and v ≥ 0.
Then, the following assertions are equivalent:

(a) lim sup∞k AFk,c(v) < +∞;

(b) {F k} satisfies the c-asymptotically bounded property at v.

Proof. (a) =⇒ (b): Take any sequence km → +∞ and sequences λkm ↑ +∞, xkm ≥ 0,
xkm/λkm → v and ykm ∈ F km(xkm). Assume there exists a subsequence, still indexed
by the same index, of ykm such that |ykm/c(λkm)| → ∞ as m → +∞, then from the
inequality

∣

∣

∣

∣

ykm

c(λkm)

∣

∣

∣

∣

≤ 1

c(λkm)
AFkm (xkm),

we reach a contradiction.

(b) =⇒ (a): If, to the contrary we suppose that lim sup∞k AFk,c(v) = +∞, (through a
diagonalization procedure) there exist subsequences km → +∞, λkm ↑ +∞, xkm → v
as m → +∞ such that

+∞ = lim sup
k

∞AFk,c(v) = lim sup
m→+∞

1

c(λkm)
AFkm (λkmx

km).

Since each F km has compact values, there exists ykm ∈ F km(λkmx
km) satisfying

AF (λkmx
km) = |ykm|. Assuming (b) holds, there exists r > 0 such that |ykm/c(λkm)| ≤ r

∀ m, which contradicts a previous equality.
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In order to illustrate the applicability of our notions to multifunctions that are not
positively homogeneous, let us consider the following examples. More sophisticated
instances involving multifunctions are exhibited in Example 2.11 by using the graphical
convergence.

Example 2.2. Take any real matrices M,Mk ∈ R
n×n satisfying Mk → M , and ρ ∈ R.

(a) F k(x) = |x|γMkx− ρx (γ ≥ 0), c(t) = tγ+1 = c∞(t), then

lim sup
k

∞AFk,c(v) = |v|γ|Mv|, lim sup
k

∞,cF k(v) = |v|γMv.

(b) F k(x) = ln(|x|γ + 1)Mkx− ρx (γ ≥ 1), c(t) = t ln(tγ + 1), then

lim sup
k

∞AFk,c(v) = |Mv|, lim sup
k

∞,cF k(v) = Mv, c∞(t) = t.

(c) Take γ > 0 and Ck ⊆ R
n to be a sequence of nonempty closed sets converging

(in the sense of Painlevé-Kuratowski) to a nonempty closed set C ⊆ R
n, and

consider
F k(x) = |x|γCk, lim sup

k

∞,γF k(v) = |v|γC.

The following result, which is important by itself, will be used in subsequent sections.

Proposition 2.3. Let F k : Rn
+ →֒ R

n be any multifunctions with nonempty values,
c ∈ C and v ≥ 0. If lim supk

∞AFk,c(v) < +∞ then lim supk
∞,cF k is locally bounded at

v.

Proof. Assume to the contrary that there are sequences vl ≥ 0, wl ∈ lim supk
∞,cF k(vl),

such that vl → v, |wl| → +∞ as l → +∞. By definition, for every l, there are sequences

plk ↑ +∞, λplk
↑ +∞ (k → +∞), yp

l
k ∈ R

n, xplk ≥ 0, satisfying

xplk

λplk

→ vl, yp
l
k ∈ F plk(xplk),

yp
l
k

c(λplk
)
→ wl, as k → +∞.

Through a diagonalization procedure, we can get sequences

λplkl
↑ +∞,

x
plkl

λplkl

→ v, y
plkl ∈ F

plkl (x
plkl ),

∣

∣

∣

∣

∣

y
plkl

c(λplkl
)
− wl

∣

∣

∣

∣

∣

→ 0, as l → +∞.

Therefore,
∣

∣

∣

∣

∣

y
plkl

c(λplkl
)

∣

∣

∣

∣

∣

→ +∞,

which contradicts our hypothesis.

Given a sequence of nonempty sets of Dk ⊆ R
p the following notion was introduced in

[21, Chapter 4],

lim sup
k

∞Dk .
=

{

v ∈ R
p : λkm ↑ +∞, xkm ∈ Dkm ,

xkm

λkm

→ v

}

.
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When the sets Dk ⊆ R
n×R

n are the graphs of some multifunctions F k : Rn
+ →֒ R

n, we
need to consider different re-scaling in the domain and image spaces. More precisely,
for a given c ∈ C, we define

lim sup
k

∞,c(gphF k)

.
=

{

(v, w) ∈ R
n
+ × R

n : λkm ↑ +∞, (xkm , ykm) ∈ gphF km ,

(

xkm

λkm

,
ykm

c(λkm)

)

→ (v, w)

}

.

Then, lim sup∞,c
k F k is the multifunction having as its graph the set lim supk

∞,c(gphF k),
that is,

gph(lim sup
k

∞,cF k) = lim sup
k

∞,c(gphF k).

Consequently the graph of lim sup∞,c
k F k is closed as already observed.

In case F k = F for all k, we denote

(gphF )∞,c .
= lim sup

k

∞,c(gphF k),

and thus (gphF )∞,c = gphF∞
c .

If c(t) = t, we recover the usual notion of asymptotic cone: for any set C ⊆ R
n, the

asymptotic cone of C is the set

C∞ .
=

{

u ∈ R
n : ∃ λk ↑ +∞, ∃ xk ∈ C,

xk

λk

→ u

}

.

Remark 2.4. (i) For F having nonempty values, one has 0 ∈ F∞
c (0), thus 0 ∈

S(p, F∞
c ) for all p ≥ 0.

(ii) If F k = F for all k, a simple instance satisfying

A∞
F,c(v) < +∞ ∀ v ≥ 0, (6)

occurs when F is sequentially closed (e.g. cusco mapping) and c-subhomogeneous for
c ∈ C.

Another non-trivial instance satisfying (6) is when F = F1+F2, where Fi, i = 1, 2, are
cusco mappings, F2 is c2-subhomogeneous with c2(t) = tγ for some γ ≥ 0, F1 satisfies
the c1-asymptotically bounded property at any v ≥ 0, and c = c1 ∈ C, is such that

lim
t→+∞

tγ

c1(t)
= 0.

The function F3 of Section 1 is of the form above. A special realization of the mapping
F2 occurs when it is the classical (convex) subdifferential of a positively homogeneous
function with degree 1 + γ, γ ≥ 0.

As mentioned in the introduction, the c-AB property was first introduced in [10] when
F k = F and c(t) = tγ

′

for some γ′ > 0. Such a property is called Upper Limiting
Homogeneity (ULH) by the authors in [10]. They also introduced the ULH degree as
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γ to be the minimum of those γ′ for which the ULH property holds. In this case γ is
uniquely defined. Thus, for a multifunction F having the ULH property with degree γ
one obtains F∞

γ (tv) = tγF∞
γ (v) for all t > 0, v ≥ 0.

In our setting, the choice of c is a matter of testing by taking into account the behavior
of F k. For instance, if F k = F for all k and F (tx) = tγF (x) ∀ t > 0, x ≥ 0, then
we must take c(t) = tγ. The fact of taking c(t) = tγ

′

with γ′ > γ or γ′ < γ becomes
useless since it provides no information.

