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This paper reviews some properties of the set of vectors with autocorrelated components. This set
appears in some signal processing problems, in particular filter synthesis or statistical estimation.
It turns out to be a closed convex cone enjoying several representations and various geometrical
properties. The aim of this paper is to gather different aspects of the geometry of this cone. We adopt
a convex analysis point of view to present known and new results.

Keywords: Convex analysis, autocorrelation, nonnegative trigonometric polynomials

1. Introduction

In the first theoretical papers [27, 28] about moment problems, and later in the
applications-oriented papers [1, 6, 10, 13, 16, 24, 31], some authors introduced the
notion of nonnegative trigonometric polynomials, which are special rational functions
defined on the unit circle of the complex plane. For one-dimensional real signals, it
reduces simply to finite autocorrelation sequences also called sometimes positive real
sequences [8, 15, 36]. At the same time, a similar theory for nonnegative polynomials
(polynomials defined on R, or in the multivariate case, on Rn) was developed; as a re-
sult, some useful applications in global optimization for polynomial functions appeared
in the last decade [29, 33]. The study of the multivariate case in trigonometric context
is more recent [12, 14, 25, 30, 34] and also promises worthwhile applications to signal
processing.

Let us start with a simple example from signal processing where autocorrelation ap-
pears: for instance, assume we want to design a lowpass filter, which has the following
frequency response

H(ω) =
n∑

k=0

hke
ikω

where ω ∈ [0, π]; we want to minimize the stopband energy of the filter as in [14, p. 138]

Es =
1

π

∫ π

ωs

|H(ω)|2 dω
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where [ωs, π] is the stopband. We have also the two affine constraints

|H(ω)− 1| 6 γp, ∀ω ∈ [0, ωp],

|H(ω)| 6 γs, ∀ω ∈ [ωs, π],

where [0, ωp] is the passband and γs, γp are error bounds. This kind of constraint is
called “spectral mask constraint� [16] in signal processing. With a linear transforma-
tion based on Tchebycheff Polynomials [1], one could consider that in the two previous
constraints ω lies in [0, π]. But, due to the nature of both the constraints and the crite-
rion, the problem still remains nonlinear and nonconvex with respect to the coefficients
h0, · · · , hk. To solve this problem, one could consider the variables xk where

X(ω) = x0 + 2
n∑

k=0

xk cos kω = |H(ω)|2,

for which both the constraints and the objective become linear. The last problem
which we are facing is now that the vector x does not belong to the entire space Rn+1,
but to a subset Cn+1 which is a convex cone of Rn+1. We will study thoroughly that
cone in the sequel, giving a review about some of its properties. Numerical results will
not be presented here; concerning that, the reader could worthly have a look at [1, 24],
but also at the 3rd chapter of [17], which is more detailed and didactic.

The outline of the paper is the following: Section 2 is devoted to recall the several
definitions of the cone Cn+1; the next section details geometric properties of the cone;
most of this part is new: we give an inner and an outer approximation of a compact
base of the cone, we describe the normal directions of the two facets of Cn+1, and prove
the acuteness of the cone. The last part concerns mainly questions related to polarity.

2. Definitions and basic properties

Before starting, we make some notations precise, which will be of a constant use in the
sequel.

2.1. Correlations

For finite discrete signals there are two definitions for the correlation: if we consider
signals as elements of the group (Z,+) or elements of (Z/nZ,+); in the first case, we
will define acyclic correlation, whereas in the second case we will use cyclic or circular
correlation.

Assume we want to compute the correlation function of two signals of (Z,+) but
with supports included in {0, · · · , n}; hence, the correlation function has also a finite
support, which is exactly {0, · · · , n} and it is possible to view the acyclic correlation
as a bilinear function from Rn+1 × Rn+1 to Rn+1.

Definition 2.1 (Acyclic correlation). Let x, y ∈ Rn+1; the acyclic correlation of x
and y, corra(x, y), is the vector of Rn+1 with components

corra(x, y)k =
n−k∑

i=0

xiyi+k for k ∈ {0, · · · , n}.
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We deduce directly that corra(·, ·) is bilinear, nonsymmetric, and corra(x, y)0 = 〈x, y〉
(usual scalar product of x and y).

The circular correlation of two vectors of Rn+1 corresponds to (n+1)-periodic signals,
and presents several interesting properties in common with the continuous case.

Definition 2.2 (Circular correlation). Let x, y ∈ Rn+1; the cyclic (or circular) cor-
relation of x and y, denoted corrc(x, y), is the vector of Rn+1 with components

corrc(x, y)k =
n∑

i=0

xiy{(i+k) mod (n+1)} for k ∈ {0, · · · , n},

where a mod b is the remainder of the Euclidean division of a by b.

