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Institut Camille Jordan, Université Claude Bernard-Lyon I, Lyon, France;
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In this paper we consider nonconvex conic optimization that covers Standard Nonlinear Programming,
Semidefinite Programming, Second Order Cone Programming. To the dual Lagrangian problem, we
associate a relaxed primal convex problem, and give bounds for the duality gap. Then we propose
a proximal extension of the column generation method of Dantzig-Wolfe algorithm (PECGM) which
provides these bounds if we suppose in addition Slater’s condition. Finally new applications are given
in order to make implementable the step of PECGM for which a nonconvex program is supposed to
be solved numerically.

Keywords: Standard nonlinear programming, semidefinite programming, second order cone program-
ming, duality gap, generation column algorithm, proximal method

1. Introduction

Let Q be a nonempty compact set in IRn and let f, fi : Q → IR, i = 1, . . . ,m, be a
collection of continuous functions on Q. Consider the standard nonlinear problem

(Pst) vPst
= min{f(x) | x ∈ Q ∩ E} with E = {x | fi(x) ≤ 0, i = 1, . . . ,m}.

To (Pst) we associate the usual dual Lagrangian

(Dst) vDst
= sup{θ(u) | u ≥ 0},

where

L(x, u) = f(x) +
m
∑

i=1

uifi(x) and θ(u) = min{L(x, u) | x ∈ Q}

are respectively the usual Lagrangian and the associated dual functional.

The starting point of this paper is the article of Magnanti, Shapiro, Wagner [12] where
the motivation of these authors is related to the fact that the optimal value vDst

(≤
vPst

) of the usual Lagrangian dual problem of (Pst) is useful for analyzing nonconvex
problems, despite the duality gap. A large number of applications can be found in
management science as multi-item production control, resource constrained network
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scheduling, cutting stock, multi-commodity flows. This motivation led the authors of
[12] to provide a very important formula through the equality

vDst
= vc := inf{ξ | (ξ, 0) ∈ W}, (1)

where W is the convex hull of the union of the epigraphs of f, fi, i = 1, . . . ,m over Q.

Analyzing this formula they showed that the extension of the column generation
method of Dantzig-Wolfe [6] (in short ECGM) is a natural algorithm for providing
a dual sequence with values converging to vDst

, even in the non convex case. Let us
briefly review ECGM.

At iteration k this algorithms solves the master linear program in the variables λ1, λ2,
. . . , λk

(Pk) αk = min

{

k
∑

i=1

λjf(xj)
∣

∣

∣

k
∑

i=1

λjfi(xj) ≤ 0, i = 1, . . . ,m,

k
∑

i=1

λj = 1, λj ≥ 0, j = 1, . . . k

}

,

where the points xj ∈ Q for j = 1, . . . , k have been generated previously. At this step
the algorithm provides also an optimal solution uk of the usual dual linear program
associated to (Pk) and proceeds by solving

xk+1 ∈ argmin{L(x, uk) | x ∈ Q}. (2)

Then adding the column xk+1 to the points xj, j = 1, . . . , k the process is iterated by
replacing k by k + 1.

The present paper opens several important questions. First, the fact that vDst
= vc

does not indicate clearly what are primal variables as usual in any duality theory. Also
it is of interest to know if the infimum in formula (1) is attained and to know more if
possible, about the primal optimal set. This will be studied in Section 2.2.

The second question is the following. Can we obtain anything better than formula
(1), more precisely an upper estimate of the duality gap vPst

− vDst
? As an immediate

consequence of the results obtained in Section 2.2, we will give a positive response to this
question in Section 2.3 when Q is convex and when the functions fi, i = 1, . . . ,m are
convex. This will be obtained by using the notion of lack of convexity of an extended
real valued function introduced by Aubin and Ekeland in [2]. After extending the
definition of duality gap for nonconvex functions fi as in [2], we will also derive as an
immediate consequence a result similar to Theorem C in [2], but with other conditions
on the data. Furthermore if we suppose in addition Slater’s condition we will be able
to obtain those theoretical results by using ECGM which provides a primal bounded
sequence {yk} giving limit-points y∞ satisfying these duality gap bounds. This will
be the object of Section 3, and we will emphasize that in [12], there are no results
concerning the convergence of a primal sequence generated by ECGM.