Theorem 2.5. Let F k : Rn
+ →֒ R

n be any sequence of multifunctions with nonempty
compact values and c ∈ C. The following assertions hold.

(a) If v ≥ 0, lim sup∞
k AFk,c(v) < +∞ then

lim sup
k

∞,cF k(v) 6= ∅, lim sup
k

∞AFk,c(v) = sup

{

|w| : w ∈ lim sup
k

∞,cF k(v)

}

.

As a consequence lim supk
∞,cF k(v) is compact.

(b) If c ∈ C0 then
lim sup

k

∞,cF k is c∞−homogeneous.

(c) If each F k is c-subhomogeneous, then

lim sup
k

∞,cF k is c− subhomogeneous.

Thus lim sup∞,c
k F k is c−homogeneous provided c(λ)c(1/λ) = 1 ∀ λ > 0.

Proof. (a): For any m, consider xm = mv. By assumption, given any ym ∈ Fm(xm)

there exists ykm such that ykm

c(km)
converges, proving the first part.

Let w ∈ lim sup∞,c
k F k(v) 6= ∅. Then, there are sequences λkm ↑ +∞, xkm ≥ 0,

ykm ∈ F km(xkm) such that xkm

λkm
→ v, ykm

c(λkm )
→ w. Since

1

c(λkm)
|ykm| ≤ 1

c(λkm)
AFkm

(

λkm

xkm

λkm

)

,

it follows that |w| ≤ lim sup∞
k AFk,c(v), proving that

sup{|w| : w ∈ lim sup
k

∞,cF k(v)} ≤ lim sup
k

∞AFk,c(v).

To prove the other inequality, assume there is t ∈ R such that

sup{|w| : w ∈ lim sup
k

∞,cF k(v)} < t < lim sup
k

∞AFk,c(v).

Then, we can choose sequences λkm ↑ +∞, xkm → v, xkm ≥ 0 such that

t < lim sup
m→+∞

1

c(λkm)
AFkm (λkmx

km) < +∞.

Since F km has compact values, for every m there exists ykm ∈ F km(λkmx
km) such that

AFkm (λkmx
km)= |ykm|. Hence, up to further subsequences, t< |w|= limm→+∞

1
c(λkm )

|ykm|
for some w ∈ lim sup∞,c

k F k(v), a contradiction.
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(b): Let λ > 0, v ≥ 0 and take w ∈ lim sup∞,c
k F k(λv). Then, ∃ λkm ↑ +∞, ∃ xkm ≥ 0,

xkm

λkm
→ λv, ∃ ykm ∈ F km(xkm), ykm

c(λkm )
→ w. We write

ykm

c(λλkm)
=

c(λkm)

c(λλkm)

ykm

c(λkm)
→ w

c∞(λ)
∈ lim sup

k

∞,cF k(v).

This proves lim sup∞,c
k F k(λv) ⊆ c∞(λ) lim sup∞,c

k F k(v). We use (4) to deduce the
reverse inclusion.

(c): We proceed as in (b) to get the subsequences λkm , x
km , ykm . By the c-subhomo-

geneity of F k, we obtain
ykm

c(λ)
∈ F km

(

xkm

λ

)

,

and since 1
λkm

xkm

λ
→ v, we obtain

1

c(λkm)

ykm

c(λ)
→ w

c(λ)
∈ lim sup

k

∞,cF k(v).

Proposition 2.6. Let F k, Gk : Rn
+ →֒ R

n, k ∈ N, be any multifunctions with nonempty
values, and c ∈ C.
(a) If c ∈ C0 then

lim sup
k

∞AFk,c(λv) = c∞(λ)lim sup
k

∞AFk,c(v) ∀ λ > 0, v ≥ 0,

i.e., lim supk
∞AFk,c is c

∞-homogeneous.

(b) lim sup∞k AFk+Gk,c(v) ≤ lim sup∞
k AFk,c(v) + lim sup∞

k AGk,c(v) ∀ v ≥ 0.

Proof. (a): Take any λ > 0, λm → +∞, xm ≥ 0, xm → λv. We write

Am =
c(λmλ)

c(λm)

1

c(λmλ)
AFm(λmx

m)

to infer that

lim sup
m→+∞

Am ≤ c∞(λ) lim sup
m→+∞

1

c(λmλ)
AFm(λmx

m) ≤ c∞(λ)lim sup
k

∞AFk,c(v).

This implies
lim sup

k

∞AFk,c(λv) ≤ c∞(λ)lim sup
k

∞AFk,c(v).

The reverse inequality is obtained by taking into account (4).

(b): It follows directly from the inequality

AFk+Gk(x) ≤ AFk(x) + AGk(x).
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The proof of the next proposition is straightforward.

Proposition 2.7. Let F k, Gk : Rn
+ →֒ R

n be multifunctions with nonempty values for
k ∈ N; c ∈ C, v ≥ 0. If

lim sup
k

∞AGk,c(v) = 0, (7)

then

lim sup
k

∞,cHk(v) = lim sup
k

∞,cF k(v),

where Hk = F k +Gk.

The multifunctions Gk(x) = ∂σCk(x), k ∈ N, where Ck is any sequence of nonempty
compact convex sets in R

n which converges (in the sense of Painlevé-Kuratowski) to
the nonempty compact convex set C, is a typical example satisfying (7) for every c ∈ C.
In fact, due to the convergence of Ck, these sets remain in a fixed bounded set.

Having in mind to discuss some kind of sensitivity and perturbation results, we need a
good notion of convergence for multifunctions. The graphical convergence had proved
to be very useful in this regard as shown in [7]. An exhaustive study of such a notion
may be found in [21, Chapter 5].

Given a sequence of multifunctions F k : Rn
+ →֒ R

n, the definition of graphical conver-
gence of {F k} is given in terms of the graphical outer limit, denoted by g− lim supk F

k,
which is the multifunction having as its graph the set lim supk(gphF

k), and the graph-
ical inner limit, denoted by g − lim infk F

k, which is the multifunction having as its
graph the set lim infk(gphF

k). Then, F k converges graphically to F , if and only if,

the outer and inner limits agree, in such case we write F k g→ F , or F = g − limk F
k.

However, when F k ∈ X the previous convergence can be induced by a metric. To this
end, given a nonempty set C ⊆ R

n, let us denote by dC(x)
.
= d(C, x) the distance from

x to C. Let A,B ⊆ R
n be two nonempty sets, the integrated set distance between them

is defined by

dI(A,B)
.
=

∞
∫

0

dIρ(A,B)e−ρdρ.

where for ρ ≥ 0,

dIρ(A,B)
.
= max

|x|≤ρ
|dA(x)− dB(x)|.

The expression dI gives a metric on cl− sets6=∅(R
n)-the space of all nonempty closed

subsets of Rn, and characterizes the ordinary set convergence in the sense of Painlevé-
Kuratowski, i.e. Ck → C ⇐⇒ dI(Ck, C) → 0.

On X we consider the metric (we shall denote also by dI)

dI(F 1, F 2)
.
= dI(gphF 1, gphF 2).

