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The aim of this paper is to show the interest of taking into account the notion of curvature in gradient
methods. More precisely, given a Hilbert space H and a strictly convex function φ : H → R of class
C2, we consider the following algorithm

(⋆) xn+1 = xn − λn ∇φ(xn), with λn =
|∇φ(xn)|

2

〈∇2φ(xn).∇φ(xn),∇φ(xn)〉
.

We obtain results of linear convergence for the above algorithm, even without strong convexity. Some
variants of (⋆) are also considered, with different expressions of the curvature-dependent steplength
λn. A large part of the paper is devoted to the study of an implicit version of (⋆), falling into the
field of the proximal point iteration. All these algorithms are clearly related to the Barzilai-Borwein
method and numerical illustrations at the end of the paper allow to compare these different schemes.

Keywords: Unconstrained convex optimization, steepest descent, gradient method, proximal point
algorithm, Barzilai-Borwein stepsize
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1. Introduction

Throughout this paper, we denote by H a Hilbert space endowed with the scalar prod-
uct 〈., .〉 and the corresponding norm | . |. Given a smooth convex objective function
φ : H → R, let us consider the gradient method with variable stepsize

xn+1 = xn − λn∇φ(xn), (1)

where (λn) is a sequence of positive scalars. For every n ∈ N, define the map q : R → R

by q(λ) = φ(xn − λ∇φ(xn)). The optimal step length along the gradient direction is
given by the minimum of the map q. If q′′(0) > 0, it is direct to verify that the quadratic
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approximation of q on a neighbourhood of 0 attains its minimum at λn = −q′(0)/q′′(0),
i.e.

λn =
|∇φ(xn)|

2

〈∇2φ(xn).∇φ(xn),∇φ(xn)〉
. (2)

When the function φ is quadratic, the above expression for the stepsize λn corresponds
exactly to the classical steepest descent method, also called the Cauchy method [5, 6,
7, 14]. Notice that in dimension one, algorithm (1)–(2) reduces to the classical Newton
algorithm xn+1 = xn − φ′(xn)/φ

′′(xn), for which we refer to [7, 14] and the references
therein.

The above gradient algorithm (1)–(2) can be viewed as the time discretization of the
following “Steepest Descent with Curvature� system

(SDC) �x(t) +
|∇φ(x(t))|2

〈∇2φ(x(t)).∇φ(x(t)),∇φ(x(t))〉
∇φ(x(t)) = 0, t ≥ 0,

which was intensively studied in [1]. The trajectories of (SDC) are simply the steepest
descent ones but they are described with different speeds. The most remarkable prop-
erty of (SDC) lies in the fact that |∇φ(x(t))| = |∇φ(x(0))|e−t, for every t ≥ 0. This is
a nice scale invariant property because the rate of convergence is independent of φ. The
use of second-order information about φ gives a normalized exponential decay under
no strong convexity condition. The aim of this paper is to show that such a property
remains true for the discrete dynamical system (1)–(2). Under suitable conditions, we
show that the sequence (∇φ(xn)) converges linearly

1 toward 0, see Theorem 4.2. More
generally, we consider the following expression for λn

λn =
h |∇φ(xn)|

p

〈∇2φ(xn).∇φ(xn),∇φ(xn)〉
, (3)

for some coefficient h > 0 and some exponent p > 0. In this case, the convergence rate
of the gradient norm depends on the exponent p, see Theorem 4.3.

In view of practical implementation, we have to consider numerical approximations for
the hessian term in (2). This remark leads us to introduce the following alternative
expression for λn

λn =
h εn |∇φ(xn)|

2

〈∇φ(xn + εn∇φ(xn))−∇φ(xn),∇φ(xn)〉
, (4)

where (εn) is a sequence of positive scalars. It is shown that the above-mentioned result
of linear convergence for (∇φ(xn)) still holds for algorithm (1)–(4), see Theorem 4.4.

Barzilai and Borwein proposed in [3] the following choice for the steplength associated
with the gradient method

λn =
|xn − xn−1|

2

〈∇φ(xn)−∇φ(xn−1), xn − xn−1〉
. (5)

1Let us recall that a sequence (ξn) converges linearly to ξ̄ if there exists q ∈ [0, 1[ such that |ξn+1− ξ̄| ≤
q |ξn − ξ̄| for n large enough.
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This choice was shown to speed up the convergence of the method and to avoid the poor
behavior of the steepest descent algorithm. Raydan [15] proved global convergence for
convex quadratic functions, and Dai-Liao [9] established a result of linear convergence.
We show throughout the paper that expressions like (2) or (4) for the stepsize λn are
strongly related to the Barzilai-Borwein choice (5). Numerical experiments at the end
of the paper allow to compare these algorithms.

