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Dipartimento di Matematica, Università degli Studi,
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Introduction

Let C be a nonempty convex set in a (real) normed linear space X. A function
f : C → R is called d.c. (or “delta-convex�) if it can be represented as a difference
of two continuous convex functions on C. An extension of this notion, the notion of
a d.c. mapping F : C → Y (see Definition 1.6) where Y is a normed linear space, was
introduced in [8] and studied in [8], [5], [9] and some other papers by the authors.

The present paper concerns the following natural questions.

(Q1) When is it possible to extend a d.c. function (or a d.c. mapping) on C to a d.c.
function (or a d.c. mapping) on the whole X?

(Q2) When is it possible to extend a continuous convex function on a closed subspace
Y of X to a continuous convex function on X?

In Section 2, we show how results of [9] on compositions of d.c. functions and mappings
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imply positive results concerning (Q1). For instance, Corollary 2.6(a) reads as follows.

Let X be a (subspace of some) Lp(µ) space with 1 < p ≤ 2. Let C ⊂ X be a convex
set with a nonempty interior. Then each continuous convex function f on C, which is
Lipschitz on every bounded subset of intC, admits a d.c. extension to the whole X.

(Note that only the case of C unbounded is interesting; cf. Lemma 1.3(c).) The needed
results from [9], together with some definitions and auxiliary facts, are presented in
Section 1 (Preliminaries).

Section 3 contains two counterexamples. The first one (Example 3.1) shows that, in
the above mentioned Corollary 2.6(a), we cannot conclude that f admits a continuous
convex extension (even for X = R

2). The second counterexample (Example 3.2) shows
that, in the above mentioned Corollary 2.6(a), it is not possible to relax the assumption
that f is Lipschitz on bounded sets by assuming that f is only locally Lipschitz on C.

In the last Section 4, we consider the question (Q2) of extendability of continuous
convex functions from a closed subspace Y to the whole X. The authors of [3] obtained
a necessary and sufficient condition on Y in terms of nets in Y ∗ and, using Rosenthal’s
extension theorem, they proved the following interesting corollary ([3, Corollary 4.10]).

If X is a Banach space and X/Y is separable, then each continuous convex function
on Y admits a continuous convex extension to X.

Using methods from [6] and [9], we give a necessary and sufficient condition on Y of a
different type in Theorem 4.3. As an application, we present an elementary alternative
proof of the above mentioned [3, Corollary 4.10], which works also for noncomplete X.

1. Preliminaries

We consider only normed linear spaces over the reals R. For a normed linear space X
we use the following fairly standard notations: BX denotes the closed unit ball; U(c, r)
is the open ball centered in c with radius r; [x, y] is the closed segment conv{x, y} (the
meaning of the symbols (x, y) and (x, y] = [y, x) is clear). By definition, the distance of
a set from the empty set ∅ is ∞, and the restriction of a mapping to ∅ has all properties
like continuity, Lipschitz property, boundedness and so on.

We will frequently use also the following less standard notation.

Notation 1.1. Let A,B,An, Bn (n ∈ N) be subsets of a normed linear space X. We
shall write:

• A ⊂⊂ B whenever there exists ε > 0 such that A+ εBX ⊂ B;

• An ր A whenever An ⊂ An+1 for each n ∈ N, and
⋃

n∈NAn = A;
• An րր A whenever An ⊂⊂ An+1 for each n ∈ N, and

⋃
n∈NAn = A.

We shall use the following simple facts about convex sets and functions.

Lemma 1.2 ([9, Lemma 2.3]). Let C ⊂ X be nonempty, open and convex. Let {Cn}
be a sequence of convex sets with nonempty interiors, such that Cn ր C. Then there
exists a sequence {Dn} of nonempty, bounded, open, convex sets such that Dn րր C,
and Dn ⊂⊂ Cn for each n.



L. Veselý, L. Zaj́ıček / On Extensions of D.C. Functions and Convex Functions 429

Lemma 1.3 ([9, Fact 1.6]). Let C ⊂ X be a nonempty convex set, f : C → R be a
convex function.

(a) If C is open and bounded and f is continuous, then f is bounded below on C.

(b) If f is bounded on C then f is Lipschitz on each D ⊂⊂ C.

(c) If f is Lipschitz then it admits a Lipschitz convex extension to X.

Lemma 1.4. Let f be a continuous convex function on an open convex subset C of a
normed linear space X. Then there exists a sequence {Dn} of nonempty bounded open
convex sets such that Dn ր C and f is Lipschitz (and hence bounded) on each Dn.

Proof. Fix x0 ∈ C and consider the nonempty open convex sets Cn := {x ∈ C :
f(x) < f(x0) + n}. By Lemma 1.2, there exist nonempty bounded open convex sets
Dn such that Dn ⊂⊂ Cn and Dn րր C. Using Lemma 1.3(a), it is easy to see that f
is bounded on each Dn+1. Hence, by Lemma 1.3(b), f is Lipschitz on each Dn.

Let us recall the following easy known fact (see, e.g., [7, Theorem 1.25]): if A,B are
convex sets in a vector space then

conv(A ∪B) =
⋃

0≤t≤1

[(1− t)A+ tB] =
⋃

a∈A, b∈B

[a, b] . (1)

Lemma 1.5. Let Y be a closed subspace of a normed linear space X, C ⊂ Y and
A ⊂ X convex sets.