Then ([21, Theorem 5.50]),

F k g→ F ⇐⇒ dI(F k, F ) → 0.
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Remark 2.8. Another instance more general than that exhibited in Remark 2.4 for
which

lim sup
k

∞AFk,c(v) < +∞ ∀ v ≥ 0,

is given when each F k is cusco and c-subhomogeneous (hence F is also c-subhomo-

geneous by Proposition 6.6 of [7] provided c is continuous) for c ∈ C, and F k g→ F .
This results from the definition of lim sup∞,c

k F k and the property of the uniformity in
graphical convergence of F k (see [21, Exercise 5.34]).

Theorem 2.9. Let F k, F : Rn
+ →֒ R

n be multifunctions in X for k ∈ N; c ∈ C, v ≥ 0.

Assume that F k g→ F , then

F∞
c (v) ⊆ lim sup

k

∞,cF k(v). (8)

If, in addition, each F k is c-subhomogeneous, then

lim sup
k

∞,cF k(v) ⊆ F (v).

Proof. Let w ∈ F∞
c (v). Then, there exist sequences λm ↑ +∞, xm ≥ 0, ym ∈ F (xm)

such that xm

λm
→ v and ym

c(λm)
→ w. We apply Theorem 5.37 in [21] to obtain xm

l ≥ 0,

yml ∈ F iml (xm
l ) satisfying xm

l → xm, yml → ym and iml → +∞ as l → +∞. By a
diagonalization procedure, we get

ymlm ∈ F imlm (xm
lm), |ymlm − ym| → 0, |xm

lm − xm| → 0, imlm → +∞ as m → +∞.

Thus,
ymlm

c(λm)
→ w,

xm
lm

λm

→ v.

Hence w ∈ lim sup∞,c
k F k(v).

We now prove the second inclusion. Take any w ∈ lim sup∞,c
k F k(v). Then, there

exist subsequences λkm ↑ +∞, xkm ≥ 0, ykm ∈ F km(xkm) such that xkm

λkm
→ v and

ykm

c(λkm )
→ w. By c-subhomogeneity and the uniformity in graphical convergence of F k,

we obtain w ∈ F (v).

Corollary 2.10. Let F k, F : Rn
+ →֒ R

n be multifunctions in X for k ∈ N; c ∈ C,
v ≥ 0. Assume that F k g→ F .

(a) If F k(x) ⊆ F (x) +Gk(x) for all k, all x ≥ 0 with lim sup∞
k AGk,c(v) = 0, then

lim sup
k

∞,cF k(v) = F∞
c (v).

(b) If each F k is c-subhomogeneous and F is c-homogeneous, then

lim sup
k

∞,cF k(v) = F∞
c (v) = F (v).
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Proof. (a): By setting Hk = F +Gk, we have

lim sup
k

∞,cF k(v) ⊆ lim sup
k

∞,cHk(v) = F∞
c (v)

by Proposition 2.7. We then apply the previous theorem.

(b): We need to prove F (v) ⊆ F∞
c (v). Let w ∈ F (v). By setting xm = mv, ym =

c(m)w, the c-homogeneity of F imply that ym ∈ F (xm) and obviously ym

c(m)
→ w.

Therefore w ∈ F∞
c (v). We then apply the previous theorem.

Example 2.11. (i) We consider F k(x) = ln(|x|γ + 1)Mkx, γ ≥ 1, Mk → M , and

Gk(x) = ln(|x|γ + 1)(Mk − M)x. Take c(t) = t ln(tγ + 1). Then, F k g→ F , F (x) =
ln(|x|γ + 1)Mx by [21, Theorem 5.40]. Thus

(F k)∞c (v) = Mkv, F∞
c (v) = Mv and lim sup

k

∞,cF k(v) = F∞
c (v).

(ii) More generally, take any sequence of multifunctionsHk ∈ X which is asymptotically
equi-osc and converges pointwise to H ∈ X (See Sections E and F of Chapter 5 in [21]).

By [21, Theorem 5.40], Hk g→ H. In addition, assume that for some p > 0,

Hk(tx) = tpHk(x) ∀ t > 0, ∀ x ≥ 0.

Then H(tx) = tpH(x) ∀ t > 0, ∀ x ≥ 0. By setting F k(x) = ln(|x|γ+1)Hk(x), (γ ≥ 1),

by [21, Theorem 5.40], we obtain F k g→ F with F (x) = ln(|x|γ + 1)H(x), and

(F k)∞c (v) = Hk(v), lim sup
k

∞,cF k(v) = F∞
c (v) = H(v),

with c(t) = tp ln(tγ + 1). Thus, (F k)∞c
g→ F∞

c .

A particular sequence for Hk with p = 1 is given by

Hk(x) = {Mky : Ax+By ≤ 0},

where Mk ∈ R
n×n, A,B ∈ R

m×n.

Remark 2.12. Some other sufficient conditions on F k such that (with c(t) = t)

F k g→ F =⇒ lim sup
k

∞,cF k(v) = F∞
c (v) ∀ v ≥ 0, (9)

are exhibited in [21], Theorem 4.25. They are related to the notion of total convergence

(“
t→�) introduced in the same reference. In that spirit we could define the following

notion of convergence:

F k t→ F ⇐⇒ F k g→ F, lim sup
k

∞,cF k(v) ⊆ F∞
c (v) ∀ v ≥ 0. (10)

By Theorem 2.9 the inclusion in (10) is actually an equality.
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3. Asymptotic analysis and unboundedness of solution sets

We recall briefly some useful notations:

• riA is the relative interior of A, that is, the interior with respect to its affine hull;

• given J ⊆ I
.
= {1, . . . , n} and d > 0 (component-wise), we set ∆J = ∆J(d)

.
=

co{ 1
di
ei : i ∈ J}, where ei is the i-th column of the identity matrix in R

n×n.
However, sometimes we will omit the dependence on d when no confusion arises;
denote ∆d

.
= {x ≥ 0 : 〈d, x〉 = 1} = ∆I ;

• given x ∈ R
n, we set supp{x} .

= {i ∈ I : xi 6= 0};
• given k ∈ N, σk > 0 and d > 0 (component-wise), we set

Dk
.
= {x ≥ 0 : 〈d, x〉 ≤ σk}.

The following lemma has its origin in [7] where the assumption of subhomogeneity was
imposed. Its proof is almost the same, but it is presented here for reader’s convenience.
This lemma will be the basis for deriving existence as well as sensitivity results.

Lemma 3.1. Let d > 0, {σk} be an increasing sequence of positive numbers converging
to +∞; q, qk ∈ R

n, qk → q; F, F k, Gk ∈ X , and {(xk, yk, rk)} be a sequence of solutions
to

find xk ∈ Dk : yk ∈ F k(xk), rk ∈ Gk(xk), 〈yk + rk + qk, x− xk〉 ≥ 0 ∀ x ∈ Dk. (11)

such that 〈d, xk〉 = σk and xk

σk
→ v as k → +∞. Then, there exist subsequences {σkm}

and {(xkm , ykm , rkm)}, numbers k0, m0 ∈ N, and an index set ∅ 6= Jv ⊆ I such that

(a) for all k ≥ k0, x
k − σk

2
v ≥ 0 and 0 < 〈d, xk − σk

2
v〉 < 〈d, xk〉;

(b) for all m ≥ m0,
1

σkm
xkm ∈ ri(∆Jv), thus supp{xkm} = Jv (hence supp{v} ⊆ Jv );

(c) for all m ≥ m0, z ∈ ∆Jv : 〈ykm + rkm + qkm , σkmz − xkm〉 = 0. Moreover, for a
given c ∈ C,

(d) if
lim sup

k

∞AFk,c(v) < +∞ and lim sup
k

∞AGk,c(v) = 0,

then the subsequences {ykm}, σkm may be chosen in such a way that there is
a vector w such that 1

c(σkm )
ykm → w ∈ lim sup∞,c

k F k(v), 〈w, v〉 ≤ 0, 〈w, y〉 ≥
〈d, y〉〈w, v〉 for all y ≥ 0, and 〈w, z〉 = 〈w, v〉 for all z ∈ ∆Jv ;

(e) if each F k is c-Moré, F k g→ F and lim sup∞
k AGk,c(v) = 0, then there exist a

vector w, a sequence {wkm} such that wkm ∈ F km(x
km

σkm
), wkm → w ∈ F (v) and

〈w, v〉 ≤ 0.