2.2. Autocorrelated components

There are multiple ways to define the cone of vectors with autocorrelated components.
Our first definition is simply based on the acyclic correlation.

Definition 2.3. In the Euclidean space Rn+1, we define Cn+1 as

Cn+1 = {corra(y, y) | y ∈ Rn+1}.

Using this definition, it is possible like [1] to reformulate it in a more geometrical point
of view; let

A : Mn+1(R) → Rn+1

Q 7→



〈〈A(0), Q〉〉

...
〈〈A(n), Q〉〉


 ,

with 〈〈A,B〉〉 = Tr(A⊤B) stands here for the Frobenius scalar product, and the A(k)

matrices are defined as symmetric parts of right-shift operators, i.e.

A(k) =
1

2




0 · · · 0 1 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0
. . . . . . . . . . . . . . . 0

1
. . . . . . . . . . . . . . . 1

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . .

...
0 · · · 0 1 0 · · · 0




,

where only the upper and lower kth sub-diagonals are nonzero. The study of eigenvalues
and eigenvectors for these matrices can be found in [18]. Using the linear operator A,

Cn+1 = A({yy⊤ | y ∈ Rn+1}),

i.e. Cn+1 is the image by A of dyadic matrices (positive semidefinite matrices of rank
6 1). One notes that we obtain a construction of Cn+1 as an image of a certain subset of
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the Euclidean space; we therefore point out this definition as a definition by generators.
With this formulation, it appears that Cn+1 is a cone, due to the bilinear term yy⊤ in
the previous formulation.

Along this definition, we can also give another definition for this cone using the non-
negativity of a certain trigonometric polynomial. As this stage, we firstly consider the
two definitions as defining two differents subsets of Rn+1, and we prove later they are
equivalent.

2.3. Nonnegative trigonometric polynomials

As mentioned in the previous papers [27, 28], there is a deep relation between mo-
ment problems and nonnegativity of polynomials. Moments are a mean to parametrize
measures, which can appear when studying polar subsets of nonnegative polynomials,
particularly in the multivariate case [29, 30]. To emphasis this relation in our particular
case, let us define the set of even trigonometric nonnegative polynomials.

Definition 2.4. The set of coefficients of even nonnegative polynomials on the com-
plex unit circle T = {z ∈ C ||z| = 1} is denoted

P+
n+1(T) =

{
x ∈ Rn+1

∣∣∣
n∑

k=−n

x|k|z
k

> 0 , ∀z ∈ T

}
.

Taking z = eiω we can also define P+
n+1(T) as

P+
n+1(T) =

{
x ∈ Rn+1

∣∣∣ x0 + 2
n∑

k=1

xk cos kω > 0 , ∀ω ∈ [0, π]

}
.

Introducing the notation

v(ω) = (1, 2 cosω, · · · , 2 cosnω), (1)

we derive the following description

P+
n+1(T) = {x ∈ Rn+1 | 〈x, v(ω)〉 > 0 , ∀ω ∈ [0, π]} =

⋂

ω∈[0,π]

H+
v(ω)

where H+
a = {x ∈ Rn+1 | 〈x, a〉 > 0} is the positive half-space delimited by the hyper-

plane ker a⊤.

As a direct consequence, we observe that P+
n+1(T) is a convex closed subset of Rn+1,

as an intersection of convex closed elementary sets, whence P+
n+1(T) is characterized

by a set of constraints that each element must verify. We therefore designate this
formulation in the sequel, as a “formulation by constraints�.

2.4. Equivalence of the two definitions

The two subsets Cn+1 and P+
n+1(T) seem to be a priori very different. But, it turns out

that they define the same subset of Rn+1.
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Proposition 2.5. The Definitions 2.3 and 2.4 describe the same closed convex subset
of Rn+1, in other words:

Cn+1 = P+
n+1(T).

The reader could view the proof in [3, p. 212]; roughly speaking, it suffices to expand
the modulus of a polynomial of the form Y =

∑n

l=0 yle
ilω, rewrite it as a single sum

and then apply the following Riesz-Fejer theorem.

Theorem 2.6 (Riesz-Fjer). An even trigonometric polynomial,

X(ω) = X0 + 2
n∑

k=1

xk cos kω,

with r0, · · · , rn real numbers, admits the following factorization

∣∣∣∣∣

n∑

l=0

yle
ilω

∣∣∣∣∣

2

where y0, · · · , yn are real numbers if, and only if, X(ω) > 0 for all ω ∈ [−π, π] (or,
equivalently, for all ω ∈ [0, π]).