(a) conv(A ∪ C) ∩ Y = conv[(Y ∩ A) ∪ C].
(b) If intA 6= ∅ and A is dense in X, then A = X.

(c) If C is open in Y , A is open in X and A ∩ C 6= ∅, then conv(A ∪ C) is open.

Proof. (a) The inclusion “⊃� is obvious. To prove the other inclusion, consider an
arbitrary y ∈ Y ∩ conv(A ∪ C). Then y ∈ [a, c] for some a ∈ A, c ∈ C. If y 6= c
then necessarily a ∈ Y (since y, c ∈ Y ) and hence y ∈ conv[(Y ∩ A) ∪ C]; and the last
formula is trivial for y = c.

(b) follows, e.g., from the well-known fact that int(A) = intA whenever intA is
nonempty.

(c) Fix an arbitrary a0 ∈ A ∩ C. For each x ∈ C, there obviously exists y ∈ C \ {a0}
such that x ∈ (y, a0]; consequently, there exists t ∈ (0, 1] with x ∈ (1− t)C + tA. Now
we are done, since

conv(A ∪ C) = C ∪
⋃

0<t≤1

[(1− t)C + tA] =
⋃

0<t≤1

[(1− t)C + tA]

and the members of the last union are open.

In the rest of this section, we collect some facts about d.c. functions and mappings,
which we will need in the next sections.

Let C be a convex set in a normed linear space X. Recall that a function f : C → R is
d.c. (or “delta-convex�) if it can be represented as a difference of two continuous convex
functions on C. The following generalization to the case of vector-valued mappings on
C was studied in [8] for open C, and in [9] for a general (convex) C.
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Definition 1.6. Let X, Y be normed linear spaces, C ⊂ X be a convex set, and
F : C → Y be a continuous mapping. We say that F is d.c. (or “delta-convex�) if
there exists a continuous (necessarily convex) function f : C → R such that y∗ ◦F + f
is convex on C whenever y∗ ∈ Y ∗, ‖y∗‖ ≤ 1. In this case we say that f controls F , or
that f is a control function for F .

Remark 1.7. It is easy to see (cf. [8]) that:

(a) a mapping F = (F1, . . . , Fm) : C → R
m is d.c. if and only if each of its components

Fk is a d.c. function;

(b) the notion of delta-convexity does not depend on the choice of equivalent norms
on X and Y .

Lemma 1.8 ([9, Lemma 5.1]). Let X, Y be normed linear spaces, let A ⊂ X be an
open convex set with 0 ∈ A, and let F : A → Y be a mapping. Suppose there exist
λ ∈ (0, 1) and a sequence of balls B(xn, δn) ⊂ A such that {xn} ⊂ λA, δn → 0 and F
is unbounded on each B(xn, δn). Then F is not d.c. on A.

The following result was proved in [5, Theorem 18(i)] for X, Y Banach spaces, but the
proof therein works for normed linear spaces as well.

Proposition 1.9. Let X, Y be normed linear spaces, C ⊂ X be a bounded open convex
set, and F : C → Y be a d.c. mapping with a Lipschitz control function. Then F is
Lipschitz.

Lemma 1.10 ([9, Lemma 2.1]). Let X, Y be normed linear spaces, C ⊂ X a non-
empty convex set, and F : C → Y a mapping. Let ∅ 6= Dn ⊂ C (n ∈ N) be convex sets
such that Dn ր C and, for each n, dist(Dn, C \ Dn+1) > 0, Dn is relatively open in
C, and F |Dn

is d.c. with a control function γn : Dn → R which is either bounded or
Lipschitz. Then F is d.c. on C.

An important ingredient of the present paper is application of the following two results
on compositions of d.c. mappings.

Proposition 1.11 ([8], [9]). Let X, Y, Z be normed linear spaces, A ⊂ X and B ⊂ Y
convex sets, and F : A → B and G : B → Z d.c. mappings. If G is Lipschitz and has
a Lipschitz control function, then G ◦ F is d.c. on A.

Lemma 1.12 ([9, Lemma 3.2(ii)]). Let U, V,W be normed linear spaces, let A ⊂ U
be an open convex set and B ⊂ V a convex set, and let Φ: A → B and Ψ: B → W
be mappings. Suppose that Φ is d.c. and there exist sequences of convex sets An ⊂ A,
Bn ⊂ B such that intAn 6= ∅, An ր A, Φ(An) ⊂ Bn, and Ψ|Bn

is Lipschitz and d.c.
with a Lipschitz control function. Then Ψ ◦ Φ is d.c. on A.

Let us recall that a normed linear space X is said to have modulus of convexity of
power type 2 if there exists a > 0 such that δX(ε) ≥ aε2 for each ε ∈ (0, 2] (where δX
denotes the classical modulus of convexity of X; see e.g. [1, p. 409] for the definition).

Proposition 1.13 ([9, Corollary 3.9(a)]). Let Y, V,X, Z be normed linear spaces
and let both Y and V admit renormings with modulus of convexity of power type 2. Let
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B : Y × V → Z be a continuous bilinear mapping, C ⊂ X an open convex set, and
let F : C → Y and G : C → V be d.c. mappings. Then the mapping B ◦ (F,G) : x 7→
B(F (x), G(x)) is d.c. on C.