Proof. (a): As 1
σk
xk → v, for ε = min{vi

2
: vi > 0} > 0 there exists k0 such that

for all k ≥ k0,
∑n

i=1 |
xk
i

σk
− vi| < ε. This implies vi

2
<

xk
i

σk
for i ∈ supp{v}. Thus

0 6= xk − σk

2
v ≥ 0, and then (a) holds.

(b): Clearly ∆d = ∆I = co{ 1
di
ei : i ∈ I} and it may be written as the disjoint union of

the relative interior of its extreme faces. More precisely, if we denote its extreme faces
by ∆J1 ,∆J2 , . . . ,∆J2n−1

, then

∆d =
2n−1
⋃

i=1

ri(∆Ji).
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As 1
σk
xk ∈ ∆d, k ∈ N, there exist an i0 ∈ {1, 2, . . . , 2n − 1}, m0, and a subsequence

{xkm} such that 1
σkm

xkm ∈ ri(∆Ji0
) for all m ≥ m0. By setting Jv

.
= Ji0 , one obtains

supp{xkm} = Jv and supp{v} ⊆ Jv.

(c): We analyze two cases, whether Jv is a singleton or not. In the first case, we have
1

σkm
xkm = v for all m ≥ m0 because of ri(∆Jv) = ∆Jv , which proves (c). In the second

case, by (a) we have that for all z ∈ ∆Jv and all m ≥ m0, there exists εz > 0 such that

1

σkm

xkm + t

(

z − 1

σkm

xkm

)

∈ ∆Jv ∀ t, |t| < εz.

Because of the choice of xkm , we have
〈

ykm + rkm + qkm , σkm

(

xkm

σkm

+ t

(

z − xkm

σkm

))

− xkm

〉

≥ 0, ∀ |t| < εz.

Then
〈ykm + rkm + qkm , t(σkmz − xkm)〉 ≥ 0, ∀ |t| < εz.

Hence
〈ykm + rkm + qkm , σkmz − xkm〉 = 0, ∀ z ∈ ∆Jv .

(d): Since {F k} is c-asymptotically bounded, we may also assume that ykl

c(σkl
)
→ w ∈

lim sup∞,c
k F k(v). Moreover, taking into account the assumption lim supk

∞AGk,c(v) = 0,
and after dividing the inequality in (11) by c(σkl)σkl and letting l → +∞ for x = 0 and
x = σkl

y
〈y,d〉

with 0 6= y ≥ 0 respectively, we obtain 〈w, v〉 ≤ 0 and 〈w, y〉 ≥ 〈d, y〉〈w, v〉
for all y ≥ 0. Dividing (c) by c(σkl)σkl and letting l → +∞ we obtain the last part of
(d).

(e): By assumption, 〈yk, xk

σk
〉 ≥ c(σk)〈wk, xk

σk
〉 for some wk ∈ F k(x

k

σk
). By the property of

the uniformity in graphical convergence of F k (see [21, Exercise 5.34]), we may suppose
up to subsequences that wk → w and w ∈ F (v). On dividing (11) (for x = 0) by c(σk),
we get

−
〈

rk + qk

c (σk)
,
xk

σk

〉

≥
〈

yk

c(σk)
,
xk

σk

〉

≥
〈

wk,
xk

σk

〉

.

Taking the limit we obtain 〈w, v〉 ≤ 0.

Remark 3.2. In the previous lemma we actually get 〈v, d〉 = 1. Additionally, by
choosing y = ei, i = 1, . . . , n, in (d), and setting z

.
= w − 〈w, v〉d ≥ 0, we obtain

〈z, v〉 = 0. Therefore, if τ
.
= −〈w, v〉 ≥ 0, then

Jv 6= ∅, v ∈ ∆Jv , v 6= 0, v ∈ S(τd, lim sup
k

∞,cF k). (12)

The following result provides an important estimate for the cone (S(q, F +G))∞ as a
consequence of Lemma 3.1.

Proposition 3.3. Let d > 0, q ∈ R
n
+, c ∈ C, and F,G ∈ X such that

A∞
F,c(v) < +∞ and A∞

G,c(v) = 0 ∀ v ∈ ∆d.

Then,
(S(q, F +G))∞ ⊆ S(0, F∞

c ).
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Proof. Let v ∈ [S(q, F+G)]∞. Then, there exists xk ∈ S(q, F+G) such that 〈xk, d〉 →
+∞ and xk

〈xk,d〉
→ v. Moreover, there exist yk ∈ F (xk) and rk ∈ G(xk) such that

yk + rk + q ≥ 0 and 〈yk + rk + q, xk〉 = 0 for all k. Clearly, σk
.
= 〈d, xk〉 → +∞ and

xk

σk
→ v as k → +∞. Thus, Lemma 3.1 (for F k = F , Gk = G, and qk = q for all k)

implies the existence of w ∈ F∞
c (v) and ∅ 6= Jv ⊆ I, such that (d) of that lemma holds.

Dividing yk+rk+q ≥ 0 (resp. 〈yk+rk+q, xk〉 = 0) by c(σk) (resp. c(σk)σk) and taking
the limit we obtain w ≥ 0, 〈w, v〉 = 0, and wJv = 0. Hence v ∈ S(0, F∞

c ).

We next present various equivalent conditions for the unboundedness of the solution
set.

Theorem 3.4 (General existence theorem). Let d > 0 be a positive vector, {σk}
be an increasing sequence of positive numbers converging to +∞ and q ∈ R

n; let F ∈ X ,
and {(xk, yk)} be a sequence of solutions to

find xk ∈ Dk : yk ∈ F (xk), 〈yk + q, x− xk〉 ≥ 0 ∀ x ∈ Dk. (13)

such that 〈d, xk〉 = σk and xk

σk
→ v as k → +∞. Then the following assertions are

equivalent:

(a) there exist m0 and a subsequence {xkm} such that 〈ykm+q, v〉 ≥ 0 for all m ≥ m0;

(b) there exist m0 and a subsequence {xkm} such that for all m ≥ m0 there is u
km ≥ 0,

0 < 〈d, ukm〉 < 〈d, xkm〉 and 〈ykm + q, ukm − xkm〉 ≤ 0.

(c) there exist m0 and a subsequence {xkm} such that xkm ∈ S(q, F ) for all m ≥ m0;

(d) there exist m0 and a subsequence {xkm} such that 〈ykm+q, v〉 = 0 for all m ≥ m0.