The third question concerns the computation of xk+1 in formula (2). Indeed this con-
cerns a nonconvex problem, which is in general impossible to solve by an implementable
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algorithm. So the third question is: can we exhibit some large classes of nonconvex
problems, for which ECGM or some variant can effectively compute a point xk+1

satisfying (2)? To answer to this question which was not investigated in [12], we will
propose in Section 3, a proximal variant of ECGM called in short PECGM where
(2) is replaced by

xk+1 ∈ argmin
{

L(x, uk) +
γ

2
||x− yk||2 | x ∈ Q

}

, (3)

where yk and γ ≥ 0 are suitably chosen. In Section 3, Q will be supposed to be convex,
and if the data f, fi are convex on Q and γ > 0, we will show that the sequence yk is
bounded and that all limit points are optimal solutions of Pst. The advantage of using
PECGM instead of ECGM is that the objective function in formula (3) is, as in the
proximal method, strongly convex, which provides subroutines for computing xk+1 in
principle more efficient. Furthermore in the nonconvex case we will enlarge the set
of applications by considering semi-convex functions used in particular in numerical
methods for other purposes by [9], [5] with some γ > 0 well chosen. This will be done
in Section 4.

Finally, if Standard Nonlinear Programming covers numerous applications, neverthe-
less there are real-life models that cannot be covered by Pst, in particular Semidefinite
Programming (SDP) and Second Order Cone Programming (SOCP), which have been
widely developped these last three decades. It appears that we can extend all the
above questions, and responses as well PECGM in a more general framework called
nonconvex conic optimization, containing SDP, SOCP, and Standard Nonlinear Pro-
gramming. This will be done in the whole present paper and is new to the best of our
knowledge.

2. Theoretical results

2.1. Preliminaries

In this paper we identify every Euclidean linear space of dimensionm with IRm endowed
with the usual inner product: 〈x, y〉 =∑m

i=1 xiyi.

For example, let Sm denotes the set of (m,m) symmetric matrices. In this case by
identification the inner product is the Frobenius inner product

〈x, y〉 = tr(xy), where tr(x) is the trace of x.

Let K be a pointed closed convex cone in IRm with nonempty interior int(K). Such a
cone defines a partial ordering as follows

a �K b ≡ b− a ∈ K, a ≺K b ≡ b− a ∈ int(K),

and we refer for the definition and the basic properties of partial ordering to [3], Chapter
2. We note also a �K b if −a �K −b and a ≻K b if −a ≺K −b. The partial orderings
we are especially interested in correspond to the three fundamental cones

K1 := IRm
+ ,

K2 := Sm
+ = {x ∈ Sm semidefinite positive},
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K3 := Lm =

{

x ∈ IRm | xm ≥
√

x2
1,+ · · ·+ x2

m−1

}

, the second order cone.

Indeed they are the pillars for the standard nonlinear programming, semidefinite pro-
gramming (SDP), second order cone programming (SOCP).

Let K∗ = {x ∈ IRm | 〈x, y〉 ≥ 0 ∀y ∈ K} the (non negative) polar cone ofK. Since dual
multipliers will belong to K∗ it is important to have a characterization of its elements.
Then it is worthwhile to note that for K = Ki, i = 1, 2, 3 we have

K = K∗. (4)

However there are other cones which are pointed closed convex with nonempty interior
and for which a characterization of K∗ is available. This is the case of cones of non-
negative polynomials on an infinite interval, or on a semi-infinite interval, or on a finite
interval, or for polynomials on a finite interval and trigonometric polynomials where
such properties and characterizations have been given by Nesterov ([13], Section 3).
A particular interesting cone is the cone of non-negative trigonometric polynomials
based on cos kt, k ∈ N for t ∈ [0, π], since it has been identified to be the cone of
finite autocorrelation sequences (see [1]). As shown in [1] problems where some of the
variables are constrained to be finite autocorrelation sequences arise in signal processing
and communications with applications in filter design and system identification.

Finally since a set K ⊂ IRm is a pointed closed convex cone with nonempty interior if
and only if the set K∗ is so (see [3], Corollary 2.3.1) then K∗ induces a partial ordering
allowing the notation a �K∗

b, for elements a, b ∈ IRm.

For the rest of this paper K will be a pointed closed convex cone with nonempty
interior, Q a nonempty compact subset of IRn and F : Q → IRm a continuous function
on Q, with F (x) = (f1(x), . . . , fm(x)). For such K, if Q is supposed to be convex we
recall that F is said to be K-convex on Q if

F (λx1 + (1− λ)x2)− [λF (x1) + (1− λ)F (x2)] �K 0 ∀λ ∈ [0, 1], ∀x1, x2 ∈ Q.

By definition of K∗ and from [14], Theorem 13.1 this is equivalent to say that for each
u ∈ K∗ the function x → 〈F (x), u〉 is convex on Q.

When K = IRm
+ , this is equivalent to say that each component fi, i = 1, . . . ,m

is convex on Q. When F is affine on IRn then obviously F is K-convex on Q. If
F (x) =

∑l

i=1 gi(x)Ai with Ai ∈ K, gi : Q → IR convex on Q, then F is K-convex on
Q. When K = Sm

+ examples can be found in the literature, (in particular [3], Chapter

4) as X2 defined on Sm or X tX defined for X ∈ IRp×q or −
√
X defined and K-convex

on Sm
+ .