Another way of discretizing a continuous system like (SDC) consists in considering the
following implicit scheme

xn+1 = xn − λn∇φ(xn+1), (6)

where the expression of λn is still given by (2). This algorithm falls into the field of
proximal point methods proposed in [12, 13]. Such methods have been intensively stud-
ied during the last decades and there is a significant amount of results concerning this
type of algorithms, ranging from abstract convergence theorems to applications in non-
linear programming (see for example [2, 8, 10, 11, 16, 17]). In the previous algorithm,
the iterate xn+1 is uniquely determined by xn+1 = J∇φ

λn
(xn), where J

∇φ
λ = (I +λ∇φ)−1

is the resolvent of parameter λ of the maximal monotone operator ∇φ. One advantage
of the prox-method (6) versus the gradient one (1) lies in its stability properties. For
the sake of presentation, we will discuss first the asymptotic properties of the proximal
algorithm (6), which is closer to the corresponding continuous dynamical system. The
analysis of the implicit case will then serve as a guideline in the study of the explicit
algorithm.

2. Basic assumptions

Throughout the paper, we assume the following set of hypotheses

(H)

{

The function φ : H → R is of class C2.

There exist x̄ ∈ argminφ, q ≥ 0 and m,M > 0 such that

∀x ∈ H, ∀y ∈ H \ {0}, m |x− x̄|q ≤
〈∇2φ(x).y, y〉

|y|2
≤ M |x− x̄|q . (7)

Assumption (H) implies that the function φ is strictly convex, hence has a unique
minimum. When H = R

n, inequality (7) can be rewritten as:

∀x ∈ R
n, m |x− x̄|q ≤ µ1(∇

2φ(x)) ≤ µn(∇
2φ(x)) ≤ M |x− x̄|q ,

where µ1(∇
2φ(x)) and µn(∇

2φ(x)) denote respectively the smallest and the largest
eigenvalue of the matrix ∇2φ(x).

Remark 2.1. Assumption (H) is rather stringent but it provides a basic situation
where strong convexity does not hold. This last one corresponds here to the limiting
case q = 0. More sophisticated models without strong convexity could be considered
but they are out of the scope of this paper.

Let us now state two fundamental inequalities under assumption (H).
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Lemma 2.2. Let φ : H → R be a function satisfying assumption (H). Then there
exists c > 0 such that for every x, ξ ∈ H,

〈∇φ(x+ ξ)−∇φ(x), ξ〉 ≥ mc |ξ|2 |x− x̄|q (8)

|∇φ(x+ ξ)−∇φ(x)| ≤ M |ξ| (|x− x̄|+ |ξ|)q. (9)

Proof. Observing that

∇φ(x+ ξ)−∇φ(x) =

∫ 1

0

∇2φ(x+ t ξ).ξ dt, (10)

the left inequality of (7) implies that

〈∇φ(x+ ξ)−∇φ(x), ξ〉 ≥ m|ξ|2
∫ 1

0

|x− x̄+ t ξ|q dt. (11)

FromClaim 2.3 below, there exists c > 0 (independent of x, ξ) such that
∫ 1

0
|x− x̄+ t ξ|qdt

≥ c |x− x̄|q. Inequality (8) then follows immediately.

Let us now prove (9). Starting from equality (10), the right inequality of (7) implies
that

|∇φ(x+ ξ)−∇φ(x)| ≤

∫ 1

0

∣
∣∇2φ(x+ t ξ).ξ

∣
∣ dt ≤ M |ξ|

∫ 1

0

|x− x̄+ t ξ|q dt.

Since |x− x̄+ t ξ| ≤ |x− x̄|+ |ξ| for every t ∈ [0, 1], we deduce inequality (9).

Let us now establish the result that we used in the above proof.

Claim 2.3. There exists c > 0 such that for all u, v ∈ H,

∫ 1

0

|tu+ (1− t)v|q dt ≥ c max(|u|q , |v|q). (12)

Proof. If u = v = 0, the above inequality is clearly verified for c = 1. Without loss
of generality, we can then suppose that |u| ≤ |v| and v 6= 0. For all t ∈ [0, 1], we
have |tu+ (1− t)v| ≥ |v| − t(|u|+ |v|). The right member of the previous inequality is

nonnegative if and only if t ≤ |v|
|u|+|v|

. Hence we derive that

∫ 1

0

|tu+ (1− t)v|q dt ≥

∫ |v|
|u|+|v|

0

(|v| − t(|u|+ |v|))q dt

=
1

q + 1

|v|q+1

|u|+ |v|
≥

1

2 (q + 1)
|v|q.