Proof. (a) =⇒ (b): By taking ukm = xkm − σkm

2
v, (a) of Lemma 3.1 (with F k = F ,

Gk = 0, qk = q for all k) implies the desired result.

(b) =⇒ (c): suppose to the contrary, that there exist m ≥ m0 and y0 ∈ R
n
+ \ Dkm

such that 〈ykm + q, y0 − xkm〉 < 0. As 0 < 〈d, ukm〉 < 〈d, xkm〉, there is t ∈ ]0, 1[
such that zt

.
= tukm + (1 − t)y0 ∈ Dkm . Thus 〈ykm + q, zt − xkm〉 ≥ 0, and then

〈ykm + q, y0 − xkm〉 ≥ 0, leading to a contradiction.

(c) =⇒ (d): if (c) holds then, for all x ≥ 0 and m ≥ m0, we have 〈ykm +q, x−xkm〉 ≥ 0.
By taking x = xkm + v ≥ 0 (resp. x = xkm − σkm

2
v ≥ 0 for km such that km ≥ k0, k0

as in (a) of Lemma 3.1) we obtain 〈ykm + q, v〉 ≥ 0 (resp. 〈ykm + q, v〉 ≤ 0). Hence
〈ykm + q, v〉 = 0. (d) =⇒ (a): It is straightforward.

Example 3.5. This example is discussed in [7] in a different context. Let d = (1, 1)⊤,
σk ≥ 1 for all k such that σk+1 > σk and σk → +∞. Consider F (x1, x2) = [−x1, x1]×
[−x2, x2], q = (0,−1)⊤. Then, the sequence {(xk, yk)} with yk = (0, 1) and xk = (0, σk),
satisfies the assumptions of Theorem 3.4 Obviously 〈yk + q, v〉 = 0, so (d) of such a
theorem holds. Hence, (0, σk) ∈ S(q, F ) for all k. Indeed, S(q, F ) = {(x1, x2) : x1 ≥
0, x2 ≥ 1}.

4. Asymptotically well-behaved mappings and existence theorems

In the existence theory of multivalued complementarity problems several classes of
multifunctions arise as natural extensions of the linear case. In what follows some of
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them are recalled. Let F : Rn
+ →֒ R

n be a multifunction with nonempty values. We
say that F is a:

(i) copositive mapping if 〈x, y〉 ≥ 0 ∀ (x, y) ∈ gphF ;

(ii) strictly copositive mapping if 〈x, y〉 > 0 ∀ (x, y) ∈ gphF , x 6= 0;

(iii) (assuming 0 ∈ F (0)) semimonotone mapping if S(p, F ) = {0} ∀ p > 0;

(iv) (assuming 0 ∈ F (0) and given p > 0) G(p)-mapping or shortly F ∈ G(p) if
S(τp, F ) = {0} ∀ τ > 0. In the case when F is c-homogeneous with c(t) = tγ,
γ > 0, we get

F ∈ G(p) ⇐⇒ S(p, F ) = {0},
since v ∈ S(τp, F ) ⇐⇒ τ−1/γv ∈ S(p, F ).

Motivated by the asymptotic analysis carefully carried out in Lemma 3.1, we introduce
the following definitions, which are extensions and improvements of the ones discussed
in [7].

We recall that (see the end of Section 1)

X .
= {F : Rn

+ →֒ R
n : F is cusco },

and (see Section 2)

A∞
F,c(v)

.
= sup

{

lim sup
m→+∞

1

c(λkm)

(

sup
y∈F (λkmxkm )

|y|
)

: km ↑ +∞, λkm ↑ +∞, xkm → v

}

.

F∞
c (v)

.
=

{

w ∈ R
n : λkm ↑ +∞, xkm ≥ 0,

xkm

λkm

→ v, ykm ∈ F (xkm),
ykm

c(λkm)
→ w

}

.

Definition 4.1. Given d > and c ∈ C, we say that F ∈ X is:

(i) asymptotically well-behaved T-mapping (shortly F ∈ T) if A∞
F ,c(v) < +∞ ∀ v ∈

∆d, and for any index set α ⊆ I, one has

v ≥ 0, w ≥ 0, w ∈ F∞
c (v)

α 6= ∅, v ∈ ∆α, wα = 0

}

=⇒ v ∈ (F (pos+∆α))
∗. (14)

(ii) asymptotically well-behaved T̃-mapping (shortly F ∈ T̃) if A∞
F,c(v) < +∞ ∀ v ∈

∆d, and for any index set α ⊆ I, one has

v ≥ 0, w ≥ 0, w ∈ F∞
c (v)

α 6= ∅, v ∈ ∆α, wα = 0

}

=⇒ 〈x, y〉 ≥ 0 ∀ x ∈ pos+∆α, ∀ y ∈ F (x). (15)

Remark 4.2. (i) Since we usually will impose c ∈ C0 which implies the c∞-homogeneity
of F∞

c (Theorem 2.5), we obtain the independence on d in the definition of T-mapping.
This is a consequence of the following two facts (α 6= ∅):

pos+∆α(d) = pos+∆α(d
′) ∀ d′ > 0; v ∈ ∆α(d) ⇐⇒ 〈d, v〉 = 1 and supp{v} ⊆ α.

(ii) It is clear that when A∞
F,c(v) < +∞ ∀ v ∈ ∆d, and F is copositive, then F is

asymptotically well-behaved T̃-mapping and F∞
c is also copositive; and like in the

linear case, we should expect that it must be semimonotone as well. This is true if
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additionally 0 ∈ S(p, F∞
c ) for all p ≥ 0, which holds if F ∈ X in view of Remark 2.4

since in this case we have 0 ∈ F∞
c (0). Hence, F∞

c ∈ G(d) ∀ d > 0.

(iii) If A∞
F,c(v) < +∞ ∀ v ∈ ∆d and S(0, F∞) = {0}, then F is asymptotically well-

behaved T and T̃-mappings, since (14) and (15) hold vacuously.

Remark 4.3. When F is c-subhomogeneous the following notion of T -mapping was
introduced in [7]. For any index set α ⊆ I, one has

v ≥ 0, w ≥ 0, w ∈ F (v)
α 6= ∅, v ∈ ∆α, wα = 0

}

=⇒ v ∈ (F (pos+∆α))
∗.

This class of mappings is strictly included in that of Definition 4.1 by Theorem 2.9 and
(ii) of Remark 2.4.

Example 4.4. Take

M =

(

0 −2
1 0

)

and consider F (x) = ln(|x| + 1)Mx, c(t) = t ln(t + 1). Then c∞(λ) = λ and F∞
c (v) =

Mv, v ≥ 0. In this case S(0, F∞
c ) = {(x1, 0) : x1 ≥ 0}. It is clear that F is

asymptotically well-behaved T-mapping. Notice that F is not copositive.

Notice that under assumptions of Theorem 4.5 below,

0 ∈ F∞
c (0) and S(0, F∞

c ) is a cone,

and therefore S(0, F∞
c ) 6= ∅. If, in addition, F∞

c is sequentially bounded, then S(0, F∞
c )

is also closed, and hence by [21, Exercise 6.22], we obtain

int [S(0, F∞
c )]∗ = [S(0, F∞

c )]#.

