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We establish sufficient conditions for when the image a linear transformation on a compact, convex set
in a real linear Hausdorff space is the same as the image of the linear transformation on the extreme
points of that set.

We show why several of those conditions cannot be relaxed and give an application.

Keywords: Convex sets in topological vector spaces, extreme points, theorems of Lyapunov type

2000 Mathematics Subject Classification: Primary 52A07

This paper is an extension of the second author’s thesis work before his untimely
passing. He was inspired by the work of C. Akemann and J. Anderson on theorems
of Lyapunov type [1] and in this paper we give three additional theorems of Lyapunov
type.

The setting is as follows: let X and V be linear spaces. Let T : X → V be a linear
map. Let K ⊂ X be convex and let E(K) be the set of extreme points of K. We
would like to find circumstances under which the following equation holds:

T (K) = T (E(K)). (1)

Theorems 21, 11 and 22 establish sufficient conditions for equation 1 to hold. In the
language of [1] these are Lyapunov theorems of type 1. An interesting feature is that
in our results we require minimal structure on V . Another distinction of note between
our results and those in [1] is that our maps need not be continuous.

The price we pay is that we must make several restrictions on K and T . For example,
our results depend on requiring K to have at most one non-singleton proper face.

Our main result is Theorem 11. We give several examples that show why the hypotheses
in 11 cannot be relaxed without significant modification. Both Theorems 21 and 22
are examples of such modifications.

An application of Theorem 11 is given in Theorem 13.

We begin by recalling a well-known definition. Refer to [5] for details.

∗The first author wishes to thank Charles Akemann for several valuable conversations.
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Definition 1. Let X be a real linear space. A subset A of X is an affine subspace

if it is a translation of a subspace, M , of X; that is, A = x0 +M for some x0 ∈ X.

Notation 2. For the remainder of this paper, we use the following notation. The set
X is a real linear locally convex Hausdorff space. For K ⊂ X non-empty and convex,
we denote the smallest affine subspace of X containing K by aff K. The subspace of
X corresponding to aff K will be denoted by M . We define the dimension of K to
be the dimension of M . We denote the dimension of K by dimK. We define

E(K) := {x ∈ K | x is an extreme point of K}. (2)

It will often be helpful to discuss line segments. For a,b ∈ X we define

L[a,b] = {ta+ (1− t)b | t ∈ [0, 1]}
L(a,b) = {ta+ (1− t)b | t ∈ (0, 1)}
L(a,b] = {ta+ (1− t)b | t ∈ [0, 1)}
L[a,b) = {ta+ (1− t)b | t ∈ (0, 1]}.

(3)

The topology on X induces a topology on aff K (and the corresponding M)[6]. The
topology used in the following definition is the induced topology on aff K.

Definition 3. We define the relative boundary of K (with respect to aff K) to be
the boundary of K in aff K. The relative interior of K is the interior of K in aff K.
We denote the relative boundary of K by ∂K and the relative interior of K by K◦.

The following definition is from [1].

Definition 4. If x and y are in K and there exists λ > 0 such that

(1 + λ)x− λy ∈ K, (4)

then x is interior relative to y. If x ∈ K is interior relative to each point in K, we
say that x is a weak internal point of K.

Remark 5. Notice that x is interior relative to itself. Indeed any λ > 0 will do.

Lemma 6. If x ∈ K, then x is a weak internal point of K if and only if the smallest
face containing x is K.

Proof. Let
F = {y ∈ K | x is interior relative to y}. (5)

By Theorem 1.2 (1) in [1], F is a face of K; and by 1.2 (3) in [1], it is the smallest face
containing x.

If x is a weak internal point of K then by 1.2 (4) in [1], K = F .

On the other hand Theorem 1.2 (2) in [1] states that x is a weak internal point of F
and hence if K = F , then x is a weak internal point of K.

Proposition 7. The collection of weak internal points of K is convex.
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Proof. Let E be the collection of weak internal points. Let x,y ∈ E and t ∈ (0, 1).
Let z = tx+ (1− t)y. We would like to show that z ∈ E. Fix w ∈ K. Since x,y ∈ E,
there exists α > 0 such that

x+ α(x−w), y+ α(y−w) ∈ K. (6)

Then

z+ α(z−w) = tx+ (1− t)y+ α(tx− tw) + α((1− t)y− (1− t)w)

= t(x+ α(x−w)) + (1− t)(y+ α(y−w)) ∈ K,
(7)

since K is convex. Thus, z is interior relative to w. Since w is arbitrary, z is a weak
internal point of K.

Proposition 8. If x is in K◦, then x is a weak internal point of K.