2. Extensions of d.c. mappings

Let X, Y be normed linear spaces, C ⊂ X be a convex set, and F : C → Y be a d.c.
mapping. In the present section, we are interested in existence of a d.c. extension of F
to the whole X or at least to the closure of C. Let us start with a simple observation.

Observation 2.1. Let X, Y,C, F be as in the beginning of this section, and f : C → R

a control function of F .

(a) If Y is finite-dimensional, and both F, f are Lipschitz on C, then F admits a d.c.
extension to X.

(b) If both F, f admit continuous extensions F̃ , f̃ to a convex set D such that C ⊂
D ⊂ C, then F̃ is d.c. with the control function f̃ .

Proof. By Remark 1.7, it suffices to prove (a) for Y = R. In this case, F = (F+f)−f
is a difference of two Lipschitz convex functions on C. By Lemma 1.3(c), F can be
extended to a difference of two Lipschitz convex functions on X. The assertion (b)
follows by a simple limit argument.

Proposition 2.2. Let X be a normed linear space, Y a Banach space, C ⊂ X a convex
set with a nonempty interior and F : C → Y a d.c. mapping. Suppose there exists a
nondecreasing sequence {An} of open convex sets in X such that C ⊂ ⋃

An and, for
each n, F |(intC)∩An

has a Lipschitz control function. Then F admits a d.c. extension
to C.

Proof. Since An ր A :=
⋃

k Ak, Lemma 1.2 allows us to suppose that the sets An

are also bounded and satisfy An րր A. By Proposition 1.9, F |(intC)∩An
is Lipschitz

for each n. Consequently, since C ∩ An ⊂ (intC) ∩ An , F |(intC)∩An
has a unique

Lipschitz extension F ∗
n : C ∩ An → Y . Since, for n2 > n1, F

∗
n2

obviously extends F ∗
n1
,

there exists a unique continuous F ∗ : C → Y which extends each F ∗
n . Since, for each

n, any Lipschitz control function for F |(intC)∩An
has a Lipschitz extension to Dn :=

C∩An, Observation 2.1(b) gives that F ∗|Dn
has a Lipschitz control function. Moreover,⋃

Dn = C and dist(Dn, C \Dn+1) = dist(Dn, C \ An+1) ≥ dist(An, X \ An+1) > 0 for
each n. Applying Lemma 1.10 with D := C, we obtain that F ∗ is d.c. on C.

Now we will prove the main result of the present section. For the definition of modulus
of convexity of power type 2 see the text before Proposition 1.13.

Theorem 2.3. Let X, Y be normed linear spaces, C ⊂ X a convex set with a nonempty
interior and F : C → Y a d.c. mapping. Let A ⊃ C be an open convex set in X.
Suppose that X admits a renorming with modulus of convexity of power type 2, and
either C is closed or Y is a Banach space. Then the following assertions are equivalent.

(i) F admits a d.c. extension F̂ : A→ Y .

(ii) Some control function f of F admits a continuous convex extension f̂ : A→ R.
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(iii) There exists a nondecreasing sequence {Dn} of open convex sets such that A =⋃
Dn and, for each n, (intC) ∩Dn 6= ∅ and the restriction of F to (intC) ∩Dn

has a Lipschitz control function.

Proof. The implication (i) ⇒ (ii) is trivial, while (ii) ⇒ (iii) follows immediately
from Lemma 1.4 applied to f .

Let us prove (iii) ⇒ (i). By translation we can suppose that 0 ∈ (intC) ∩ D1. The
sets An := Dn ∩ U(0, n) (n ∈ N) form a sequence of bounded open convex sets such
that An ր A, 0 ∈ (intC) ∩ A1 and, for each n,

F |(intC)∩An
has a Lipschitz control function fn. (2)

First we will extend F to a mapping F ∗ : C ∩A→ Y . If C is closed, then C ∩A = C;
so we put F ∗ = F . If C is not closed, Y is a Banach space by the assumptions.
Proposition 1.9 and (2) imply that F is Lipschitz on (intC)∩An. Note that C ∩An ⊂
(intC) ∩ An ; thus F |(intC)∩An

has a unique Lipschitz extension F ∗
n : C∩An → Y . Since,

for n2 > n1, F
∗
n2

obviously extends F ∗
n1
, there exists a unique continuous F ∗ : C∩A→ Y

which extends each F ∗
n .

In both cases (C closed or not), fn has a Lipschitz extension to Bn := C ∩ An. By
Observation 2.1(b),

F ∗|Bn
is Lipschitz and d.c. with a Lipschitz control function. (3)

Denote by µ the Minkowski functional of C, i.e.

µ(x) = inf{t > 0 : x ∈ tC}.

It is well known that µ is a Lipschitz convex function on X (recall that 0 ∈ intC), and
µ(x) ≤ 1 iff x ∈ C. Consider the “radial projection� P onto C, given by

P (x) =

{
x if x ∈ C;
x

µ(x)
if x ∈ X \ C.