Thus, the announced inequality is obtained with c = 1
2 (q+1)

.
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Remark 2.4. If x = x̄ inequality (8) provides no information. However in this case,
inequality (11) tells us that

〈∇φ(x̄+ ξ), ξ〉 ≥ m|ξ|2
∫ 1

0

|t ξ|q dt =
m

q + 1
|ξ|q+2.

Since 〈∇φ(x̄+ ξ), ξ〉 ≤ |∇φ(x̄+ ξ)| |ξ|, we infer that for every ξ ∈ H,

|∇φ(x̄+ ξ)| ≥
m

q + 1
|ξ|q+1. (13)

3. Proximal point with curvature algorithm

3.1. Algorithm (PPC)

Let φ : H → R be a convex function of class C1 and let us consider the sequence (xn)
defined by the following implicit algorithm

xn+1 = xn − λn∇φ(xn+1), (14)

for some positive sequence (λn). Iteration (14) falls into the category of the proximal
point algorithms. For classical results on the convergence of proximal algorithms, the
reader is referred to [4, 10, 11, 16].

Considering any sequence (xn) generated by algorithm (14), it is immediate to check
that the gradient norm |∇φ(xn)| is decreasing as n → +∞. In the next lemma, we
evaluate its decay rate when the function φ satisfies assumption (H).

Lemma 3.1. Let φ : H → R be a function satisfying assumption (H). Given a se-
quence (λn) of positive scalars, consider any sequence (xn) generated by the proximal
point algorithm (14). For every n ∈ N, we have

|∇φ(xn+1)|
2 − |∇φ(xn)|

2 ≤ −2mcλn |xn − x̄|q |∇φ(xn+1)|
2 , (15)

where c > 0 is the scalar given by Lemma 2.3.

Proof. Let us observe that

|∇φ(xn+1)|
2 − |∇φ(xn)|

2

= 2 〈∇φ(xn+1)−∇φ(xn),∇φ(xn+1)〉 − |∇φ(xn+1)−∇φ(xn)|
2

≤ −
2

λn

〈∇φ(xn+1)−∇φ(xn), xn+1 − xn〉 . (16)

By applying inequality (8) with x = xn and ξ = xn+1 − xn, we find

〈∇φ(xn+1)−∇φ(xn), xn+1 − xn〉 ≥ mc |xn+1 − xn|
2 |xn − x̄|q .

Recalling that |xn+1 − xn| = λn |∇φ(xn+1)|, we deduce inequality (15).
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Given h > 0 and a function φ : H → R satisfying assumption (H), we consider
algorithm (14) with the following steplength

λn =
h |∇φ(xn)|

2

〈∇2φ(xn).∇φ(xn),∇φ(xn)〉
,

while xn 6= x̄. If xn0 = x̄ for some n0 ∈ N, then we set by convention xn = x̄ for every
n ≥ n0. This algorithm will be referred to as the “Proximal Point with Curvature�
algorithm, PPC for short.

Let us establish a result of linear convergence for the sequence (xn) when the function
φ satisfies assumption (H).

Theorem 3.2. Let φ : H → R be a function satisfying assumption (H). Given h > 0,
consider any sequence (xn) defined by algorithm (PPC). Then there exists r ∈ [0, 1[
such that |∇φ(xn+1)| ≤ r |∇φ(xn)| for every n ∈ N.

Proof. From the definition of λn and the right inequality of (7), we have

λn ≥
h

M

1

|xn − x̄|q
.

By using formula (15) of Lemma 3.1, we deduce that for every n ∈ N

|∇φ(xn+1)|
2 − |∇φ(xn)|

2 ≤ −2hc
m

M
|∇φ(xn+1)|

2 .

We conclude that |∇φ(xn+1)| ≤
[
1 + 2hcm

M

]−1/2
|∇φ(xn)| for every n ∈ N.

The main interest of Theorem 3.2 is to give a result of linear convergence for algorithm
(PPC), under no strong convexity condition.

Remark 3.3. Under assumption (H), the above result of linear convergence for the
sequence (∇φ(xn)) immediately implies a corresponding result of linear convergence
for the sequence (|xn − x̄|). Indeed, we infer from inequality (13) that

∀n ∈ N, |xn − x̄|q+1 ≤
q + 1

m
|∇φ(xn)| ≤

q + 1

m
|∇φ(x0)| r

n.

Setting ρ = r
1

q+1 , we conclude that |xn − x̄| = O(ρn) when n → +∞.