Proof. Let x be in the relative interior of K. There exists x0 ∈ X, and M a subspace
of X such that aff K = x0 + M . Thus, x = x0 + m for some m ∈ M and, since
x ∈ K◦, given any z ∈ M , there exists λ > 0 such that x+ λz ∈ K. Let y ∈ K. Then
y = x0 + n for some n ∈ M . For any λ ∈ R, we have:

(1 + λ)x− λy = x+ λ(x− y) = x+ λ(m− n). (8)

Notice that m− n ∈ M since M is a vector space. By choosing an appropriate λ > 0,
x + λ(m − n) ∈ K◦ and hence x is internal to y. Since y is arbitrary, x is a weak
internal point of K.

It is natural to ask whether the converse to the above proposition holds. The answer
is no in general, but yes in the finite dimensional situation.

Proposition 9. If dimK < ∞, and x is a weak internal point of K, then x is in the
relative interior of K.

Proof. Let dimK = n. Then we can choose x0,x1, . . . ,xn ∈ X such that aff K =
x0 +M , M = 〈x1, . . . ,xn〉, and x0 + xk ∈ K for each k = 1, . . . n. Since the topology
on X is translation invariant, we may assume without loss of generality that x0 = 0.
By the same reasoning, we may also assume that x = 0. Since 0 is a weak internal
point of K, there exists λk > 0 such that

λk(−xk) = −λkxk ∈ K (k = 1, . . . , n). (9)

Let λ = min{λ1, . . . , λn, 1} and yk = λxk for k = 1, . . . , n. Since K is convex, and λ
is in the interval (0, 1], yk ∈ K. Since λ is in the interval (0, λk], it follows that −yk

is also in K. Let Z be the convex hull of {±yk}nk=1. Then Z ⊂ K since K is convex.
Let H(yk) = ek where {ek}nk=1 is the standard basis for R

n. Extend H linearly to
M . Since M is Hausdorff, we may apply Theorem 7.3 from [3] which states that M is
topologically isomorphic to R

n, with H a suitable isomorphism. Now H takes Z onto
the convex hull of {±ek}nk=1 which contains an open neighbourhood U of the origin.

Since H is linear and M is finite dimensional, H is continuous [4]. Thus H−1(U) is an
open neighbourhood of 0 ∈ M , and H−1(U) ⊂ Z ⊂ K. We conclude that 0 ∈ K◦.
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Proposition 10. Proposition 9 does not extend to infinite dimensions.

Proof. Let X be the real Hilbert space with countably infinite basis. Let {ek}∞k=1 be
the standard orthonormal basis of X. Let K be the Hilbert cube: that is,

K =

{

n
∑

k=1

xkek | |xk| ≤
1

k

}

. (10)

By Tychonoff’s Theorem [3], K is compact, and by construction K is convex. Note
that 0 is a weak internal point. To see this, let y ∈ K. Then −y ∈ K. Hence, if
λ ∈ (0, 1],

(1 + λ)0− λy = −λy ∈ K, (11)

as desired.

Let ǫ > 0. There exists k ∈ N such that 1
k
< ǫ

2
. Define

z =
ǫ

2
ek. (12)

Then ||z|| < ǫ but z is not in K. Hence, 0 is not in the interior of K.

Theorem 11. Let V be a real vector space. Suppose that K is compact and has exactly
one non-singleton proper face F . Let T : X → V be a linear map. If there exists f0 ∈ F ,
x0 ∈ K, with f0 6= x0 and x0 − f0 ∈ kerT , then

T (K) = T ((E(K)).

Proof. We may assume that f0 = 0. Then x0 ∈ kerT . For z ∈ K, define:

gz : R → X

t 7→ z+ tx0.
(13)

Since x0 6= 0, gz is injective. Since gz is an affine map on a finite dimensional vector
space, gz is continuous. Let W = gz(R). Then W is a one dimensional affine subspace
of X and hence has a unique topology [2, Ch. 1]. Thus gz is an open map from R to
W . Consequently, gz is a homeomorphism onto W .

Now the inverse map of gz, g
−1
z , is continuous. Since K is compact, g−1

z (K ∩ W ) is
compact. Since gz(0) = z ∈ K, it follows that 0 ∈ g−1

z (K ∩W ).

Suppose gz(a) and gz(b) are in K for some a ≤ b. Since K is convex,

tgz(a) + (1− t)gz(b) ∈ K (14)

for t ∈ [0, 1]. Thus,

tz+ tax0 + (1− t)z+ (1− t)bx0 = z+ (ta+ (1− t)b)x0 ∈ K, (15)

and so ta+ (1− t)b ∈ g−1
z (K ∩W ).

Hence, g−1
z (K ∩W ) is convex.
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We have now shown that g−1
z (K∩W ) is a compact, convex, subset of R which contains

0. Hence
g−1
z (K ∩W ) = [a, b] (16)

for some a ≤ 0 ≤ b.