The function x 7→ max{1, µ(x)} is convex and Lipschitz, and its values belong to
[1,∞). The function t 7→ 1

t
is convex and Lipschitz on [1,∞); consequently, by Propo-

sition 1.11, the composed function x 7→ 1
max{1,µ(x)}

is d.c. on X. Moreover, the mapping
B : R×X → X, given by

B(t, x) = tx ,

is a continuous bilinear mapping. Since P (x) = B
(

1
max{1,µ(x)}

, x
)
, x ∈ X, Proposi-

tion 1.13 implies that P is d.c. on X.

Let us show that F := F ∗ ◦ (P |A) is a d.c. extension of F to A. The fact that F
extends F is obvious. To prove that F is d.c., it is sufficient to apply Lemma 1.12 with
B := C ∩A, Φ := P |A, Ψ := F ∗ (and A,An, Bn as above). Indeed, the assumptions of
that lemma are satisfied since Φ(An) = P (An) ⊂ C ∩An = Bn (note that P (An) ⊂ An

because 0 ∈ A1) and (3) holds.

Remark 2.4. (a) We do not know whether the renorming assumption onX in Theo-
rem 2.3 can be omitted or essentially weakened.
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(b) The condition (ii) in Theorem 2.3 can be substituted by the following formally
weaker condition:
(ii′) some control function of F can be extended to a d.c. function on A.
Indeed, if f1 and f2 are continuous convex functions on A such that f1 − f2
controls F on C, then also the sum f1 + f2 controls F on C.

Corollary 2.5. Let X, Y be normed linear spaces, C ⊂ X be a convex set with a
nonempty interior, and F : C → Y be a d.c. mapping. Supose that, the restriction of
F to each bounded open convex subset of C has a Lipschitz control function.

(a) If Y is a Banach space, then F admits a d.c. extension to C.

(b) If X admits a renorming with modulus of convexity of power type 2, and either
C is closed or Y is a Banach space, then F admits a d.c. extension to the whole
X.

Proof. Consider the sets An := U(0, n) (n ∈ N) and apply Proposition 2.2 to get (a),
and Theorem 2.3 to get (b).

Corollary 2.6. Let X be a (subspace of some) Lp(µ) space with 1 < p ≤ 2. Let C ⊂ X
be a convex set with a nonempty interior.

(a) Each continuous convex function on C, which is Lipschitz on every bounded subset
of intC, admits a d.c. extension to the whole X.

(b) Each Banach space-valued C1,1 mapping on C admits a d.c. extension to the whole
X.

Proof. It is known (see e.g. [1, p. 410]) that X, in the Lp-norm, has modulus of
convexity of power type 2. Therefore, [9, Proposition 1.11] easily implies that each
Banach space-valued C1,1 mapping on any open convex subset of X is d.c. with a
control function that is Lipschitz on bounded sets. Now, both (a) and (b) follow from
Corollary 2.5(b).

For extensions from closed finite-dimensional convex subsets, we have the following
simple corollary. Recall that a finite-dimensional set (in a vector space) is a set whose
linear span is finite-dimensional.

Corollary 2.7. Let X, Y be normed linear spaces, and F : C → Y be a d.c. mapping,
where C ⊂ X is a finite-dimensional closed convex set. Then the following assertions
are equivalent:

(i) F admits a d.c. extension F̂ : X → Y ;

(ii) F has a locally Lipschitz control function f : C → R.

(iii) For each x ∈ C, there exists rx > 0 such that the restriction of F to C ∩U(x, rx)
has a Lipschitz control function.

Proof. The implication (i) ⇒ (ii) is obvious since each continuous convex function on
X is locally Lipschitz. The implication (ii) ⇒ (iii) is trivial.

Let (iii) hold. Suppose that 0 ∈ C and denote X0 := spanC (= affC). Then C, being
finite-dimensional, has a nonempty interior in X0. Let B ⊂ C be a bounded convex
set which is open in X0. For each x ∈ B ∩C choose rx by (iii) and a Lipschitz convex
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function ϕx on C ∩U(x, rx) which controls F on C ∩U(x, rx). Since B ∩C is compact,
we can choose x1, . . . , xn in B ∩ C such that B ∩ C ⊂ ⋃n

i=1 U(xi, rxi
). Extend ϕxi

to
a Lipschitz convex function ψi on X0 (cf. Lemma 1.3(c)) and put ψ :=

∑n

i=1 ψi. Then
clearly ψ|B is a Lipschitz control function of F |B.
By Corollary 2.5(b), there exists a d.c. extension F0 : X0 → Y of F . Let π : X → X0

be a continuous linear projection onto X0. Then the mapping F̂ := F0 ◦ π is a d.c.
extension of F (cf. [8, Lemma 1.5(b)]). Thus (i) holds and the proof is complete.

3. Counterexamples

Example 3.1. There exists a continuous convex function f on the strip P := R ×
[−1, 0] such that

(i) f has a d.c. extension to R
2, and

(ii) f has no convex extension to R
2.

Proof. For (x, y) ∈ P , we set

f(x, y) := sup{at(x, y) : t ∈ R}, where at(x, y) := t2 + 2t(x− t) + t2y.