Set
fr ([S(0, F∞

c )]∗) = [S(0, F∞
c )]∗ \ [S(0, F∞

c )]#,

the boundary of [S(0, F∞
c )]∗.

The next two theorems are extensions and improvements of some results in [7].

Theorem 4.5. Let d > 0, c ∈ C0 and let F ∈ X be an asymptotically well-behaved
T-mapping such that F∞

c ∈ G(d).

(a) If q ∈ int [S(0, F∞
c )]∗ then S(q, F +G) is nonempty and compact for all G ∈ X

copositive and zero-subhomogeneous.

(b) If q ∈ fr ([S(0, F∞
c )]∗) then S(q, F +G) is nonempty and compact for all G ∈ X

strictly copositive and zero-subhomogeneous.

(c) If q ∈ fr ([S(0, F∞
c )]∗) then S(q, F ) is nonempty (possibly unbounded).

Proof. Let σk be a increasing sequence of positive real numbers converging to +∞.
For fixed q ∈ R

n and every k, we consider the problem

find xk ∈ Dk : yk ∈ F (xk), rk ∈ G(xk), 〈yk + rk + q, x− xk〉 ≥ 0 ∀ x ∈ Dk. (16)
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Because of the assumptions on F,G, we conclude that such a sequence {(xk, yk, rk)}
does exists (see Lemma 4.1 in [22] for instance). We distinguish two cases: either
supk〈d, xk〉 < +∞ or supk〈d, xk〉 = +∞. When supk〈d, xk〉 < +∞ occurs, we may
suppose that xk → x̄, rk → r ∈ G(x̄), and since F ∈ X , we obtain yk → y ∈ F (x̄).
Take any x ≥ 0 and let k0 such that 〈d, x〉 < σk0 and 〈d, x̄〉 < σk0 . Then

〈yk + rk + q, x− xk〉 ≥ 0 ∀ k ≥ k0.

Hence 〈y+r+q, x−x̄〉 ≥ 0, since x ≥ 0 was arbitrary, we conclude that x̄ ∈ S(q, F+G).
We now suppose that 〈d, xk〉 → +∞. By re-defining σk if necessary, we assume that
〈d, xk〉 = σk for all k. Thus, we are in the situation of Lemma 3.1, and hence (a), (b)
and (c) of the same lemma hold. In particular,

〈ykm + rkm + q, v〉 =
〈

ykm + rkm + q,
xkm

σkm

〉

(≤ 0). (17)

Moreover, the assumptions in (d) of Lemma 3.1 also hold. Thus w ∈ F∞
c , and by

Remark 3.2, v ∈ S(−〈w, v〉d, F∞
c ). Since F∞

c ∈ G(d), 〈w, v〉 = 0. By (14) v ∈
(F (pos+∆α))

∗ for all m sufficiently large. On the other hand, we also have rkm ∈
G(xkm) ⊆ G(x

km

σkm
), and thus (up to a subsequence) rkm → r ∈ G(v). From (16) we get

〈rkm + q, v〉 ≤ 〈ykm + rkm + q, v〉 ≤ 0. By taking the limit, we obtain 〈r + q, v〉 ≤ 0,
which in turn implies that 〈q, v〉 ≤ 0, reaching a contradiction if q ∈ [S(0, F∞

c )]# in case
(a). In the case (b), we get 〈r, v〉 > 0, which gives 〈q, v〉 < 0, reaching a contradiction
if q ∈ [S(0, F∞

c )]∗. This proves, in both cases, that supk〈d, xk〉 < +∞, and hence
any limit point of {xk} belongs to S(q, F + G). The same reasoning also shows the
boundedness of the solution set. In the case (c), we get

0 ≤ 〈q, v〉 ≤ 〈ykm + q, v〉 =
〈

ykm + q,
xkm

σkm

〉

≤ 0.

Hence, 〈ykm + q, v〉 = 0. We apply Theorem 3.4 to conclude that S(q, F ) 6= ∅.

The next paragraph exhibits four instances showing that (a) in the previous theorem
may be false, if either F 6∈ T, or q 6∈ [S(0, F∞

c ))]# or F∞
c is not a G-mapping. The

fourth example shows that the strict copositivity of G or the condition q ∈ [S(0, F∞
c )]#

cannot be avoided to obtain the boundedness of the solution set.

Example 4.6 ([7]). (i) Let

M =





0 −1 0
0 0 1
1 0 0



 , q = (1,−1, 1)⊤, and

F (x) = F∞
c (x) = Mx, for c(t) = t.

It is clear that F ∈ G(d) ∀ d > 0 and F 6∈ T. Further, one obtains

S(0, F∞
c ) =

{

(x1, 0, x3)
⊤ : x1 ≥ 0, x3 ≥ 0, x1x3 = 0

}

.

Thus, q ∈ [S(0, F∞
c )]# but S(q, F ) = ∅.
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(ii) We now consider

M =

(

0 −2
1 0

)

, q = (−1, 1)⊤.

If F (x) = Mx, then, for c(t) = t, one obtains F = F∞
c ∈ T∩G(d) ∀ d > 0. Moreover,

S(0, F ) = {(x1, 0)
⊤ : x1 ≥ 0}, q 6∈ [S(0, F∞

c )]# and S(q, F ) = ∅.
(iii) Take F (x) = F∞

c (x) = Mx for c(t) = t and

M =

(

−1 0
0 1

)

Clearly F is not in G(d) for any d > 0, but F ∈ T. If q = (−1, 0)⊤, S(0, F∞
c ) =

{(0, 0)⊤} and S(q, F ) = ∅.
(iv) This example shows, on one hand, the necessity of the strict copositivity of G in
(b) of the previous theorem, and on the other hand, the necessity of q ∈ [S(0, F∞

c )]#

in (a), to get the boundedness of the solution set. Consider the same mapping as in
(ii) with q = (0, λ)⊤, λ ∈ R, and G ≡ 0. Then

S(q, F ) = {(x1, 0) : x1 ≥ max{0,−λ)},

which is unbounded. Observe that q ∈ [S(0, F∞
c )]∗ \ [S(0, F∞

c )]#.

The next theorem generalizes and extends Theorem 2 (and so also Corollary 2) of [10].
Indeed, in that paper is assumed c(t) = tγ > 0, γ > 0, F k = F , A∞

F,c(v) < +∞ ∀ v ≥ 0,

v 6= 0, and F is copositive. Thus, F ∈ T̃. Moreover, by (ii) of Remark 4.2, F∞
c is

copositive as well and therefore it is in G(d) ∀ d > 0. Example 4.8 below exhibits an
instance in which Theorem 4.7 is applicable but not Theorem 2 in [10].

Theorem 4.7. Let d > 0, c ∈ C0 and let F ∈ X be an asymptotically well-behaved
T̃-mapping such that F∞

c ∈ G(d). Then S(q, F +G) is nonempty and compact for all
q ∈ [S(0, F∞

c )]# and all G ∈ X copositive such that A∞
G,c(v) = 0 ∀ v ∈ ∆d.

Proof. We proceed as in the previous theorem to infer, in particular, that 〈ykm+rkm+

q, xkm

σkm
〉 ≤ 0. As before 〈w, v〉 = 0, and by (15), 〈x, y〉 ≥ 0 ∀ x ∈ pos+∆α, ∀ y ∈ F (x).