We next show that gz(a), gz(b) are not weak internal points of K.

For λ > 0,

(1 + λ)gz(a)− λgz(b) = gz(a) + λ(gz(a)− gz(b))

= z+ ax0 + λ(a− b)x0

= z+ (a+ λ(a− b))x0.

(17)

Since a+ λ(a− b) ≤ 0 for λ > 0, the vector z+ (a+ λ(a− b))x0 is in K only if a = b.
Hence, gz(a) is interior to gz(b) only if a = b. A similar calculation shows that gz(b) is
interior to gz(a) if and only if a = b. Thus, the only way that either gz(a) or gz(b) can
be weak internal points of K is if a = b = 0, and hence

gz(a) = gz(b) = gz(0) = z; (18)

that is
g−1
z (K ∩W ) = {0}. (19)

Assuming then that equation 19 holds, suppose that for some λ ≥ 0,

(1 + λ)z− λ0 ∈ K. (20)

Since K is convex,
tx0 + (1− t)(1 + λ)z ∈ K (21)

for each t ∈ [0, 1]. Fix t = λ
1+λ

. Then

(1− t)(1 + λ) =
1

(1 + λ)
(1 + λ) = 1, (22)

and so
λ

1 + λ
x0 + z ∈ K. (23)

Since g−1
z (K ∩W ) = {0}, λ = 0. Consequently, z is interior to 0 if and only if z = 0.

But tx0 ∈ K for t ∈ [0, 1] so g−1
0 (K∩W ) 6= {0}. Hence z 6= 0. We have a contradiction.

We conclude that under no circumstances are either gz(a) or gz(b) weak internal points.

Notice that
T (gz(a)) = Tz+ tTx0 = Tz, (24)

and similarly,
T (gz(b)) = Tz. (25)

Therefore, to complete our proof, we need to show that at least one of gz(a) and gz(b)
is in E(K).
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Since both vectors in question are not weak internal points, both gz(a) and gz(b) are
in proper faces of K by Lemma 6.

If at least one of them is not in F , then by hypothesis that one is an extreme point of
K.

Suppose that gz(a) and gz(b) are in F . There are two cases to consider.

First suppose that gz(a) 6= gz(b). Then neither vector is interior to the other in F as
we argued above. Thus, they must be in proper faces of F . Since proper faces of F
are proper faces of K, and since F is the only non-singleton proper face of K, gz(a)
and gz(b) are extreme points of F , hence of K. (See [2, Chapter 1] for proofs of these
assertions.)

Next suppose that gz(a) = gz(b) = z. Then z 6= 0 and as we have already seen z is not
interior to 0. Hence, in this situation, z is in a proper face in F , and therefore is an
extreme point of F . Thus z is an extreme point of K as required.

Corollary 12. Let F ⊂ X, and suppose K is the closed convex hull of F . If K satisfies
the conditions in Theorem 11 and T is a linear map that satisfies the conditions in
Theorem 11, then

T (F ) ⊂ T (E(K)).

Proof. This follows immediately since F ⊂ K and T (K) = T (E(K)) by Theorem
11.

The following shows how Theorem 11 can be applied.

Theorem 13. Suppose that K is compact and has exactly one non-singleton proper
face F . Let T : X → R

n be a linear map. If dimF = m ≥ n, then

T (K) = T (E(K)).

Proof. It will be sufficient to find an f0 and an x0 satisfying the hypotheses in Theorem
11.

Since F is a non-singleton face, there exists f0 ∈ F\E(F ). Now the set

F0 = {z ∈ F | f0 is interior to z} (26)

is itself a face of F , hence of K. Since f0 is not an extreme point and F is the only
proper non-singleton face of K, we conclude that F0 = F . Hence, F has weak internal
points. Via translation we may assume that 0 is one of those weak internal points.
(That is, 0 will be our f0.)

Since 0 is a weak internal point, we can choose a linearly independent set,{y1, . . . ,yn}⊂
F so that {−y1, . . . ,−yn} ∈ F . To see this, let {x1, . . .xm} be a basis for aff F with
each xk ∈ F . Then 0 is interior to xk so there exists λ > 0 such that

(1 + λ)0− λxk = −λxk ∈ F. (27)

Since F is convex 0 < ǫ ≤ min{1, λ}

±ǫxk := ±yk ∈ F (28)
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Figure 1: Illustration for Example 14.

whenever 0 < ǫ ≤ min{1, λ}.
We restrict our attention to {yk}nk=1 and select zn+1 ∈ K\F . Define

Y = 〈y1, . . . ,yn, zn+1〉, (29)

and note that dimY = n+ 1.