Observe that

at(·, 0) is the support affine function to the function p(x) := x2 at t, (4)

at(t, y) ≥ 0 for y ∈ [−1, 0], and (5)

∂at
∂x

(z) = 2t,
∂at
∂y

(z) = t2 (z ∈ R
2). (6)

Now fix τ ∈ R and consider a t ∈ R. Then (4) implies at(τ, 0) ≤ p(τ) = τ 2, so
(6) gives at(τ, y) ≤ τ 2 for y ∈ [−1, 0]. Consequently, f(τ, 0) = aτ (τ, 0) = τ 2 and
f(τ, y) ≤ τ 2 < ∞ for y ∈ [−1, 0]. Thus f is a finite convex function on P . Moreover
f ≥ 0 on P .

Note that at(τ, 0) = −t2 + 2tτ ≤ 0 whenever |t| ≥ 2|τ |. If z = (z1, z2) ∈ (τ − 1, τ +
1)× [−1, 0] and |t| ≥ 2(|τ |+1), then at(z1, 0) ≤ 0 since |t| ≥ 2|z1|. For such z we have
at(z) ≤ 0 ≤ f(z) because at(z1, ·) is nondecreasing by (6). It follows that

f(z) = sup{at(z) : |t| ≤ 2(|τ |+ 1)} for z ∈ (τ − 1, τ + 1)× [−1, 0]. (7)

Using (7) and (6), we easily obtain that f is locally Lipschitz on P ; so it is Lipschitz
on each bounded subset of P . Consequently, (i) follows from Corollary 2.5.

Now, suppose that (ii) is false, that is, there exists a convex extension f̃ : R2 → R of

f . Since f̃(τ, 0) = f(τ, 0) = τ 2, we have ∂f̃

∂x
(τ, 0) = 2τ for each τ ∈ R. Now we will

prove that, for each τ > 0,

d+(0,−1)f̃(τ, 0) = d+(0,−1)aτ (τ, 0) = −τ 2 (8)

where d+v g(z) denotes the one-sided derivative of g at z in the direction v. To this
end, choose an arbitrary ε > 0 and find 0 < δ <

√
ε such that |t2 − τ 2| < ε whenever

|t− τ | < δ. If |t− τ | ≥ δ and y ∈ (−δ2/τ 2, 0], then
aτ (τ, y)− at(τ, y) = τ 2 + τ 2y + t2 − 2tτ − t2y

= (t− τ)2 + (τ 2 − t2)y ≥ δ2 + τ 2y > 0.
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If |t− τ | < δ and y ≤ 0, then

aτ (τ, y)− at(τ, y) = (t− τ)2 + (τ 2 − t2)y ≥ εy.

Therefore, f̃(τ, y) ≥ aτ (τ, y) ≥ f̃(τ, y) + εy whenever y ∈ (−δ2/τ 2, 0]. Since ε > 0 was
arbitrary, we easily obtain (8).

Since f̃ is convex, the function v 7→ d+v f̃(τ, 0) is positively homogenous and subadditive.
Therefore, for τ > 0, we have

d+(τ,−3)f̃(τ, 0) ≤ d+(0,−3)f̃(τ, 0) + d+(τ,0)f̃(τ, 0) = −3τ 2 + 2τ 2 = −τ 2,

and consequently d+(−τ,3)f̃(τ, 0) ≥ τ 2. By convexity of f̃ ,

f̃(0, 3) ≥ f̃(τ, 0) + d+(−τ,3)f̃(τ, 0) ≥ τ 2 + τ 2 = 2τ 2.

Since τ > 0 was arbitrary, f̃(0, 3) = ∞, a contradiction.

Example 3.2. InX = ℓ2, there exist a closed convex set C ⊂ U(0, 1) with a nonempty
interior and a continuous convex function f : C → R such that:

(a) f has a continuous convex extension to U(0, 1), in particular, f is locally Lipschitz
on C (even there exists a nondecreasing sequence of open convex sets An ր
U(0, 1) such that f is Lipschitz on each An ∩ C);

(b) f has no d.c. extension to U(0, r) whenever r > 1.

Proof. Let en be the n-th vector of the standard basis of X = ℓ2. For n, k ∈ N with
n < k, put

zn,k = (1− 1
n
)en + hn(1− 1

k
)ek

where hn > 0 is such that (1− 1
n
)2+h2n = 1. Note that ‖zn,k‖2 = (1−h2n)+h2n(1−h2k) =

1− h2nh
2
k. Put

C := conv
[
1
2
BX ∪ {zn,k : n, k ∈ N, n < k}

]
.

Obviously, C is a closed convex set with a nonempty interior and C ⊂ BX . We claim
that C ⊂ U(0, 1).

If this is not the case, there exists x ∈ C with ‖x‖ = 1. Thus sup〈x,C〉 = 〈x, x〉 = 1.
On the other hand, there exists n0 ∈ N such that |〈x, en〉| < 1

3
and hn <

1
3
whenever

n > n0. Thus |〈x, zn,k〉| ≤ 2
3
for k > n > n0. There exists k0 > n0 such that

|〈x, ek〉| < 1
2n0

whenever k > k0. Hence, for n ≤ n0 and k > k0, we have |〈x, zn,k〉| ≤
(1− 1

n
) + 1

2n0
≤ 1− 1

n0
+ 1

2n0
= 1− 1

2n0
. Since obviously sup〈x, 1

2
BX〉 = 1

2
, we obtain

sup〈x,C〉 = max
{

1
2
, sup {〈x, zn,k〉 : n, k ∈ N, n < k}

}

≤ max
[
{2
3
, 1− 1

2n0
} ∪ {‖zn,k‖ : n < k ≤ k0, n ≤ n0}

]
< 1.