This along with the copositivity of G yield

〈

q,
xkm

σkm

〉

≤
〈

rkm + q,
xkm

σkm

〉

≤
〈

ykm + rkm + q,
xkm

σkm

〉

≤ 0. (18)

It follows that 〈q, v〉 ≤ 0, a contradiction if q ∈ [S(0, F∞
c )]#, proving that S(q, F+G) 6=

∅. This reasoning also shows the boundedness of such a set.

Example 4.8. Let M be the matrix of Example 4.4 and consider F (x) = ln(|x| +
1)Mx. Then, F ∈ X ∩ T̃ and F is not copositive, and by taking c(t) = t ln(t+ 1), we
obtain F∞

c (v) = Mv, v ≥ 0, with F∞
c ∈ G(d) ∀ d > 0. Thus, given d > 0, S(q, F +G)

is nonempty and compact for all q ∈ [S(0, F∞
c )]# and all G ∈ X copositive such that

A∞
G,c(v) = 0 ∀ v ∈ ∆d. Notice that a comparison (at infinity) with any function of the

form tγ, γ > 0, provides no information.
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We now show that one cannot avoid the copositivity of G in Theorem 4.7 Let | · | be
the Euclidean norm and consider [10]

M =

(

0 −1
1 0

)

, q = (2,−2)⊤, and

F (x) = |x|Mx, G(x) = −2
√
2x.

Clearly, by taking c(t) = t2, A∞
G,c(v) = 0 ∀ v ≥ 0, F = F∞

c is copositive. Further
S(0, F∞

c ) = R+ × {0}, so that [S(0, F∞
c )]∗ is the closed right half-plane and q ∈

[S(0, F∞
c )]#. In [10] it is proved that S(q, F +G) = ∅.

In what follows, we set

U0(F )
.
= {v ≥ 0 : w ∈ F (v), 〈w, v〉 = 0}.

Theorem 4.9. Let d > 0 be a positive vector and c ∈ C; let F ∈ X be c-Moré.

(a) If F is strictly copositive, then S(q, F + G) is nonempty and compact for all
q ∈ R

n and all G ∈ X satisfying A∞
G,c(v) = 0 ∀ v ∈ ∆d;

(b) If F is copositive but not strictly copositive then S(q, F + G) is nonempty and
compact for all q ∈ [U0(F )]# and all G ∈ X copositive satisfying A∞

G,c(v) = 0
∀ v ∈ ∆d.

Proof. We proceed as in Theorem 4.5, but in this case we use (e) of Lemma 3.1 to
prove (a). In the case (b), we obtain 〈w, v〉 = 0, and from 17 along with the copositivity
of F and G, we get

〈

q,
xkm

σkm

〉

≤
〈

ykm + rkm + q,
xkm

σkm

〉

≤ 0.

It follows that 〈q, v〉 ≤ 0, which is impossible if q ∈ [U0(F )]#

Part (a) is a generalization of a result of [23] when it is specified to R
n
+ and where the

single-valued case and G ≡ 0 is only considered; see also [13].

The next theorem is an immediate consequence of Lemma 3.1

Theorem 4.10. Let d > 0 be a positive vector and c ∈ C such that c∞(λ) > 0 ∀ λ > 0;
let F ∈ X . If A∞

F,c(v) < +∞ ∀ v ∈ ∆d and F∞
c is strictly copositive, then S(q, F+G) is

nonempty and compact for all q ∈ R
n and all G ∈ X satisfying A∞

G,c(v) = 0 ∀ v ∈ ∆d.

5. Asymptotically regular mappings and a robustness property

Let d > 0, c ∈ C and F ∈ X such that A∞
F,c(v) < +∞ ∀ v ∈ ∆d. The system

v ≥ 0, 〈d, v〉 = 1, w ∈ F∞
c (v), 〈w, v〉 ≤ 0, w − 〈w, v〉d ≥ 0, (19)

found in Lemma 3.1 (for Gk = G, and qk = q for all k), plays a fundamental role in
characterizing the nonemptiness and boundedness of S(q, F +G) for all q ∈ R

n. When
F∞
c is c∞-subhomogeneous (this is true whenever c ∈ C0) the inconsistency of (19) is

equivalent to the inconsistency of the following system

0 6= v ≥ 0, z ∈ F∞
c (v), τ ≥ 0, z + τd ≥ 0, 〈z + τd, v〉 = 0. (20)
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When F (x) = Mx with M being a real matrix and d to be the vector of ones the
previous system was introduced in [14], giving rise to regular matrices which proved
to be very useful in the development of some algorithms in linear complementarity
problems as shown in [8]. Such a system was further developed in [15, 19, 20] for
functions that are positively homogeneous of some degree. Afterwards, the set-valued
version was introduced in [10] for c(t) = tγ, γ > 0. The following definition is a natural
extension of regularity originally introduced for matrices. Notice that when F ∈ X ,
0 ∈ F∞

c (0), and so 0 ∈ S(p, F∞
c ) for all p ≥ 0.

Definition 5.1. Given d > and c ∈ C0, we say that F ∈ X is asymptotically (regular)
R(d)-mapping if A∞

F,c(v) < +∞ ∀ v ∈ ∆d, and

S(τd, F∞
c ) = {0} ∀ τ ≥ 0.

The next theorem unifies and generalizes Corollary 2 and Theorem 3 of [10], and
therefore also generalizes Theorem 3.1 in [14] and Theorem 3.1 in [19]. In addition,
it also extends and improves Theorem 5.12 in [7], showing the existence of some kind
of robustness property with respect to certain classes of perturbations, and provides
characterizations of our new notion of regular mappings related to the membership of
G(d) as expected.

Theorem 5.2. Let d > 0, c ∈ C0 and F ∈ X such that A∞
F,c(v) < +∞ ∀ v ∈ ∆d.

Consider the statements

(a) the system (19) is inconsistent;

(b) F∞
c ∈ G(d) and S(q, F + G) is nonempty and compact for all q ∈ R

n and all
G ∈ X copositive satisfying A∞

G,c(v) = 0 ∀ v ∈ ∆d;

(c) F∞
c ∈ G(d) and S(q, F + G) is nonempty and compact for all q ∈ R

n and all
G ∈ X copositive and uniformly bounded;

(d) F∞
c ∈ G(d) and S(q, F + G) is nonempty and compact for all q ∈ R

n and all
G ∈ X copositive and zero-subhomogeneous;

(e) F∞
c ∈ G(d) and S(q, F ) is nonempty and compact for all q ∈ R

n;

(f) F is asymptotically R(d)-mapping.

The following implications hold:

(f) ⇐⇒ (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e).

Moreover, if each F is c-subhomogeneous, then all the statements are equivalent.

Proof. (a) ⇒ (b): We first prove that F∞
c ∈ G(d). Let τ > 0 and x ∈ S(τd, F∞

c ).
Then there is y ∈ F∞

c (x) such that y + τd ≥ 0 and 〈y + τd, x〉 = 0. If 〈y, x〉 = 0
then 〈d, x〉 = 0, which implies x = 0. If 〈y, x〉 < 0 then for v = x/〈d, x〉 we get w

.
=

y/c∞(〈d, x〉) ∈ F∞
c (v) and since τ〈d, x〉 = −〈y, x〉, clearly (19) holds, a contradiction.