2.2. Duality Results

Let E := {x | F (x) �K 0}, C = Q ∩ E, and let f : Q → IR continuous on Q. In this
paper we will consider the nonconvex conic problem

(P ) vP = min{f(x) | x ∈ C},

for which the standard problem Pst defined in the introduction is a particular case.
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To (P ) we associate the usual Lagrangian dual

(D) vD = sup{θ(u) | u �K∗
0},

where
L(x, u) = f(x) + 〈u, F (x)〉, θ(u) = min{L(x, u) | x ∈ Q}

are respectively the usual Lagrangian and the dual functional.

The aim of this subsection is to answer to the first question asked in the introduction.

Let us denote by

• C(Q), the Banach space of real-valued continuous functions on Q, equipped with
the max norm ||f || := max{|f(x)| | x ∈ Q}.

• M(Q), its topological dual linear space, i.e., the Banach space of finite signed Borel
measures on (Q,B), where B is the Borel sigma-algebra of Q equipped with the
norm given by the total variation of the corresponding measure. Thus the linear
spaces C(Q) and M(Q) are in duality with the duality bracket

[h, σ] :=

∫

Q

h(x)dσ(x), ∀h ∈ C(Q) ∀σ ∈ M(Q).

• M+(Q), the positive cone of M(Q), i.e., the set of non negative finite Borel mea-
sures σ on (Q,B) with ||σ|| = σ(Q).

• w∗ := σ(M(Q), C(Q)) the associated weak∗ topology, i.e., the coarsest topology
on M(Q) for which σ → [h, σ] is continuous for each h ∈ C(Q).

• P(Q), the set of probability measures on (Q,B), i.e.
P(Q) = {σ ∈ M+(Q) | σ(Q) = 1}.

• δx, the Dirac measure concentrated at x ∈ Q.

• F(Q) = co{δx | x ∈ Q}, i.e., the set of finite convex combinations of Dirac measures
concentrated on points x ∈ Q.

• Fm+2(Q), the set of finite convex combinations of at most m + 2 Dirac measures
concentrated on points x ∈ Q.

• [F, σ] = ([f1, σ], . . . , [fm, σ]).

We recall that the separability of C(Q) entails that the w∗ topology is metrizable and
that the closed unit ball in M(Q), B∗ = {σ ∈ M(Q) : ||σ|| ≤ 1} is weakly∗ compact
and weakly∗ sequentially compact.

We recall also the fundamental result of Rogosinsky [15], Lemma 6.3 [8].

Lemma 2.1. Set

R1 := {η ∈ IRm | ∃σ ∈ P(Q) : η = [F, σ]}, (5)

R2 := {η ∈ IRm | ∃σ ∈ F(Q) : η = [F, σ]}. (6)

Then R1 = R2.

Now let us consider the following minimization relaxed convex problem

(PR) vPR = inf{[f, σ] | σ ∈ P(Q) : [F, σ] �K 0}. (7)
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Lemma 2.2. The infimum for (PR) is attained for some σ ∈ Fm+2(Q) and vPR ≤ vP .

Proof. From the properties of the ball B∗ it follows that P(Q) is a weakly∗ compact
convex set, so that the feasible set of (PR) is weakly∗ compact and convex. Since
the objective function is weakly∗ continuous, then the infimum is attained for some
σ ∈ P(Q). Using Lemma 2.1 this implies that the infimum is attained for some
ν ∈ F(Q). Using Carathéodory’s Theorem it follows that ν ∈ Fm+2(Q). Furthermore
since δx with x ∈ Q ∩ E is feasible it follows that vPR ≤ vP .

Now let us consider the dual (DR) of (PR). For this we introduce the associated
Lagrangian defined on M(Q)× IRm by

LR(σ, u) := [f(·), σ] + 〈[F (·), σ], u〉 = [f(·), σ] + [〈F (·), u〉, σ] = [L(·, u), σ],

and then

(DR) vDR = sup{θR(u) | u �K∗
0}, with θR(u) = inf

σ∈P(Q)
LR(σ, u).

Theorem 2.3. For each u �K∗
0, θR(u) = θ(u), vDR = vD.

Proof. Since L(., u) ∈ C(Q), then S(u) := argminx∈Q L(x, u) is nonempty. Then for
each x ∈ S(u) we have θ(u) = L(x, u) ≤ L(y, u) ∀y ∈ Q. As a consequence we get

θ(u) ≤ [L(·, u), σ] ∀σ ∈ P(Q),

so that
θ(u) ≤ θR(u) ≤ [L(·, u), δx] = θ(u),

which obviously ends the proof.