This contradiction proves our claim.

The function x 7→ 1 − ‖x‖ is positive, continuous and concave on U(0, 1). Since the
function t 7→ 1

t
is convex and decreasing on (0,∞), the composed function g(x) = 1

1−‖x‖

is convex continuous, and hence locally Lipschitz, on U(0, 1). Thus f := g|C satisfies
(a) by Lemma 1.4. Let us show (b). By Lemma 1.8, it suffices to prove that g is
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unbounded on subsets of C of arbitrarily small diameter. Fix n ∈ N. For any two
distinct indices k, l > n, we have

‖zn,k − zn,l‖2 = h2n
[
(1− 1

k
)2 + (1− 1

l
)2
]
≤ 2h2n

which implies diam {zn,k : k > n} ≤
√
2hn. This completes the proof since g(zn,k) → ∞

as k → ∞.

4. Extensions of convex functions from subspaces

Let Y be a closed subspace of a normed linear space X, and f : Y → R a continuous
convex function. The present section concerns the problem of existence of a continuous
convex extension f : X → R of f .

An example of nonexistence of f was given in [3, Example 4.2]. On the other hand,
it is easy and well known that such f exists if either Y is complemented in X or f
is Lipschitz (see, e.g., [3]). Borwein and Vanderwerff proved in [4, Fact, p. 1801] that
f exists whenever f is bounded on each bounded subset of Y ; however, this sufficient
condition is not necessary (see Remark 4.2). The following theorem contains a necessary
and sufficient condition (iv) of the same type, but the proof is more difficult and uses
different methods. Our main new observation is that a modification of Hartman’s
construction from [6] gives the implication (iv) ⇒ (ii); and we use also the implication
(ii) ⇒ (i) already proved in [3].

Theorem 4.1. Let X be a normed linear space, Y ⊂ X its closed subspace, and
f : Y → R a continuous convex function. Then the following statements are equivalent.

(i) The function f admits a continuous convex extension to X.

(ii) There exists a continuous convex function g : X → R such that f ≤ g|Y .
(iii) f admits a d.c. extension to X.

(iv) There exists a sequence {Cn} of nonempty open convex subsets of X such that
Cn ր X and f is bounded on each set Cn ∩ Y (n ∈ N).

(v) There exists a sequence {Bn} of nonempty open convex subsets of X such that
Bn ր X and f is Lipschitz on each set Bn ∩ Y (n ∈ N).

Proof. (i) ⇒ (ii) is obvious, while (ii) ⇒ (i) was proved in [3, Lemma 4.7] for X a
Banach space. However, the proof therein works also in the normed linear case (note

that the convex extension f̃ from [3, Lemma 4.7] is continuous since it is locally upper
bounded).

(i) ⇒ (iii) is trivial.

(iii) ⇒ (ii). If (iii) holds, there exist continuous convex functions u, v on X such that
u(y) − v(y) = f(y) for y ∈ Y . Choose a continuous affine function a on X such that
a ≤ v. Then

u(y)− a(y) = f(y) + (v(y)− a(y)) ≥ f(y), y ∈ Y ;

so we can put g := u− a.

(i) ⇒ (v) follows immediately applying Lemma 1.4 to a continuous convex extension
f of f .
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(v) ⇒ (iv). Clearly, it suffices to put Cn = Bn ∩ U(0, n) (n ∈ N).

It remains to prove (iv) ⇒ (ii). Using Lemma 1.2 and an obvious shift of indices, it is
easy to find a sequence {Dn} of bounded open convex subsets of X such that (for each
n) Dn ∩ Y 6= ∅, f is bounded on Dn ∩ Y , dn := dist(Dn, X \Dn+1) > 0, and Dn ր X.

Now we will construct inductively a sequence (gn)n∈N of functions on X such that, for
each n ∈ N,

(a) gn is convex and Lipschitz;

(b) gn = gn−1 on Dn−1 whenever n > 1;

(c) gn ≥ f on Dn+1 ∩ Y .

Set Mn := sup{f(y) : y ∈ Dn ∩ Y }; by the assumptions Mn <∞.

Define g1(x) :=M2, x ∈ X. Then the conditions (a), (b), (c) clearly hold for n = 1.

Now suppose that k > 1 and we already have g1, . . . , gk−1 such that (a), (b), (c) hold
for each 1 ≤ n < k. We can clearly choose a ∈ R such that gk−1(x) ≥ a for each
x ∈ Dk−1, and then b > 0 such that a+ b dk−1 ≥Mk+1. Define

gk(x) := max{gk−1(x), a+ b dist(x,Dk−1)}, x ∈ X.

We will show that the conditions (a), (b), (c) hold for n = k. The validity of (a) is
obvious. If x ∈ Dk−1, then gk(x) = max{gk−1(x), a} = gk−1(x); so (b) holds.

Now consider an arbitrary y ∈ Dk+1 ∩ Y . If y ∈ Dk−1, using (b) for n = k and (c) for
n = k − 1, we obtain gk(y) = gk−1(y) ≥ f(y). If y ∈ Dk \Dk−1, using the definition of
gk and (c) for n = k− 1, we also obtain gk(y) ≥ gk−1(y) ≥ f(y). If y ∈ Dk+1 \Dk, then

gk(y) ≥ a+ b dist(y,Dk−1) ≥ a+ b dk−1 ≥Mk+1 ≥ f(y).