Define H(yk) = ek and H(zn+1) = en+1, where the ek’s form the standard basis for
R

n+1, and extend H linearly to all of Y . Notice that H is a vector space isomorphism
by Theorem 7.3 in [3]. The map T ◦ H−1 is a linear map from R

n+1 to R
n. Since

n+1 > n, T ◦H−1 has a non-trivial kernel. Let z be a non-zero element in the kernel.
Write z =

∑n+1
k=1 zkek. Now −z is also in the kernel, so we may without loss of generality

assume that zn+1 ≥ 0. Let U ⊂ R
n be the closed convex hull of {±e1, . . . ,±en, en+1}

(we do not include −en+1), and observe that H−1(U) ⊂ K since K is convex and
contains H−1(E(U)). By scaling if necessary, we may assume that z ∈ U .

Define x0 = H−1(z). Since H−1 is an isomorphism, x0 6= 0 and x0 ∈ kerT . We now
apply Theorem 11 to get the desired result.

It is clear that the conditions laid out in Theorem 11 are sufficient but not always
necessary. For example, if K is any convex, non-empty, compact subset of X and T is
the zero map on X, we have T (K) = T (E(K)).

(It is crucial to note that E(K) 6= ∅ since we are assuming throughout that X is locally
convex, K is compact, and hence the Krein-Milman theorem applies.)

We now ask if any of the conditions in Theorem 11 can be relaxed. The following
examples explore several of the possibilities.

Example 14. In the proof of Theorem 11, we assumed that f0 = 0 and hence we
required that there be a point, x0 ∈ K\{0} such that x0 ∈ kerT . We need such an x0

to exist.

Proof. Let X = R
2 and let

K =
{

(x, y) | −1 ≤ x ≤ 1, 0 ≤ y ≤
√
1− x2

}

. (30)
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Note that K has one proper non-singleton face and (0, 0) is in that face (see Figure
1). Let T be the identity map on X. Then T has trivial kernel, and (0, 0) is not an
extreme point of K. Hence, T (K) 6= T (E(K)).

Example 15. Theorem 11 is false if we assume that K is closed rather than compact.

Proof. Let X = R
2. Let

K1 = {(x, y) | y ≥ 0, x ≤ 1}
K2 = {(x, y) | x ≥ 1, y ≥ x2 − 1}
K = K1 ∪K2.

(31)

Then K is closed, convex and has exactly one proper non-singleton face, namely

F = {(x, y) | x ≤ 1}. (32)

Moreover,
E(K) = {(x, x2 − 1) | x ≥ 1}. (33)

For (x, y) ∈ R
2 define T (x, y) = x. Then T is a linear map. Notice that if (x, y) ∈ E(K)

then T (x, y) ≥ 1. However, (0, 0) ∈ K and hence

T (E(K)) 6= T (K). (34)

Since K is assumed to be compact, K is bounded when X is locally convex.

Example 16. If we only requireK to be bounded rather than compact, the conclusion
of Theorem 11 need not hold.

Proof. Let X = R
2. Let

K =
{

(x, y) | −1 < x < 1, 0 ≤ y <
√
1− x2

}

. (35)

Then K is convex and bounded and has only one proper face which is not an extreme
point. Hence, if T is the zero map on X, all of the hypotheses in Theorem 11 are
satisfied, except we have replaced compact with bounded. However, the conclusion to
Theorem 11 does not hold for the simple reason that K has no extreme points.

Example 17. In Theorem 11, it is crucial thatK has at most one non-singleton proper
face F .

Proof. Let X = R
2 and T : R2 → R be given by T (x, y) = x− y. Let

K =
{

(x, y) ∈ R
2 | 0 ≤ x ≤ 1, 0 ≤ y ≤

√
2x− x2

}

. (36)

Notice that K is the top left quadrant of the disk of radius one with center (1, 0).
Hence, K is compact, convex, and has two proper non-singleton faces. Let

Q =
{

(x, y) ∈ R
2 | 0 ≤ x ≤ 1, y =

√
2x− x2

}

. (37)
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Figure 2: Illustration for Example 17.

The extreme points of K are the points in Q together with the point (1, 0). (See Figure
2.)

If (x, y) ∈ Q, y ≥ x, and so T ≤ 0 on Q. Since T (1, 0) = 1, there is no extreme point
of K whose output is 1

2
. On the other hand, T

(

1
2
, 0
)

= 1
2
and

(

1
2
, 0
)

∈ K. Further, by
taking

F1 = {(x, 0) | 0 ≤ x ≤ 1}
F2 = {(1, y) | 0 ≤ y ≤ 1}
f0 = (0, 0)

x0 = (1, 1),

(38)

we have f0 ∈ F and x0 − f0 ∈ ker(T ). Hence, all the hypotheses of Theorem 11 are
satisfied except for the requirement about the number of proper non-singleton faces.
Thus, the theorem is false if we allow K to have two proper non-singleton faces.