Lemma 2.4. Let

T := {(ξ, η) ∈ IRm+1 | ∃σ ∈ P(Q) : ξ ≥ [f, σ], η �K [F, σ]}. (8)

Then T is a closed convex set.

Proof. We note first that the maps σ → [F, σ], σ → [f, σ] are linear. As a consequence
the convexity of T follows from the fact that P(Q) is convex, and since P(Q) is weakly∗

sequentially compact it follows obviously that T is closed.

The following theorem which says that vPR = vDR can perhaps be obtained by using
some general convex duality theory for infinite dimensional locally convex linear spaces,
but in fact with Lemma 2.4, we do not need such a theory. The proof is very simple
with only arguments in finite dimensional spaces. Indeed it is enough to follow the
classical proof given in finite dimensional spaces when K = IRm

+ by replacing only the
nonconvex closed set

Z = {(ξ, η) ∈ IRm+1 | ∃x ∈ Q : ξ ≥ f(x), η �K F (x)}, (9)

by the closed convex set T .
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Theorem 2.5. vPR = vDR.

Proof. Obviously vPR ≥ vDR, and we have only to prove that for any ǫ > 0 there
exists uǫ �K 0 such that vPR ≤ θ(uǫ) + ǫ. Thus let ǫ > 0, and set vǫ := vPR − ǫ.
Since (vǫ, 0) /∈ T , it follows from Lemma 2.4 that there exists an hyperplane separating
strongly (vǫ, 0) from T , i.e., there exist (uǫ

0, u
ǫ) ∈ IRm+1, not equal to 0, and α ∈ IR

such that
uǫ
0vǫ < α ≤ uǫ

0ξ + 〈uǫ, η〉 ∀(ξ, η) ∈ T. (10)

Let us fix (ξ, η) ∈ T associated with σ in formula (8), and let us prove that

(uǫ
0, u

ǫ) ∈ IR+ ×K∗. (11)

Suppose the contrary, then there exists some v = (v0, v∗) ∈ IR+ ×K such that

v0u
ǫ
0 + 〈uǫ, v∗〉 < 0. (12)

For each λ ≥ 0, since (ξ + λv0, η + λv∗) ∈ T , it follows from (10) that

uǫ
0vǫ < α ≤ uǫ

0ξ + 〈uǫ, η〉+ λ[uǫ
0v0 + 〈uǫ, v∗〉].

Then using (12), with λ → ∞ we get a contradiction. Since for each x ∈ Q,
(f(x), F (x)) ∈ T , then from (10) we obtain

uǫ
0vǫ < α ≤ u0

ǫf(x) + 〈uǫ, F (x)〉, ∀x ∈ Q. (13)

Let us prove now that uǫ
0 6= 0. Indeed in the contrary case it follows from (13) that

0 < kα ≤ 〈kuǫ, F (x)〉, ∀x ∈ Q, ∀k > 0.

Thus if we set uk := kuǫ, then L(x, uk) ≥ f(x) + kα for all x ∈ Q, so that using
Theorem 2.3 we get

vPR ≥ vDR ≥ θ(uk) ≥ f(y) + kα where y = argmin
x∈Q

f(x).

Passing to the limit with k → ∞ we get a contradiction.

Now we may suppose without loss of generality that uǫ
0 = 1. Then using (13) we get

vPR − ǫ := vǫ ≤ min
x∈Q

L(x, uǫ) = θ(uǫ),

and thus the theorem is proved.

Let co(Z) be the convex hull of Z and let us consider the optimization problem

(Pc) vc = inf{ξ | (ξ, 0) ∈ co(Z)}. (14)

A main result proven by Magnanti, Shapiro, Wagner ([12], Lemma 2.2) was that vD =
vc for the standard case. As we shall see now, this result can be obtained for the general
case with something more, as a direct consequence of Theorem 2.5 and Lemma 2.2.

Corollary 2.6. vc = vD = vPR. Furthermore the infimum in (14) is attained.
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Proof. From Lemma 2.2, there exists ν∗ ∈ Fm+2(Q) an optimal solution of (PR), i.e.,
there exist

xi ∈ Q, λi ≥ 0, i = 1, . . .m+ 2 with
m+2
∑

i=1

λi = 1,

such that

ν∗ =
m+2
∑

i=1

λiδxi
,

and

ξ∗ := [f, ν∗] =
m+2
∑

i=1

λif(xi) = vPR, η∗ := [F, ν∗] =
m+2
∑

i=1

λiF (xi) �K 0.

Thus (ξ∗, 0) ∈ co(Z) so that vc ≤ vPR. But since {(ξ, 0) ∈ co(Z)} ⊂ {(ξ, 0) ∈ T} it
follows that vPR ≤ vc, so that vPR = vc, and the infimum in (14) is attained at ξ∗.