3.2. Some variant for the stepsize of algorithm (PPC)

Given a positive parameter h > 0 and an exponent p ∈ R, let us consider the following
expression of the steplength λn

λn =
h |∇φ(xn)|

p

〈∇2φ(xn).∇φ(xn),∇φ(xn)〉
. (17)

Theorem 3.4. Let φ : H → R be a function satisfying assumption (H). Given h > 0
and p ∈ R, consider any sequence (xn) defined by algorithm (14)–(17). Then the
following properties hold:
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(a) If p < 2, the order of convergence of the sequence (∇φ(xn)) toward 0 equals
s = 4−p

2
> 1: there exists r ∈ [0, 1[ such that |∇φ(xn)| = O

(
rs

n
)
when n → +∞.

(b) If p > 2, we have |∇φ(xn)| = O
(

n− 1
p−2

)

when n → +∞.

Proof. By adapting the computations of Theorem 3.2, we immediately obtain that
for every n ∈ N

|∇φ(xn+1)|
2 ≤ |∇φ(xn)|

2
[

1 + 2hc
m

M
|∇φ(xn)|

p−2
]−1

. (18)

The sequence (|∇φ(xn)|)n∈N is clearly nonincreasing and it is immediate to prove that
limn→+∞ |∇φ(xn)| = 0.

(a) Assume that p < 2. Inequality (18) implies |∇φ(xn+1)|
2 ≤ M

2hcm
|∇φ(xn)|

4−p for

every n ∈ N. Setting A =
(

M
2hcm

)1/2
and s = 4−p

2
> 1, we obtain |∇φ(xn+1)| ≤

A |∇φ(xn)|
s for every n ∈ N. We deduce that for all n0, n ∈ N such that n0 ≤ n,

|∇φ(xn)| ≤ A1+s+...+sn−n0−1

|∇φ(xn0)|
sn−n0

≤
[

A
1

s−1 |∇φ(xn0)|
]sn−n0

.

Let us choose n0 ∈ N so that A
1

s−1 |∇φ(xn0)| < 1. The conclusion then follows by

setting r =
[

A
1

s−1 |∇φ(xn0)|
]s−n0

.

(b) Assume that p > 2. Since limn→+∞ |∇φ(xn)|
p−2 = 0, we infer that, for n large

enough

[

1 + 2hc
m

M
|∇φ(xn)|

p−2
]−1

= 1− 2hc
m

M
|∇φ(xn)|

p−2 + o(|∇φ(xn)|
p−2)

≤ 1− hc
m

M
|∇φ(xn)|

p−2 .

In view of inequality (18) we then have

|∇φ(xn+1)|
2 ≤ |∇φ(xn)|

2
(

1− hc
m

M
|∇φ(xn)|

p−2
)

.

Lemma 3.5 below applied to the sequence un = |∇φ(xn)|
2 enables us to derive that

|∇φ(xn)| = O(n− 1
p−2 ) as n → +∞.

Lemma 3.5. Given a > 0 and s > 0, let (un) be a sequence of positive numbers such
that

∀n ∈ N, un+1 ≤ un(1− aus
n). (19)

Then, we have un = O(n− 1
s ) when n → +∞.

For the proof of this result, the reader is referred to the book of Polyak [14, Lemma 6,
Chapter 2].
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Remark 3.6. The results of Theorem 3.4 on the sequence (∇φ(xn)) have immediate
consequences on the rate of convergence of the sequence (xn) itself. When p < 2, we
deduce from Theorem 3.4(a) and inequality (13) that |xn−x̄| = O(ρs

n

) when n → +∞,

with ρ = r
1

(q+1) . When p > 2, we deduce in the same way from Theorem 3.4(b) that

|xn − x̄| = O
(

n− 1
(p−2)(q+1)

)

when n → +∞.

3.3. Numerical approximation of the stepsize of algorithm (PPC)

For numerical purposes, it is fundamental to observe that the Hessian term
∇2φ(xn).∇φ(xn) can be approximated as follows

∇2φ(xn).∇φ(xn) ≈
1

ε
[∇φ(xn + ε∇φ(xn))−∇φ(xn)]

for ε sufficiently small. This remark leads us to consider the following expression for
λn

λn =
h εn |∇φ(xn)|

2

〈∇φ(xn + εn∇φ(xn))−∇φ(xn),∇φ(xn)〉
, (20)

where (εn) is a sequence of positive scalars. By applying inequalities (8)–(9) with
x = xn and ξ = εn∇φ(xn), we find

mc εn |xn − x̄|q ≤
〈∇φ(xn + εn∇φ(xn))−∇φ(xn),∇φ(xn)〉

|∇φ(xn)|2
(21)

≤ M εn (|xn − x̄|+ εn |∇φ(xn)|)
q.

The left inequality shows that algorithm (14)–(20) is well-defined while xn 6= x̄. If
xn0 = x̄ for some n0 ∈ N, then we set by convention xn = x̄ for every n ≥ n0.