Remark 18. This example can be easily modified to show that Theorem 11 is false if
we allow K to have n proper non-singleton faces for n ∈ N, n ≥ 2.

If the only proper faces of K are singletons we have to reformulate the hypotheses.

Proposition 19. Suppose the only proper faces of K are singletons. Let V be a real
vector space. Suppose T : X → V is a linear map such that there exist f0 ∈ E(K) and
x0 ∈ K with x0 − f0 ∈ ker(T ) and x0 6= f0. If X is finite-dimensional, then

T (K) = T (E(K)).

Proof. Since X is finite-dimensional, we may assume that X = R
n. Further, we may

assume that f0 = 0, and so 0 is an extreme point of K. Since we are really only
interested in how T acts on K we may also assume that dimK = n.

By assumption x0 ∈ ker(T ). Hence, λx0 ∈ kerT for λ ∈ R. Let x ∈ K. Let l be the
line parameterized by c(λ) = x+λx0. Notice that T is constant on l since x0 ∈ ker(T ).
Moreover, l ∩ ∂K 6= ∅ since K is compact in R

n and therefore closed and bounded.
Since K has no proper non-singleton faces and X is finite-dimensional, all points in
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the boundary of K must be extreme points. Hence, there exists λ ∈ R such that
z := x+ λx0 ∈ E(K) and Tz = Tx. Since x was arbitrary, the result follows.

Proposition 19 does generalize to infinite dimensions but the proof in the infinite di-
mensional case is a bit more complicated. The proof depends on the following lemma
which we believe must be known. However, we have not found it in the literature.

Lemma 20. Let K be a non-empty compact convex set in X with dimension at least
two. Suppose that the only proper faces of K are singletons. Then there exist K1 and
K2 such that the following hold:

(i) K1 ∪K2 = K

(ii) K1, K2 are compact, convex, and non-empty.

(iii) K1 and K2 have exactly one non-singleton proper face.

(iv) E(K1) ∪ E(K2) = E(K).

We believe that this lemma is intuitively appealing. When constructing the proof, we
essentially think of K as a ‘ball’ which we are cutting in half. Then K1 and K2 are
the resulting two ‘hemispheres’ which ‘obviously’ have one proper non-trivial face each.
Here are the details.

Proof. Via translation, we may assume that 0 ∈ K. Let x0 ∈ K\{0}.
By Theorem 1.2.10 in [2] there exists a continuous linear functional ρ : X → R such
that ρ(x0) > 0. (Remember that we are assuming thatX is locally convex.) By scaling,
we may assume that ρ(x0) = 1.

We now define several (non-empty) sets. See Figure 3 for a schematic. Let:

H0 =

{

x ∈ X | ρ(x) = 1

2

}

H1 =

{

x ∈ X | ρ(x) ≤ 1

2

}

H2 =

{

x ∈ X | ρ(x) ≥ 1

2

}

K0 = K ∩H0

K1 = K ∩H1

K2 = K ∩H2.

(39)

It is immediate that K = K1 ∪K2 and so (i) is satisfied.

Note that
K0 ⊂ K1, K2 ⊂ K (40)

and that K = K1∪K2. Further K0, K1, and K2 are intersections of closed, convex sets
and hence are closed and convex. Additionally, since K is compact, K0, K1, and K2

are compact. Hence (ii) is satisfied.

In the sequel we will repeatedly make use of the fact that if c ∈ K1\K0 and d ∈ K2\K0

then L[c,d] ∩K0 is a singleton set.
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Figure 3: Schematic for Lemma 20.

We will also make use of the fact that real 2-dimensional vector spaces are isomorphic
to R

2 and hence elementary Euclidian geometry is applicable.

We now show that K0 is a face of both K1 and K2. First, since 1
2
x0 ∈ K0 it follows

that K0 is non-empty.

Let u,v ∈ K1 and suppose that there exists t ∈ (0, 1) such that

tu+ (1− t)v ∈ K0. (41)

Now ρ(u), ρ(v) ≤ 1
2
while

ρ(tu+ (1− t)v) =
1

2
. (42)

Hence,

tρ(u) + (1− t)ρ(v) =
1

2
t

2
+ (1− t)ρ(v) ≥ 1

2

(1− t)ρ(v) ≥ 1− t

2

ρ(v) ≥ 1

2
,

(43)

whence ρ(v) = 1
2
. Thus, v ∈ K0 and analogously so is u. Therefore K0 is a face of K1.

A similar argument shows that K0 is a face of K2.

We next note that K0 is not a singleton set (and this is where we require K to have
dimension bigger than two).