2.3. Bounds for the duality gap

We suppose now for the rest of the paper, that Q is convex. When K = IRm
+ bounds for

the duality gap were obtained by Aubin and Ekeland [2]. For this purpose the authors
introduced the notion of the lack of convexity:

Definition 2.7. Let f be a real valued function defined and continuous on Q, the lack
of convexity of f (on Q) is the number

ρ(f) = sup

{

f

(

q
∑

i=1

λixi

)

−
q
∑

i=1

λif(xi)
∣

∣

∣
q ∈ N , xi ∈ Q, λi ≥ 0,

i = 1, . . . q,

q
∑

i=1

λi = 1

}

.

Obviously we have

0 ≤ ρ(f) < +∞, ρ(f) = 0 ⇔ f is convex on Q, ρ(f + g) ≤ ρ(f) + ρ(g).

Clearly such a notion is not appropriate for defining the lake of convexity of F related
to a general partial ordering defined by K except if K = IRm

+ . Then we will restrict for
the following our study to nonconvex conic problems where

K =
l
∏

i=1

Ki, F (x) = (F1(x), . . . , Fl(x)) with Fi(x) ∈ Ki, i = 1, . . . , l.

Each Ki is supposed to be a pointed closed convex cone of IRmi with nonempty interior
and

∑l

i=1 mi = m. Obviously K∗ =
∏l

i=1(Ki)∗ and

a = (a1, . . . , al) �K b = (b1, . . . , bl) iff ai �Ki
bi ∀i = 1, . . . , l.



A. Auslender / A Proximal Extension of the Column Generation Method to ... 729

In order to define the lack of convexity of F related to Kwe will use the following
assumption

(H) for each i Fi is Ki − convex on Q when Ki is not equal to IRmi

+ .

With this assumption we are leading to the following definition:

Definition 2.8. Let 0mi
be the vector zero in IRmi . Set ρ(Fi) = 0mi

if Ki is not
equal to IRmi

+ and ρ(Fi) = (ρ(f i
1), . . . , ρ(f

i
mi
)) otherwise (f i

j , j = 1, . . . ,mi being the
components of Fi). Then we define the lack of convexity of F (related to K) as
ρ(F ) := (ρ(F1), . . . , ρ(Fl))

We are now able to give bounds for the duality gap:

Proposition 2.9. Suppose that Assumption (H) holds. Then there exists x∗ ∈ Q such
that

f(x∗) ≤ vD + ρ(f), F (x∗) �K ρ(F ). (15)

Proof. From Corollary 2.6 there exist

xi ∈ Q, λi ≥ 0, i = 1, . . .m+ 2, with
m+2
∑

i=1

λi = 1,

such that
m+2
∑

i=1

λif(xi) = vD,
m+2
∑

i=1

λiF (xi) �K 0. (16)

Let x∗ :=
∑m+2

i=1 λixi. Then x∗ ∈ Q and from Definitions 2.7 and 2.8 and using
componentwise Assumption (H) we get

m+2
∑

i=1

λif(xi) = f(x∗) +

[

m+2
∑

i=1

λif(xi)− f(x∗)

]

≥ f(x∗)− ρ(f),

and
m+2
∑

i=1

λiF (xi) = F (x∗) +

[

m+2
∑

i=1

λiF (xi)− F (x∗)

]

�K F (x∗)− ρ(F ).

As a consequence, using relations (16), inequalities (15) follow.

Now in the following section we will show how such an x∗ can be obtained by the
proximal extension of the algorithm under the supplementary assumption that Slater’s
condition holds.

3. A proximal regularization version of the column generation method

For the rest of this paper we suppose that Slater’s condition is satisfied, i.e.,

∃x̃ ∈ Q : F (x̃) ≺K 0.
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We present now our algorithm denoted by PECGM which is a proximal extension of
the column generation method.

PECGM: Let γ ≥ 0, and let {ǫk} be a sequence of non negative reals such that
limk→∞ ǫk = 0. Start with x1 = x̃ and compute the sequence {xk, y

k, uk} inductively
as follows.

Suppose calculated x1, . . . , xk, then

Step 1: Compute Λk = (λk
1, . . . , λ

k
k) optimal solution of the linear conic program

(Pk) : αk = min

{

k
∑

j=1

λjf(xj) | Λ = (λ1, . . . , λk) ∈ Tk ∩ Sk

}

with

Tk =

{

Λ |
k
∑

j=1

λjF (xj) �K 0

}

, Sk =

{

Λ |
k
∑

j=1

λj = 1, λj ≥ 0, j = 1, . . . , k

}

.

Set

yk =
k
∑

j=1

λk
jxj.