On the other hand, by applying inequality (9) with x = x̄ and ξ = xn − x̄, we find
|∇φ(xn)| ≤ M |xn − x̄|q+1. Hence in view of inequalities (21), we infer that

h

M

1

|xn − x̄|q [1 + εnM |xn − x̄|q]q
≤ λn ≤

h

mc

1

|xn − x̄|q
. (22)

We are now able to prove the following result.

Theorem 3.7. Let φ : H → R be a function satisfying assumption (H). Given h > 0
and a sequence (εn) of positive scalars, consider any sequence (xn) defined by algorithm
(14)–(20). Assume moreover that one of the following cases holds:

(i) The sequence (εn) is bounded.

(ii) The sequence (εn) is defined by εn = λn−1 (Barzilai-Borwein choice2).

Then there exists r ∈ [0, 1[ such that |∇φ(xn+1)| ≤ r |∇φ(xn)| for every n ∈ N.

Proof. (i) First of all, it is direct to check that the sequence (|xn−x̄|) is nonincreasing3.
If the sequence (εn) is majorized by some ε̄ > 0, then we derive from the left inequality
2see Remark 3.8 below.
3This is a general feature shared by proximal point methods. Combined with the Opial lemma, this
property is a key ingredient to prove the weak convergence of the proximal algorithm.
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of (22) that

λn ≥
h

MC

1

|xn − x̄|q
,

where C = [1 + ε̄M |x0 − x̄|q]q. By using formula (15) of Lemma 3.1, we deduce that
for every n ∈ N

|∇φ(xn+1)|
2 − |∇φ(xn)|

2 ≤ −2h
mc

MC
|∇φ(xn+1)|

2 ,

and consequently |∇φ(xn+1)| ≤ |∇φ(xn)|
[
1 + 2h mc

MC

]−1/2
.

(ii) In view of the right inequality of (22), we have

εn = λn−1 ≤
h

mc

1

|xn−1 − x̄|q
≤

h

mc

1

|xn − x̄|q
.

Hence the left inequality of (22) gives in turn

λn ≥
h

MC ′

1

|xn − x̄|q
,

where C ′ =
[
1 + hM

mc

]q
. Then, it suffices to conclude as in the proof of (i) with C ′ in

place of C.

Remark 3.8. Let us now comment on the particular choice corresponding to εn =
λn−1 for every n ≥ 1. From the definition of algorithm (14), we have xn+λn−1∇φ(xn) =
xn−1, so that expression (20) of λn becomes

λn =
h |xn − xn−1|

2

〈∇φ(xn)−∇φ(xn−1), xn − xn−1〉
. (23)

It is remarkable that such a choice of εn leads exactly to the Barzilai-Borwein steplength.

In the sequel, we consider an alternative expression for the steplength λn, based on a
different approximation of the Hessian term. It is elementary to check that

〈∇2φ(xn).∇φ(xn),∇φ(xn)〉 ≈ [φ(xn + ε∇φ(xn)) + φ(xn − ε∇φ(xn))− 2φ(xn)]/ε
2

for ε sufficiently small. This remark leads us to consider the following expression for
λn

λn =
h ε2n |∇φ(xn)|

2

φ(xn + εn∇φ(xn)) + φ(xn − εn∇φ(xn))− 2φ(xn)
, (24)

where (εn) is a sequence of positive scalars. A suitable use of the second-order Taylor
formula with integral remainder shows that

φ(xn + εn∇φ(xn)) + φ(xn − εn∇φ(xn))− 2φ(xn)

= ε2n

∫ 1

−1

(1− |t|) 〈∇2φ(xn + t εn∇φ(xn)).∇φ(xn),∇φ(xn)〉 dt.
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From inequalities (7), we derive that

mε2n

∫ 1

−1

(1− |t|) |xn − x̄+ t εn∇φ(xn)|
q dt

≤
φ(xn + εn∇φ(xn)) + φ(xn − εn∇φ(xn))− 2φ(xn)

|∇φ(xn)|2

≤ Mε2n

∫ 1

−1

(1− |t|) |xn − x̄+ t εn∇φ(xn)|
q dt. (25)

If the numerator of the middle term equals 0, then the left integral is also equal to 0.
Since its integrand is a nonnegative continuous function, it is equal to 0 everywhere on
[−1, 1]. In particular, for t = 0 we find xn = x̄. This shows that algorithm (14)–(24)
is well-defined while xn 6= x̄. If xn0 = x̄ for some n0 ∈ N, then we set by convention
xn = x̄ for every n ≥ n0.

We are going to show that under suitable conditions, any sequence defined by algorithm
(14)–(24) satisfies the same property of linear convergence as algorithm (PPC).