Now, for each x ∈ X, the sequence {gn(x)} is constant for large n’s, hence g(x) :=
limn→∞ gn(x) is defined on X. Since g = gn on Dn by (b), the conditions (a) and (c)
easily imply that g is a continuous convex function on X such that f ≤ g|Y .
Remark 4.2. As already mentioned, (i) holds whenever

(∗) f is bounded on each bounded subset of Y

(indeed, (iv) holds with Cn := U(0, n)). To see that (∗) is not necessary with Y 6= X,
consider an arbitrary infinite dimensional Banach space X, a closed subspace Y of
finite codimension in X, and a continuous convex function f on Y which is unbounded
on some bounded set (for its existence, see [2]).

Theorem 4.3. Let X be a normed linear space and Y ⊂ X its closed subspace. Then
the following statements are equivalent.

(i) Each continuous convex function f : Y → R admits a continuous convex extension
to X.

(ii) If {Cn} is a sequence of open convex subsets of Y such that Cn ր Y , then there
exists a sequence {Dn} of open convex subsets of X such that Dn ր X and
Dn ∩ Y ⊂ Cn.

(iii) If {Cn} is a sequence of open convex subsets of Y such that Cn ր Y , then there

exists a sequence {C̃n} of open convex subsets of X such that C̃n ր X and

C̃n ∩ Y = Cn.



438 L. Veselý, L. Zaj́ıček / On Extensions of D.C. Functions and Convex Functions

Proof. (i) ⇒ (ii). Let {Cn} be as in (ii). Using Lemma 1.2, we can (and do) suppose
that Cn 6= ∅ and Cn ⊂⊂ Cn+1 in Y (n ∈ N). Fix a ∈ C1 and put C0 := {a}. Choose
εn > 0 such that Cn + εnBY ⊂ Cn+1 (n ≥ 0), and consider the function

f(y) :=
∞∑

n=0

1

εn
dist(y, Cn) , y ∈ Y.

It is easy to see that f is a continuous convex function on Y ; therefore it admits a
continuous convex extension f to X by (i). Let us show that the sets Dn := {x ∈ X :
f(x) < n} (n ∈ N) have the desired properties. Obviously, they are convex and open,
and Dn ր X. Consider n ∈ N and y ∈ Y \ Cn. Since dist(y, Ck) ≥ εk for 0 ≤ k < n,
we have

f(y) ≥
n−1∑

k=0

1

εk
dist(y, Ck) ≥ n.

This shows that Dn ∩ Y ⊂ Cn.

(ii) ⇒ (i). Let f be as in (i). Then the sets Cn := {y ∈ Y : f(y) < n, ‖y‖ < n}
(n ∈ N) are open convex and satisfy Cn ր Y . Observe that f is bounded on each Cn

by Lemma 1.3(a). Find Dn (n ∈ N) by (ii). Since Dn ∩ Y ⊂ Cn, the sequence {Dn}
satisfies the condition (iv) of Theorem 4.1, and so (i) follows.

(ii) ⇒ (iii). Let {Cn} be as in (iii). Find Dn (n ∈ N) by (ii). Choose n0 ∈ N such that

Dn0 ∩ Y 6= ∅. For n ≥ n0, put C̃n := conv(Dn ∪ Cn). By Lemma 1.5(a), (c), we have

that C̃n∩Y = Cn and the convex set C̃n is open for any n ≥ n0. Let n1 be the smallest
index such that Cn1 6= ∅. Fix c ∈ Cn1 and choose r > 0 such that U(c, r) ⊂ C̃n0 and

U(c, r) ∩ Y ⊂ Cn1 . Put C̃n = ∅ for 1 ≤ n < n1, and C̃n := conv(U(c, r) ∪ Cn) for
n1 ≤ n < n0. Using Lemma 1.5(a), (c) as above, we easily obtain that the sequence

{C̃n} has the desired properties. The reverse implication (iii) ⇒ (ii) is obvious.

As an application of Theorem 4.3, we give an alternative proof (see Theorem 4.5) of
the fact that separability of the quotient space X/Y is sufficient for extendability of
all continuous convex functions on Y to X. This was proved in [3] for Banach spaces
using a condition about nets in Y ∗, equivalent to (i) of Theorem 4.3, together with
Rosenthal’s extension theorem. Our proof (for general normed linear spaces) is based
on Theorem 4.3 and on the following elementary lemma.

Lemma 4.4. Let Y be a closed subspace of a normed linear space X. Let B = rBX

for some r > 0. Then, for any x ∈ X, there exists yx ∈ Y such that

conv[(x+B) ∪B] ∩ Y ⊂ conv[{yx} ∪ 8B]. (9)

Proof. If x = 0, yx = 0 works. For x 6= 0, denote P := conv[(x + B) ∪ B] ∩ Y (6= ∅)
and s := sup{‖y‖ : y ∈ P}, and choose u0 ∈ P such that ‖u0‖ > s − r. Observe that
u0 6= 0 since s ≥ sup{‖y‖ : y ∈ B ∩ Y } = r. We claim that yx = 8u0 works.