Let

Lk(Λ, u) =
k
∑

j=1

λjL(xj, u), θk(u) = min{Lk(Λ, u) | Λ ∈ Sk}.

Compute an optimal solution uk of the dual (Dk) of (Pk):

(Dk) : βk = max{θk(u) | u ∈ K∗}.

Step 2: Compute xk+1 by the relation

xk+1 ∈ Q, L(xk+1, u
k)+

γ

2
||xk+1−yk||2 ≤ L(x, uk)+

γ

2
||x−yk||2+ ǫk, ∀x ∈ Q. (17)

Remark 3.1. The algorithm is well defined. Indeed since the feasible set of (Pk)
is compact then Λk exists. Furthermore since x1 satisfies Slater’condition then Λ =
(1, 0, . . . , 0) satisfies Slater’s condition for the linear conic program (Pk), and it follows
from classical duality results that uk exists and αk = βk. Finally since Q is compact,

argminx∈Q L(x, uk) +
γ

2
||x − yk||2 is nonempty and there exists at least a point xk+1

satisfying (17).

Remark 3.2. Obviously we have

θk(u) = min{L(xj, u) | j = 1, . . . , k} ≥ θk+1(u) ≥ θ(u). (18)

Theorem 3.3. i) The sequence {xk, y
k, uk} is bounded.
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ii) Suppose that γ = 0. Let σk :=
∑k

i=1 λ
k
i δxi

where δxi
is the Dirac measure concen-

trated at xi. Then there exists at least a weak∗ limit point of the sequence {σk}
and each weak∗ limit point of this sequence is an optimal solution of the relaxed
problem (PR), while the limit points of the dual sequence {uk} are optimal solu-
tions of (D). Furthermore if Assumption (H) holds, then each limit point y∞ of
the sequence {yk} satisfies

y∞ ∈ Q, F (y∞) �K ρ(F ), f(y∞) ≤ vD + ρ(f). (19)

If in addition f is convex on Q and F K-convex on Q, then each limit point of
the sequence {yk} is an optimal solution of (P ).

iii) Suppose that γ > 0 and that Assumption (H) holds. Then each limit point y∞ of
the sequence {yk} satisfies

y∞ ∈ Q, F (y∞) �K ρ(F ), j = 1, . . . ,m, (20)

and
f(y∞) ≤ f(x) +

γ

2
||x− y∞||2 + ρ(f), ∀x ∈ C. (21)

Furthermore if we set ν(C) := maxx,z∈C ||x − z||2, then when F is K-convex on
Q we have

y∞ ∈ C, f(y∞) ≤ vP +
γ

2
ν(C) + ρ(f). (22)

Finally, if f is convex on Q and F K-convex on Q, each limit point of the sequence
{yk} is an optimal solution of (P ).

Proof. i) Since αk = βk it follows from (18) that

θ(uk) ≤
k
∑

i=1

λk
i f(xi) = βk ≤ L(xj, u

k), j = 1, . . . , k. (23)

Using the definition of the lake of convexity we get from (23)

f(yk) ≤ L(xj, u
k) + ρ(f), j = 1, . . . , k. (24)

Since yk ∈ Q, it follows that the sequence {yk} is bounded and there exists a constant
L such that |f(yk)| ≤ L, ∀k. Using relation (24) for j = 1 we get

〈−F (x1), u
k〉 ≤ f(x1) + ρ(f) + L. (25)

Let us prove now that the sequence {uk} is bounded. In the contrary case there would
exists a subsequence such that

lim
k→∞,k∈K

||uk|| = +∞, lim
k→∞,k∈K

uk

||uk|| = u �K∗
0 with ||u|| = 1. (26)

Dividing both members of (25) by ||uk|| and taking the limit we get

〈F (x1), u〉 ≥ 0.
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But since x1 satisfies Slater condition, it follows from (26) and Proposition 8.29(a) [14]
that 〈F (x1), u〉 < 0, a contradiction.

Finally the sequence {xk} is also bounded since Q is compact and the first statement
is proved.

Let now y∞ be a limit point of the sequence {yk} and let {yk}k∈K, {uk}k∈K, {xk+1}k∈K
be subsequences converging to y∞ ∈ Q, u∞ �K∗

0, x∞ ∈ Q. Let j be fixed in (24).
Then passing to the limit in (24) we have

f(y∞) ≤ L(xj, u∞) + ρ(f), ∀j. (27)

Passing to the limit in (27) and in (17) we get

f(y∞) ≤ L(x∞, u∞) + ρ(f), L(x∞, u∞) ≤ L(x, u∞) +
γ

2
||x− y∞||2 ∀x ∈ Q, (28)

so that
f(y∞) ≤ L(x, u∞) +

γ

2
||x− y∞||2 + ρ(f), ∀x ∈ Q, (29)

and inequality (21) follows obviously.

ii) Suppose now that γ = 0. Let j be fixed in (23). Since θ is continuous, passing to
the limit in (23) with k → ∞ it follows that

θ(u∞) ≤ lim
k→∞

βk ≤ L(xj, u∞), ∀j.