We observe that since ρ(x0) = 1 the only point in the span of x0 that is in K0 is 1
2
x0.

Choose y ∈ K so that y is not in the span of x0. We will use y to find a point in K0

that is not 1
2
x0. There are three cases.

If ρ(y) = 1
2
then K0 is a non-singleton set.
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If ρ(y) > 1
2
then z = 1

2ρ(y)
ρ(y) ∈ K0 and z is not in the span of x0. Hence, K0 is a

non-singleton set in this instance as well.

If ρ(y) < 1
2
take t = 1

2(1−ρ(y))
and z = ty + (1 − t)x0. It is straightforward to check

that t ∈ (0, 1).

Notice that

ρ(z) = tρ(y) + (1− t)ρ(x0)

= tρ(y) + 1− t

=
ρ(y)

2(1− ρ(y))
+

2(1− ρ(y))− 1

2(1− ρ(y))

=
1− ρ(y)

2(1− ρ(y)

=
1

2
.

(44)

Since z 6= x0 is in L[y,x0] and y is not in the span of x0 it follows that z is not in the
span of x0. Hence K0 is a non-singleton set in this situation as well.

So far, we have shown that K0 is a proper non-singleton face of K1 and K2. We would
like to show that it is unique in that regard. We will prove this for K1. The proof for
K2 is essentially identical.

There are several cases to consider.

Case 1. We start with the case when F ∩K0 is empty.

Choose x ∈ F and y ∈ K0. By assumption, x 6= y. Since F is a face, the only line
segment in F with endpoint y that intersects x is L[x,y] for otherwise y would be in
F .

We claim that F is a face of K. Let a,b ∈ K and suppose that x ∈ L[a,b]. If both a

and b are in K1 then, since F is a face of K1, a,b ∈ F . Suppose that b ∈ K2. Since
x /∈ K2 and K is convex, a ∈ K1. Hence, L[a,b] is a line segment in K with one end
point inK1 and the other inK2. Notice that there exists a unique c ∈ L[a,b]∩K0. But
c ∈ K0 ⊂ K1 and hence, since F is a face of K1 it follows that c ∈ F ; which contradicts
the fact that F does not intersectK0. Hence, b cannot be inK2. Therefore, F is indeed
a proper face of K and by assumption, must be an extreme point.

Before we proceed with the second case, we first note that since K0 has more than one
element and X is locally convex (so that the Krein-Milman theorem is applicable)

∅ 6= E(K0) ⊂ K0. (45)

Case 2. We assume that F ∩K0 6= ∅ and

x ∈ F ∩K0 ⇒ x ∈ E(K0). (46)

It immediately follows that F ∩K0 is a singleton set containing the point x, say. We
will show that F = F ∩K0.
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Let z ∈ K2\K0 and y ∈ K1. Since K is convex, L[y, z] ⊂ K and L[y, z] ∩ K0 is a
singleton set. (For unless a line segment is parallel to K0, the linear functional ρ is
injective on the line segment.) Let z0 ∈ L[y, z] ∩K0. If z0 6= x then (since F is a face
of K1 and z0 /∈ F )

L[y, z] ∩ F = L[y, z0] ∩ F = {y} (47)

if y ∈ F . Otherwise L[y, z0] ∩ F is empty. Therefore, L[y, z] is of interest only if
z0 = x.

The remainder of our discussion for this case uses a series of arguments by contradiction.
The big assumption we will make is that there exists y ∈ F\K0. After some discussion
it will become clear that this assumption is unsustainable. Proceeding under that
assumption, let us now suppose that there exists y1 ∈ F with y1 6= x and

L[y1,x] ∩ L[y,x] = {x}. (48)

Then
L[y1, z] ∩K0 = {u}, (49)

say. Notice that u 6= x.

x

y

z

v u

K0

K1 K2

y1

F

Figure 4: Illustration for Case 2 in Lemma 20.

Now u and x lie on the triangle with vertices y,y1, and z. (see Figure 4.) Hence
y,u,y1, and x are coplanar. In particular L[y,u] ∩ L[y1,x] is non-empty. Let v be
the (necessarily unique) point in that intersection. Since L[y1,x] ⊂ F it follows that
v ∈ F . Since F is a face of K1, it follows that u ∈ F which is a contradiction. Hence,
no such y1 can exist.

Thus, F is a subset of the line, l, passing through y and x. Notice that z ∈ l. Since ρ
is continuous and K is compact there exist α, β ∈ R such that

α <
1

2
< β

α ≤ ρ(w) ≤ β
(50)

for each w ∈ l ∩ K. Having taken the supremum over α and the infimum over β we
may assume without loss of generality that ρ(y) = α and ρ(z) = β.
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Figure 5: Illustration for Case 2b in Lemma 20.