Theorem 3.9. Let φ : H → R be a function satisfying assumption (H). Given h > 0
and a bounded sequence (εn) of positive scalars, consider any sequence (xn) defined by
algorithm (14)–(24). Then there exists r ∈ [0, 1[ such that |∇φ(xn+1)| ≤ r |∇φ(xn)| for
every n ∈ N.

Proof. Recalling that |∇φ(xn)| ≤ M |xn − x̄|q+1, we find for every t ∈ [0, 1],

|xn − x̄+ t εn∇φ(xn)| ≤ |xn − x̄|+ εn |∇φ(xn)|

= |xn − x̄| [1 + εnM |xn − x̄|q] .

In view of the right inequality of (25) and the expression of λn, we deduce that

λn ≥
h

M

1

|xn − x̄|q [1 + εnM |xn − x̄|q]q
.

It suffices then to use the same arguments as in the proof of Theorem 3.7(i).

4. Gradient with curvature method

4.1. Algorithm (GCM)

Given a differentiable function φ : H → R, a standard minimization technique consists
in considering the following gradient algorithm with variable stepsize

xn+1 = xn − λn∇φ(xn). (26)

The purpose of the next lemma is to give a first upper bound for the ratio
|∇φ(xn+1)|/|∇φ(xn)| when the function φ satisfies assumption (H). It plays the same
role as Lemma 3.1 of Section 3.
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Lemma 4.1. Let φ : H → R be a function satisfying assumption (H). Given a se-
quence (λn) of positive scalars, consider any sequence (xn) generated by the gradient
algorithm (26). For every n ∈ N, we have

|∇φ(xn+1)|
2

≤ |∇φ(xn)|
2
[

1− 2mcλn |xn − x̄|q +M2 λ2
n |xn − x̄|2q [1 +Mλn |xn − x̄|q]2q

]

,
(27)

where c > 0 is the scalar given by Lemma 2.3.

Proof. Let us evaluate the difference |∇φ(xn+1)|
2 − |∇φ(xn)|

2:

|∇φ(xn+1)|
2 − |∇φ(xn)|

2

= 2 〈∇φ(xn+1)−∇φ(xn),∇φ(xn)〉+ |∇φ(xn+1)−∇φ(xn)|
2

= −
2

λn

〈∇φ(xn+1)−∇φ(xn), xn+1 − xn〉+ |∇φ(xn+1)−∇φ(xn)|
2 . (28)

By arguing as in the proof of Lemma 3.1, we find

〈∇φ(xn+1)−∇φ(xn), xn+1 − xn〉 ≥ mcλ2
n |∇φ(xn)|

2 |xn − x̄|q . (29)

By applying inequality (9) with x = xn and ξ = xn+1 − xn, we find

|∇φ(xn+1)−∇φ(xn)| ≤ M λn |∇φ(xn)| (|xn − x̄|+ λn |∇φ(xn)|)
q.

Recalling that |∇φ(xn)| ≤ M |xn − x̄|q+1, we derive that

|∇φ(xn+1)−∇φ(xn)| ≤ M λn |∇φ(xn)| |xn − x̄|q [1 +Mλn |xn − x̄|q]q . (30)

Coming back to formula (28), we infer from inequalities (29) and (30) that

|∇φ(xn+1)|
2 − |∇φ(xn)|

2

≤ − 2mcλn |∇φ(xn)|
2 |xn − x̄|q +M2 λ2

n |∇φ(xn)|
2 |xn − x̄|2q [1 +Mλn |xn − x̄|q]2q ,

and the conclusion immediately follows.

Given h > 0 and a function φ : H → R satisfying assumption (H), we consider
algorithm (26) with the following steplength

λn =
h |∇φ(xn)|

2

〈∇2φ(xn).∇φ(xn),∇φ(xn)〉
,

while xn 6= x̄. If xn0 = x̄ for some n0 ∈ N, then we set by convention xn = x̄ for every
n ≥ n0. This algorithm will be referred to as the “Gradient with Curvature Method�
algorithm, GCM for short.

Theorem 4.2. Let φ : H → R be a function satisfying assumption (H). Then for
h > 0 sufficiently small, there exists r ∈ [0, 1[ such that any sequence (xn) defined by
algorithm (GCM) satisfies |∇φ(xn+1)| ≤ r |∇φ(xn)| for every n ∈ N.
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Proof. By definition of λn, we immediately have in view of inequalities (7):

∀n ∈ N,
h

M

1

|xn − x̄|q
≤ λn ≤

h

m

1

|xn − x̄|q
.

Taking into account (27), we obtain for every n ∈ N

|∇φ(xn+1)|
2 ≤ |∇φ(xn)|

2







1− 2h c

m

M
+ h2M

2

m2

(

1 + h
M

m

)2q

︸ ︷︷ ︸

θ(h)







.