Fix a0 ∈ x + B, b0 ∈ B and λ ∈ [0, 1] such that u0 = (1 − λ)a0 + λb0. It suffices to
prove that P \ B ⊂ conv[{yx} ∪ 8B]. Given u ∈ P \ B, choose a ∈ x + B and b ∈ B
such that u ∈ [a, b]. Note that a 6= b since u /∈ B. Put v = (1− λ)a + λb and observe
that ‖v − u0‖ ≤ 2r. Consider the half-line H := {v + t(a− b) : t ≥ 0}. Let v1 ∈ H be
such that ‖v1−v‖ = 5r. Then v1 ∈ u0+7B since ‖v1−u0‖ ≤ ‖v1−v‖+‖v−u0‖ ≤ 7r.
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We claim that no point y ∈ H with ‖y − v‖ > 5r can belong to P since it satisfies
‖y‖ > s. Indeed, since v ∈ [y, b],

‖y‖ ≥ ‖y − b‖ − ‖b‖ = ‖y − v‖+ ‖v − b‖ − ‖b‖ ≥ ‖y − v‖+ ‖v‖ − 2‖b‖
≥ ‖y − v‖+ ‖u0‖ − ‖u0 − v‖ − 2‖b‖ > 5r + (s− r)− 2r − 2r = s.

Consequently, if u ∈ H then u ∈ [v1, v], and if u ∈ [a, b] \ H then u ∈ [v, b]. In both
cases, u ∈ [v1, b] ⊂ conv[(u0+7B)∪B]. To finish, observe that u0+7B = 1

8
(8u0)+

7
8
(8B)

implies
u ∈ conv[(u0 + 7B) ∪B] ⊂ conv[{8u0} ∪ 8B].

Theorem 4.5 ([3, Corollary 4.10] for X Banach). Let Y be a closed subspace of
a normed linear space X such that X/Y is separable. Then each continuous convex
function f : Y → R admits a continous convex extension to X.

Proof. It suffices to verify the condition (ii) of Theorem 4.3. Let C1 ⊂ C2 ⊂ . . .
be open convex subsets of Y such that

⋃
nCn = Y . We can (and do) suppose that

0 ∈ intY C1. Fix r > 0 such that
8rBY ⊂ C1. (10)

Fix a dense sequence {ξn}n∈N ⊂ X/Y and, for each n, choose an arbitrary zn ∈ ξn.
The sets Zn := conv{z1, . . . , zn} (n ∈ N) form a nondecreasing sequence of compact
convex sets such that the union

⋃
n(Zn + Y ) is dense in X. Define Z0 = ∅.

Claim. There exists an increasing sequence of integers {kn}n≥0 such that k0 = 1 and,
for each n,

conv(Zn ∪B) ∩ Y ⊂ Ckn where B = rBX . (11)

To prove this, we shall proceed by induction with respect to n. Observe that (11) is
satisfied for n = 0 and k0 = 1. Suppose we already have k0, . . . , kn−1. Since Zn is
compact, there exists a finite set F ⊂ Zn such that Zn ⊂ F + B. For any x ∈ F , fix
yx ∈ Y satisfying (9). Choose an integer kn > kn−1 such that yx ∈ Ckn for each x ∈ F .
Then, using (1), we obtain

conv(Zn ∪B) =
⋃

z∈Zn

conv({z} ∪B) ⊂
⋃

x∈F

conv((x+B) ∪B).

Consequently, using (9) and Lemma 1.5(a), we obtain

conv(Zn ∪B) ∩ Y ⊂
⋃

x∈F

[conv((x+B) ∪B) ∩ Y ]

⊂
⋃

x∈F

[conv({yx} ∪ 8B) ∩ Y ]

=
⋃

x∈F

conv[(8B ∩ Y ) ∪ {yx}] ⊂ Ckn

since, by (10), (8B ∩ Y ) ∪ {yx} ⊂ Ckn for each x ∈ F . This proves our Claim.

For each j ∈ N, let n(j) be the unique nonnegative integer with kn(j) ≤ j < kn(j)+1.
Let us define a nondecreasing sequence {Dj}j∈N of open convex sets by

Dj := int[conv(Zn(j) ∪B ∪ Cj)].
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By Lemma 1.5(a) and (11), we have

Y ∩Dj ⊂ Y ∩ conv(Zn(j) ∪B ∪ Cj)

= Y ∩ conv[conv(Zn(j) ∪B) ∪ Cj]

= conv
{
[Y ∩ conv(Zn(j) ∪B)] ∪ Cj

}

⊂ conv{Ckn(j)
∪ Cj} = Cj.

It remains to prove that
⋃

j Dj = X. By Lemma 1.5(b), this is equivalent to saying

that
⋃

j Dj is dense in X. Since, for each j, Dj is dense in D̃j := conv(Zn(j) ∪B ∪Cj),

it suffices to show that
⋃

j D̃j is dense. Note that H := 1
2

⋃
n(Zn + Y ) is dense in X

since
⋃

n(Zn + Y ) is dense. If h ∈ H then h = 1
2
(z + y) with z ∈ Zn for some n, and

y ∈ Y . Then, for sufficiently large j, we have z ∈ Zn(j) and y ∈ Cj, and hence h ∈ D̃j.

Consequently,
⋃

j D̃j is dense since it contains H.
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