Let G = l∩K and note that F ⊂ G. We will now argue that G is a face of K. Suppose
not: Then we can find two distinct points a1, a2 ∈ K at least one of which is not in G
and t ∈ (0, 1) such that

a0 = ta1 + (1− t)a2 ∈ G. (51)

There are several situations to consider.

Case 2a. Suppose first that a1, a2 ∈ K1. Then a0 ∈ K1 (since K1 is convex) and so
a0 ∈ F . But F is face, and so a1, a2 ∈ F ⊂ G, contradicting our assumption that at
least one of a1 and a2 is not in G.

Case 2b. Suppose then that a1, a2 ∈ K2 and at least one of a1 and a2 is not inK0 ⊂ K1.
Then

L[y, a1] ∩K0 = {u1}
and L[y, a2] ∩K0 = {u2}.

(52)

Now a0,u1, and u2 are on the triangle with vertices y, a1, and a2 and thus are coplanar.
Therefore, the line segments L[y, a0] and L[u1,u2] intersect. Since L[u1,u2] ⊂ K0 it
follows that they intersect at x which contradicts our assumption that x is an extreme
point of K0. (See Figure 5.)

Case 2c. The remaining situation occurs when a1 ∈ K1\K0 and a2 ∈ K2\K0. Then

L[a1, a2] ∩K0 = {v}. (53)

Suppose that v 6= x: then we can replace a1 with v if a0 ∈ K2 and a2 with v if a0 ∈ K1,
thereby reducing to the previous situations.

What if v = x? By our choice of a1 and a2 the line segment L[a1, a2] is not a subset
of G. Hence, x = a0 as well. Moreover, the points a1, a2,y,x and z are coplanar (see
Figure 6). The line segments L[y, a2] and L[a1, z] intersect K0 at u1 and u2 say; and
x ∈ L[u1,u2] again contradicting the assumption that x is an extreme point of K0.

Therefore G is indeed a face of K. But that too is a contradiction since G is a proper
non-singleton face of K.
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Figure 6: Illustration for Case 2c in Lemma 20.

Consequently, our assumption that there exists y ∈ F\K0 has been shown to be absurd
and as result, F is a singleton set and x is an extreme point of K1.

Before moving on to the third case, we note that if F is a face of K1 then F ∩K0 is a
face of K0 (when the intersection is nonempty).

Case 3. We now assume that F is a face of K1 which contains K0 and there exists
y ∈ F\K0.

Define G = F ∪ K2. Notice that G is convex. To see this, observe that for any line
segment with endpoints in G satisfies one of the following criteria:

(i) The end points are in K2.

(ii) The end points are in F .

(iii) One end point is in F\K0 and the other is in K2\K0. In this case, the line
segment is the union of a line segment in F and a line segment in K2.

We will show that G is a face of K. To see this, suppose that a,b ∈ K, t ∈ (0, 1), and
c = ta+ (1− t)b ∈ G.

If a,b ∈ K2 then a,b ∈ G.

If a,b ∈ K1 then c ∈ K1 since K1 is convex. Hence, c ∈ F . Since F is a face of K1, it
follows that a,b ∈ F and hence a,b ∈ G.

If a ∈ K1\K0 and b ∈ K2 then the location of c becomes important. Note that
L[a,b] ∩ K0 = {d} for some d. Also, it is clear that b ∈ G. We need to show that
a ∈ G. If c ∈ L(a,d) then from the preceding paragraph a ∈ G also. Suppose then
that c ∈ L[d,b).

If a, y, and d are colinear then either y ∈ L(a,d) or a ∈ L[y,d). In the first instance,
we may conclude that a ∈ F (and hence G) since F is a face of K1 and y ∈ K1. In the
second instance, we may likewise conclude that a ∈ F since F is convex.

Suppose that a,y, and d are not colinear.

Note that L[y,b] ⊂ G. Since y /∈ K0, L[y,b] ∩ K0 = {e} for some e. The points
a,b, c,d, e, and y are coplanar since they are points on the triangle with vertices a,b,
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Figure 7: Illustration for Case 3 in Lemma 20.

and y (see Figure 7). Thus, the line segments L[a, e] and L[d,y] intersect at a point
f. Since d,y ∈ F and F is convex, f is in F . Since a, e ∈ K1, f ∈ L(a, e) ∩ F and F is
a face of K1 it follows that a ∈ F ⊂ G.

Hence, G is a non-singleton face of K. By the hypothesis in the statement of the
theorem, G = K.

Case 4. We now assume that F is a proper face of K1 and that G = F ∩K0 is non-
empty and hence a proper face of K0. Let x ∈ G. By Lemma 5 and since K has no
proper non-singleton faces, x is either an extreme point of K or is a weak internal point
of K.