It is clear that the above quantity θ(h) is negligible with respect to h when h → 0.
Hence there exists h0 > 0 such that for every h ∈]0, h0[ and for every n ∈ N

|∇φ(xn+1)|
2 ≤ |∇φ(xn)|

2
[

1− h c
m

M

]

,

and the conclusion is satisfied with r := (1− h c m
M
)1/2.

4.2. Some variant for the stepsize of algorithm (GCM)

Given a positive parameter h > 0 and a positive exponent p > 0, let us consider the
following expression of the steplength λn

λn =
h |∇φ(xn)|

p

〈∇2φ(xn).∇φ(xn),∇φ(xn)〉
. (31)

Before treating the general case, let us consider the particular case corresponding to
the function φ : R → R defined by φ(x) = |x|a, for some a ≥ 2. In this case, algorithm
(26)–(31) reads as

xn+1 = xn − h
|φ′(xn)|

p−2

φ′′(xn)
φ′(xn)

= xn

(

1− h
ap−2

a− 1
|xn|

(a−1)(p−2)

)

.

If x0 = 0, algorithm (26)–(31) definitively stops. Let us now assume that x0 6= 0.
Setting θ = h ap−2

a−1
|x0|

(a−1)(p−2), we let the reader check that if p ≥ 2 the following
properties hold

• If θ < 2 then |xn| ց 0 as n → +∞.

• If θ = 2 then xn = (−1)n x0.

• If θ > 2 then |xn| ր +∞ as n → +∞.

On the other hand, when p < 2, algorithm (26)–(31) is always divergent.

Coming back to the general case, the next proposition gives an estimate for the con-
vergence rate of the gradient norm in the case p > 2.



B. Baji, A. Cabot / On Some Curvature-Dependent Steplength for the ... 777

Theorem 4.3. Let φ : H → R be a function satisfying assumption (H). Given p > 2,
there exists h0 > 0 such that for every h ∈]0, h0[ , any sequence (xn) defined by algorithm

(26)–(31) satisfies |∇φ(xn)| = O(n− 1
p−2 ) when n → +∞.

Proof. By definition of λn, we immediately have in view of inequalities (7):

∀n ∈ N,
h |∇φ(xn)|

p−2

M |xn − x̄|q
≤ λn ≤

h |∇φ(xn)|
p−2

m |xn − x̄|q
. (32)

Taking into account (27), we obtain for every n ∈ N

|∇φ(xn+1)|
2

≤ |∇φ(xn)|
2







1−2h c

m

M
|∇φ(xn)|

p−2+h2M
2

m2
|∇φ(xn)|

2(p−2)

(

1+h
M

m
|∇φ(xn)|

p−2

)2q

︸ ︷︷ ︸

θ(h)







.

It is clear that the above quantity θ(h) is negligible with respect to h when h → 0.
Hence there exists h0 > 0 such that for every h ∈]0, h0[ and for every n ∈ N

|∇φ(xn+1)|
2 ≤ |∇φ(xn)|

2
[

1− h c
m

M
|∇φ(xn)|

p−2
]

.

It suffices now to apply Lemma 3.5 to the sequence un = |∇φ(xn)|
2 with a = h c m

M

and s = p−2
2
.

4.3. Numerical approximation of the stepsize of algorithm (GCM)

Guided by numerical purposes, we consider as in Section 3 the following alternative
expression for λn

λn =
h εn |∇φ(xn)|

2

〈∇φ(xn + εn∇φ(xn))−∇φ(xn),∇φ(xn)〉
, (33)

where (εn) is a sequence of positive scalars.

Theorem 4.4. Let φ : H → R be a function satisfying assumption (H). Let (εn) be
a bounded sequence of positive scalars. Then for h > 0 sufficiently small, there exists
r ∈ [0, 1[ such that any bounded sequence (xn) defined by algorithm (26)–(33) satisfies
|∇φ(xn+1)| ≤ r |∇φ(xn)| for every n ∈ N.

Proof. Let us first recall that the stepsize λn satisfies the double inequality (22). Since
the sequences (εn) and (xn) are supposed to be bounded, there exists C > 0 such that
[1 + εnM |xn − x̄|q]q ≤ C for every n ∈ N. Hence we infer from (22) that

h

MC

1

|xn − x̄|q
≤ λn ≤

h

mc

1

|xn − x̄|q
.
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Figure 4.1: Convergence history for (|xn − xmin|) during the minimization of the Beale
function with algorithms (A), (B) and (C). Left: comparison of algorithms (A) (solid
line) and (C) (dashed line). Right: comparison of algorithms (A) (solid line) and (B)
(dashed line). Initial point: x0 = (−4,−5), parameters: h = 1, λ = 10−5, ε = 10−6.