The previous reasoning also shows that S(0, F∞
c ) = {0}, and thus F ∈ T̃ by (iii) of

Remark 4.2. By Theorem 4.7 we conclude that S(q, F +G) is nonempty and compact
for all q ∈ R

n and all G ∈ X copositive satisfying A∞
G,c(v) = 0 ∀ v ∈ ∆d. (b) =⇒ (c),

(c) =⇒ (d) and (d) =⇒ (e) are obvious. The equivalence (a) ⇐⇒ (f) is a consequence
of the equivalence between (19) and (20).
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(e) =⇒ (f): Assume there exists 0 6= v ∈ S(0, F∞
c ). Then, by c∞-homogeneity of F∞

c

(see (b) of Theorem 2.5, tv ∈ S(0, F∞
c ) for all t > 0. From Theorem 2.9 it follows that

F∞
c (tv) ⊆ F (tv).

Hence, tv ∈ S(0, F ) for all t > 0, contradicting the boundedness of S(0, F ).

By re-writing the previous theorem, one obtains the next corollary.

Corollary 5.3. Let d > 0, c ∈ C0 and F ∈ X be c-subhomogeneous such that A∞
F,c(v) <

+∞ ∀ v ∈ ∆d. Assume in addition that F∞
c ∈ G(d). The following assertions are

equivalent:

(a) S(q, F ) is nonempty and compact for all q ∈ R
n;

(b) S(q, F + G) is nonempty and compact for all q ∈ R
n and all G ∈ X copositive

satisfying A∞
G,c(v) = 0 ∀ v ∈ ∆d;

(c) S(q, F + G) is nonempty and compact for all q ∈ R
n and all G ∈ X copositive

and uniformly bounded;

(d) S(q, F + G) is nonempty and compact for all q ∈ R
n and all G ∈ X copositive

and zero-subhomogeneous;

(e) S(0, F∞
c ) = {0}.

By taking into account Remark 2.12 the preceding two results may admit some variants.

6. Some sensitivity results

Now, our interest is establishing some sensitivity results. For that purpose we need to
measure the difference between two c∞-homogeneous multifunctions, i.e., multifunc-
tions H : Rn

+ →֒ R
n satisfying

H(tx) = c∞(t)H(x) ∀ t > 0, ∀ x ≥ 0,

with c∞ satisfying (2) and (3). By H, we denote the family of multifunctions with
nonempty values having this property. For H ∈ H and d > 0, let us consider the outer
norm ([21], Chapter 9, Section D])

|H|+d
.
= sup{|y| : x ∈ ∆d, y ∈ H(x)}.

Set
H0

.
= {H ∈ H : H is locally bounded on ∆d, H(0) = {0}} .

Then, |H|+d < +∞ for all H ∈ H0. On H0,

|H1 −H2|+d
.
= sup{|y1 − y2| : y1 ∈ H1(x), y2 ∈ H2(x), x ∈ ∆d}

becomes a metric due to (4).

Furthermore, given c ∈ C0, set
X0

.
=

{

F ∈ X : F∞
c (0) = {0}, A∞

F,c(v) < +∞, ∀ v ∈ ∆d

}

.

By virtue of Proposition 2.3 and Theorem 2.5, if F ∈ X0 then F∞
c ∈ H0.

The following proposition shows the importance of the metric associated to the outer
norm for the first time.
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Proposition 6.1. Let d > 0, c ∈ C0, q0 ∈ R
n, and F 0 ∈ X0. If q0 ∈ (S(0, (F 0)∞c ))#,

then there exists ε > 0 such that for all q ∈ R
n and all F ∈ X0 satisfying

|q − q0|+ |F∞
c − (F 0)∞c |+d < ε,

one has q ∈ (S(0, F∞
c ))#.

Proof. Suppose on the contrary, that there exist sequences qk ∈ R
n, F k ∈ X0, v

k ≥ 0
satisfying qk → q0, |(F k)∞c − (F 0)∞c |+d → 0, 0 6= vk ∈ S(0, (F k)∞c ), and 〈qk, vk〉 ≤
0. Since (F k)∞c is c∞-homogeneous, we may assume that |vk| = 1. Thus, up to
subsequences, vk → v 6= 0 and there exits wk ∈ (F k)∞c (vk), wk ≥ 0, 〈wk, vk〉 = 0.
Take uk ∈ (F 0)∞c (vk). Since (F 0)∞c is locally bounded (see Proposition 2.3), we may
also assume that uk → u with u ∈ (F 0)∞c (v) because of the closedness of the graph of
(F 0)∞c . Thus,

|wk − uk| ≤ |(F k)∞c − (F 0)∞c |+d → 0 as k → +∞.

Therefore, wk → u. Then, u ≥ 0 and 〈u, v〉 = 0. Hence 0 6= v ∈ S(0, (F 0)∞c ) and
〈q0, v〉 ≤ 0, a contradiction.

Theorem 6.2. Let d > 0, c ∈ C0, q0 ∈ R
n, and F 0 ∈ X0. If q

0 ∈ (S(0, (F 0)∞c ))#, then

there exists ε > 0 such that for all q ∈ R
n and all F ∈ X0, F ∈ T ∪ T̃, F∞

c ∈ G(d)
satisfying

|q − q0|+ |F∞
c − (F 0)∞c |+d < ε,

one has S(q, F ) is non-empty and compact.

Proof. It is a consequence of Theorems 4.5 and 4.7 together with Proposition 6.1

Conclusion.

In this paper the basic notion of asymptotically bounded (Section 2, asymptotically
well-behaved (Definition 4.1 and asymptotically regular (Definition 5.1 mappings are
introduced, and several related properties are established as well. These notions are
defined for a sequence of multifunctions instead for a single one, and compare their
asymptotic behavior at infinity with respect to a class of re-scaling functions that
strictly contains those of the form tα, α > 0. The existence theorems extend, generalize
and unify all the existence results proved by Gowda and Pang in [10] which are valid
only in the context of copositivity or regularity. Some of the results in [7] are also
extended. Some sensitivity results based on a metric (outer norm according to [21])
defined for positive homogeneous-type multifunctions, are also established. Finally, we
point out that our results provide new ones even in the linear case.
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[17] J. J. Moré: Coercivity conditions in nonlinear complementarity problems, SIAM Rev.
17 (1974) 1–16.

[18] J. Parida, A. Sen: Duality and existence theory for nondifferenciable programming, J.
Optim. Theory. Appl. 48 (1986) 451–458.

[19] J. Parida, A. Sen: A class of nonlinear complementarity problems for multifunctions, J.
Optim. Theory. Appl. 53 (1987) 105–113.

[20] J. Parida, A. Sen: A variational-like inequality for multifunctions with applications, J.
Math. Anal. Appl. 124 (1987) 73–81.

[21] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis, Springer, Berlin (1998).

[22] R. Saigal: Extension of the generalized complementarity problem, Math. Oper. Res. 1
(1976) 260–266.

[23] Y. Zhao: Existence of a solution to nonlinear variational inequality under generalized
positive homogeneity, Oper. Res. Lett. 25 (1999) 231–239.