Suppose that x is a weak internal point of K. Let y ∈ K0. By hypothesis there exists
λ > 0 such that z = (1 + λ)x− λy ∈ K. Notice that

ρ(z) = (1 + λ)ρ(x)− λρ(y) =
1

2
. (54)

Thus z ∈ K0. Therefore x is interior relative to y. Since y was arbitrary it follows
that x is a weak internal point of K0. Therefore, the smallest face of K0 containing x

is K0 which contradicts the assumption that that G is a proper face of K0. Thus, G
contains only extreme points of K which are therefore extreme points of K0. Therefore
G is a singleton set and hence Case 2 is applicable. Consequently statement (iii) in
the theorem is satisfied.

We now see that any point in K0 that is not an extreme point of K is a weak-internal
point of K0. Combining this observation with the first case and the fact that our above
arguments can be easily modified for K2, we conclude that

E(K) = E(K1) ∪ E(K2). (55)

Thus (iv) is satisfied and the proof is complete.

Theorem 21. Suppose the only proper faces of K are singletons. Let V be a real
vector space. Suppose T : X → V is a linear map such that there exist f0 ∈ E(K) and
x0 ∈ K with x0 − f0 ∈ kerT and x0 6= f0. Then

T (K) = T (E(K)).
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Proof. Without loss of generality f0 = 0 and hence x0 6= 0 is in the kernel of T .

By Proposition 19 we may assume that the dimension of K is infinite (and hence at
least 2). The conditions of Lemma 20 are satisfied. Let K0, K1, and K2 be the sets
constructed in the proof of that lemma.

Notice that K1 and K2 satisfy Theorem 11. (The role of f0 from that theorem is the
unique point in L[0,x0] ∩K0.) Hence

T (K1) = T (E(K1)) (56)

and

T (K2) = T (E(K2)). (57)

Consequently,

T (K) = T (K1 ∪K2) = T (E(K1) ∪ E(K2)) = T (E(K)). (58)

Our next result is similar to Theorem 11. We relax the compactness of K but require
more structure on X.

Theorem 22. Let V be a real vector space. Suppose that X is a Banach space and
that K is closed and bounded (rather than compact). Suppose that K has exactly one
non-singleton proper face F . Let T : X → V be a linear map. If there exists f0 ∈ F ,
x0 ∈ K, with f0 6= x0 and x0 − f0 ∈ kerT , then E(K) 6= ∅. Moreover

T (K) = T (E(K)).

Proof. The proof is essentially the same as in Theorem 11. As before, we assume
without loss of generality that f0 = 0 and so x0 ∈ kerT . For z ∈ K and t ∈ R, we
define gz(t) = z+ tx0. The map gz is continuous and injective. Thus, g−1

z (K) is closed.
Further, g−1

z (K) is convex. Note that

||gz(t)|| ≥ |t|||x0|| − ||z|| → ∞ (59)

as |t| → ∞. SinceK is bounded, gz(t) /∈ K, for sufficiently large |t|. By the Heine-Borel
theorem (Theorem 5.3.1 in [6]), g−1

z (K) is a compact interval, [a, b] say. Proceeding
as before, we note that gz(a) and gz(b) are not weak internal points and are therefore
both in proper faces of K. Moreover, at least one of them must be an extreme point
of K and so E(K) 6= ∅. To complete the proof, note that

Tz = Tgz(a) = Tgz(b) (60)

since x0 ∈ kerT .

Example 23. Suppose that K is closed, convex, and bounded in a Banach space, and
thatK has exactly one proper non-singleton face. It does not follow thatK is compact.
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Proof. Let X = l2 and let B be the unit ball in X. Since X is a Hilbert space, and
hence is strictly convex [4, Ch. 6]. By Exercise 15 in Section 6.2 of [4], E(B) = ∂B.
Let H be a hyperplane through the origin, with corresponding functional ρ. Let K =
{x ∈ B | ρ(x) ≥ 0}. Then E(K) = ∂B∩K and K has exactly one proper non-singleton
face, F = K ∩H. (This can be verified separately, but we can apply Lemma 20 using
the weak-∗ topology.) Further, K is closed and bounded but not compact.

We close by mentioning a further direction of research. In our main results, the key
point was that there were relatively few faces (either 0 or 1) of small positive dimension.
The following conjecture was suggested to the first author by C. Akemann.

Conjecture 24. With the notation in Theorem 11: Suppose that K has exactly one
proper non-singleton face of dimension n and that dimV = n. Can we conclude that
T (K) = T (E(K)), possibly under additional assumptions like the continuity of T?
Note that K is allowed to have proper faces of dimension larger than n.
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