Passing to the limit with j = k+1, k ∈ K, k → ∞ it follows that θ(u∞) ≤ limk→∞ βk ≤
L(x∞, u∞), and with the second inequality in (28) we obtain

θ(u∞) ≤ L(x∞, u∞) = θ(u∞) ≤ vD, u∞ ∈ K∗,

so that
L(x∞, u∞) = θ(u∞) = lim

k→∞
βk, u∞ ∈ K∗. (30)

Using the first inequality in (28) it follows that

f(y∞) ≤ vD + ρ(f). (31)

Now since σk ∈ B∗ and since B∗ is weakly∗ sequentially compact, there exists at least
a weak∗ limit point of the sequence {σk}. Let σ be an arbitrary weak∗ limit point of
this sequence, then obviously σ ∈ P(Q). Furthermore (23) is equivalent to

θ(uk) ≤ [f, σk] = βk ≤ L(xj, u
k) ∀j = 1, . . . , k, (32)

while by definition of the set Tk in the algorithm we have

[F, σk] =
k
∑

j=1

λk
jF (xj) �K 0. (33)

Passing to the weak∗ limit in (33), it follows that σ is a feasible solution of (PR). Using
(30) and passing to the weak∗ limit in (32) we get

[σ, f ] = lim
k→∞

βk = θ(u∞), u∞ ∈ K∗,
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which implies that σ is an optimal solution of (PR) and u∞ and optimal solution of (D).
The fact that each limit point of {uk} is an optimal dual solution follows obviously.

Suppose now that assumption (H) holds, then since
∑k

j=1 λ
k
jF (xj) �K 0, it follows

from Definitions 2.7 and 2.8 and Assumption (H) that

F (yk) �K ρ(F ).

Then passing to the limit it follows with (31) that (19) holds.

If we suppose now that f is convex on Q and that F is K-convex on Q, then from
the above inequality it follows that y∞ ∈ C and then from (29) with γ = 0 it follows
obviously that y∞ ∈ argmin{f(x) | x ∈ C}, which ends the proof of part ii).

Suppose now that γ > 0 and that Assumption (H) holds. Since
∑k

j=1 λ
k
jF (xj) �K 0,

it follows from Definition 2.7, Definition 2.8 and Assumption (H) that

F (yk) �K ρ(F ).

Then passing to the limit it follows that (20) holds.

Suppose now that F is K-convex on Q, then y∞ ∈ C and (22) follows obviously from
(21). If in addition we suppose that f is convex on Q, it follows that

y∞ ∈ argmin
{

f(x) +
γ

2
||x− y∞||2 | x ∈ C

}

.

Without loss of generality we may suppose that f is lower semicontinuous on the whole
space, so that the above inclusion is equivalent to say that 0 ∈ ∂[f + iC ](y∞), the
subdifferential at y∞ of the sum of f and the indicator function of C. As a consequence
y∞ is an optimal solution of (P ).

4. Applications and Comments

First we will emphasize that PECGM concerns general conic optimization, that is not
the case for ECGM [6], [12] which concerns only Standard Nonlinear Programming.

When K = IRm
+ and when f, fi, i = 1, . . . ,m are convex on Q, the algorithm coincides

with the extension of the column generation method of Dantzig-Wolfe [6] given in [12],
with γ = 0. However with γ > 0, the master sub-program described in Step 2, is
a prox-regularization which consists of minimizing a strongly convex function on a
compact convex set ("simple"). From a numerical point of view, this has well known
advantages that are not shared for γ = 0, and this variant is new.

Let us now consider the nonconvex case. In order to use Theorem 3.3 we must estimate
upper bounds of ρ(f) and ρ(F ). Since for Ki 6= IRmi

+ , ρ(Fi) = 0, we have to consider
only bounds like ρ(f).

Then let SC(Q) be the set of functions g : Q → IR continuous on Q such that there

exists λ(g) ≥ 0 for which the function x → h(x) := g(x) + λ(g)
2
||x||2 is convex on Q.

Such a class has been considered locally for theoretical results in nonlinear analysis
(see for example [14] and references therein) and more recently for numerical methods
(construction or/and convergence analysis [9], [5]). For such functions we have

ρ(g) ≤ ρ(h) +
λ(g)

2
ρ(−||x||2).
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If we set
∆(Q) := max

x∈Q
||x||2 −min

x∈Q
||x||2,

then we get

ρ(g) ≤ λ(g)

2
∆(Q).