By using formula (27) of Lemma 4.1, we obtain for every n ∈ N

|∇φ(xn+1)|
2 ≤ |∇φ(xn)|

2







1− 2h

mc

MC
+ h2 M2

m2c2

(

1 + h
M

mc

)2q

︸ ︷︷ ︸

θ(h)







.

It is clear that the above quantity θ(h) is negligible with respect to h when h → 0.
Hence there exists h0 > 0 such that for every h ∈]0, h0[ and for every n ∈ N

|∇φ(xn+1)|
2 ≤ |∇φ(xn)|

2
[

1− h
mc

MC

]

,

and the conclusion is satisfied with r := (1− h mc
MC

)1/2.

4.4. Numerical Experiments

In this paragraph, we are going to test the (GCM) algorithm and to compare it with
two other gradient methods, respectively with fixed stepsize and with Barzilai-Borwein
stepsize. The approximation of the Hessian term by a finite difference scheme leads
us to consider the expression of λn given by (33). In the sequel, we implement the
following algorithm:

(A) xn+1 = xn −
h ε |∇φ(xn)|

2

|〈∇φ(xn + ε∇φ(xn))−∇φ(xn),∇φ(xn)〉|
∇φ(xn),

with h > 0 and ε > 0. The absolute value at the denominator permits to deal with
objective functions that are either locally convex or concave. Algorithm (A) will be
compared to the Barzilai-Borwein gradient method4

(B) xn+1 = xn −
h |xn − xn−1|

2

|〈∇φ(xn)−∇φ(xn−1), xn − xn−1〉|
∇φ(xn),

4In the original Barzilai-Borwein method, the parameter h equals 1 and there is no absolute value.
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Figure 4.2: Convergence history for (|xn−xmin|) during the minimization of the Shekel
function with algorithms (A), (B) and (C). Left: comparison of algorithms (A) (solid
line) and (C) (dashed line). Right: comparison of algorithms (A) (solid line) and (B)
(dashed line). Initial point: x0 = (5, 0, 5, 0), parameters: h = λ = 0.1, ε = 10−5.

and also to the basic gradient method with fixed stepsize λ > 0

(C) xn+1 = xn − λ∇φ(xn).

We use two objective functions that are well-known in optimization theory: the Beale
function and the Shekel function.

Example 4.5. Let us start with the Beale function

φ(x1, x2) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2.

This function admits a unique global minimum point xmin = (3, 0.5) on the subset
[−5, 5] × [−5, 5] and its minimum value is φ(xmin) = 0. It is very rough and steep
specially at the point (−5,−5), leading algorithm (C) to fail. If one chooses a small
stepsize λ << 1, the discrete trajectories (xn) generated by (C) are described very
slowly and they do not converge toward xmin because the function is very flat in a
neighbourhood of this point. On the other hand, the choice of a large stepsize in (C)
gives sequences that are very unstable and strongly oscillating. On the contrary, any
sequence (xn) generated by algorithms (A) or (B) converges to xmin very fast (see
Figure 4.1).

Example 4.6. We now consider the Shekel function

φ(x) = −
5∑

i=1

1/(|x− di|
2 + ci),

where x ∈ [0, 10]4. The coefficients (ci) and (di) are respectively given by:

(c1, c2, c3, c4, c5) = (0.1, 0.2, 0.2, 0.4, 0.4),

d1 = (4, 4, 4, 4), d2 = (1, 1, 1, 1), d3 = (8, 8, 8, 8), d4 = (6, 6, 6, 6), d5 = (3, 7, 3, 7).

The Shekel function has four local minima and one global minimum xmin = (4, 4, 4, 4).
This function is very flat except in neighbourhoods of the points d1, d2, d3, d4 and d5
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where it is very steep. Figure 4.2 shows the evolution of the sequence (|xn − xmin|) for
each gradient method (A), (B), and (C). As in the previous example, iterates of (C)
do not converge while those of (A) and (B) converge very fast. Notice that in the above
two examples, the speeds of convergence of algorithms (A) and (B) are very similar.
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[10] O. Güler: On the convergence of the proximal point algorithm for convex minimization,
SIAM J. Control Optimization 29 (1991) 403–419.

[11] B. Lemaire: About the convergence of the proximal method, in: Advances in Optimiza-
tion (Lambrecht, 1991), W. Oettli, D. Pallaschke (eds.), Lect. Notes Econ. Math. Syst.
382, Springer, Berlin (1992) 39–51.

[12] B. Martinet: Régularisation d’inéquations variationnelles par approximations succes-
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