The class C2(Q) of twice continuously differentiable functions on Q belongs to SC(Q).
Indeed for f ∈ SC(Q), set τ ∗(f) = min{λmin(∇2f(x)) | x ∈ Q)}, where λmin(∇2f(x))
is the minimum eigenvalue of the Hessian of f at x and let

τ(f) = max(0,−τ ∗(f)),

then f ∈ SC(Q) with
λ(f) = τ(f).

More generally the set of functions g = h + f where h is convex on Q and f ∈ C2(Q)
belongs to SC(Q) with

ρ(g) ≤ τ(f)

2
∆(Q).

In particular if f is quadratic i.e., f(x) = 〈Ax+b,x〉
2

+c, with A symmetric and λmin(A) <
0 then we get

ρ(f + h) ≤ |λmin(A)|
2

∆(Q).

Now let us give examples where we can see that PECGM can be effectively imple-
mentable, a point which was not addressed in [12].

It is worthwhile to note first that the computation of (Λk, uk) in Step 1 as solutions of
linear conic optimization problems can be done by efficient algorithms. If k and m are
not too large, this can be done in polynomial time by interior point methods and we
refer in particular to the book of Ben-Tal and Nemirovski [3]. Otherwise this can be
done by variants of the accelerated gradient method of Nesterov that are particularly
efficient in this case. For more on this subject see [11].

In fact the main difficulty of the algorithm, is to compute xk+1 at Step 2 of iteration
k. Indeed the Lagrangian function is nonconvex in x on Q in general. However an
ǫk optimal solution xk+1 can be computed with a finite number of calculations in the
three following interesting cases.

Case 1. Q := {x : 〈Mx, x〉 ≤ r} withM a symmetric positive definite matrix, K = IRm
+

and all the functions f, fi are quadratic (fi(x) = 〈Aix+bi, x〉+ci, f(x) = 〈Ax+b, x〉+c).
In this case the objective function in Step 2 is quadratic, and the quadratic problem
can be solved by the trust region algorithm (see for example Sorensen [16]). In fact in
this case Ben-Tal and Teboulle [4] have shown that the subproblem is equivalent to a
convex problem which can be solved also efficiently in a different way.

In addition with γ = 0, if set ν = r
λmin(M)

, we get from Theorem 3.3 the bounds

y∞ ∈ Q, fj(y∞) ≤ |min(λmin(Aj), 0)|ν, j = 1, . . . ,m,

f(y∞) ≤ vD + |min(λmin(A), 0)|ν.
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Case 2. F is K-convex on Q, and f ∈ SC(Q). Then for γ = λ(f), the objective
function x → L(x, uk) + γ

2
||x − yk||2 is convex and Step 2 is implementable. In this

case we have

y∞ ∈ Q ∩ E, f(y∞) ≤ vP +
λ(f)

2
(ν(C) + ∆(Q)).

Case 3: Separable data. We can use now the fact that the algorithm is a decomposition
method.

Let K = IRm
+ , set γ = 0, let x = (v, w) ∈ IRn1 × IRn2 , and suppose that

f(x) = f0(x), fj(x) = gj(v) + hj(w), j = 0, 1, . . . ,m, Q = Q1 ×Q2,

where Qi, i = 1, 2 is compact convex and where for each j, gj : Q1 → IR is convex
continuous on Q1 while hj : Q2 → IR is continuous on Q2. Suppose furthermore
that for each u ∈ IRm

+ we have an implementable algorithm for solving the nonconvex
minimization problem

R(u) : α(u) = min
w∈Q2

(

h0 +
m
∑

i=1

uihi

)

(w).

Then Step 2 is implementable and we have

xk+1 = (vk+1, wk+1), with vk+1 ∈ ǫk − argmin
v∈Q1

(

g0 +
m
∑

i=1

uk
i gi

)

(v),

wk+1 ∈ ǫk − argmin
w∈Q2

(

h0 +
m
∑

i=1

uk
i hi

)

(w).

Let us give now two examples for which we are in such a situation.

Example 4.1. The functions hj are polynomial and Q2 is a ball or a box. In this
case we can use, when n2 is small the polynomial time algorithms proposed in the field
of global polynomial optimization introduced by Lasserre (see for example [10] and
references therein).

Example 4.2. Suppose that Q2 = {w : Aw ≤ b} where A is some matrix (p, n2),
and that hj, j = 0, 1, . . . ,m are concave. Then R(u) consists of minimizing a concave
function on a polyhedral set. Actually, this is implementable by Tuy’s type methods
[17], and also by the Falk and Hoffman’s method [17] but obviously in any cases only
when n2 is very small (n2 ≤ 10).
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