For a proof of this theorem, see [28, p. 60] or more didactic [3, p. 213]. In the sequel,
we therefore keep only the first notation Cn+1 following [1].

2.5. First properties

The equivalence between the two definitions transports all the good properties of the
second definition to the first one. The convexity of that cone and other properties of
the following proposition were first proved by Krein as presented in [28]; we recall here
due to their simplicity.

Proposition 2.7. Cn+1 is a pointed closed convex cone with nonempty interior. Con-
sequently, we can define a partial order on Rn+1 denoted by �Cn+1

:

x �Cn+1
y if and only if y − x ∈ Cn+1.

Proof. • Cn+1 is a cone due to the bilinear term yy⊤ in the first definition.

• If we look at the Definition 2.4, we have

Cn+1 =
⋂

ω∈[0,π]

H+
v(ω),

and it is clear that Cn+1 is the intersection of an infinite family of closed convex sets
(the half-spaces H+

v(ω)). Therefore, Cn+1 is convex and closed.

• Cn+1 has a nonempty interior, since e0 = (1, 0, · · · , 0) verifies strictly the linear
constraints from Definition 2.4, and so there exists an open ball centered at e0 and
strictly included in Cn+1.
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Cn+1 is pointed, i.e. Cn+1 ∩ (−Cn+1) = {0}. Indeed, let x ∈ Cn+1 ∩ (−Cn+1); then there
exists y ∈ Rn+1 such that x0 = ‖y‖2, but −x ∈ Cn+1, so it exists also w ∈ Rn+1 such
that −x0 = ‖w‖2. Consequently x0 = 0 and x = 0.

Here, we present the convexity along the three other properties to show that the frame-
work of conic programming[3, p. 45] is well-suited for Cn+1.

2.6. Rank Relaxation and Trace Parametrization

In the first definition, we saw that Cn+1 is the image of dyadic matrices by the linear
mapping A. What happens if we relax the rank constraint (rank 6 1) and consider
the whole set of semi-definite matrices? We obtain surprisingly the same subset, and
this formulation is called the trace parametrization by some authors [13].

Proposition 2.8. Relaxing the rank constraint in Definition 2.3, we obtain the same
subset of Rn+1; therefore

Cn+1 = A(S+
n+1(R)). (2)

Proof. We include here, for completeness, a slighty modified version of the proof
presented in [1]. Since a dyadic matrix yy⊤ is trivially semidefinite positive, we have

Cn+1 ⊂ A(S+
n+1(R));

but the other inclusion is also true: indeed, if x = A(Y ) with Y � 0. Let us look at

zω = (1, eiω, · · · , einω) ∈ Cn+1 ; (3)

if we compute

〈Y zω, z
∗
ω〉 =

∑

06k,l6n

ykle
i(k−l)ω =

n∑

p=−n

(
∑

k−l=p

ykl

)
eipω,

we observe that the term between parentheses is just

A(Y )|p| =
∑

l−k=p

ykl,

and using the fact that Y is symmetric and semi-definite, we deduce

〈Y zω, z
∗
ω〉 = A(Y )0 + 2

n∑

p=0

A(Y )p cos pω > 0.

In the multivariate case, which is more complex (see [14, 30, 29]), the three previous
sets are distinct, and we have therefore strict inclusions

{corr(y, y) | y ∈ Rn+1} ( A(S+
n+1(R)) ( P+

n+1(T).

The first set corresponds to “squares� or autocorrelated tensors; it is no more a convex
set, but in fact a real algebraic manifold. The second set corresponds to “Sums of
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Squares� trigonometric polynomials with bounded degree (the degree in this case is
exactly the dimension of the space); due to its formulation, it is a convex set, which can
be represented by a Linear Matrix Inequality, only practically useful in low dimension.
The third set, which is convex, consists in even nonnegative trigonometric polynomials
and can be approached using Sums-of-Squares relaxations.

3. Geometry of Cn+1

3.1. A compact base for Cn+1

Since Cn+1 is pointed (cf. Proposition 2.7), we can find an affine subspace of Rn+1 such
that its intersection with Cn+1 reduces to a compact set. The convex conical hull of
such a compact set is Cn+1 and we therefore refer to it as a compact base of Cn+1. In
our work, we have chosen the affine subspace {x ∈ Rn+1 |x0 = 1} which can be viewed
as an image of the unit sphere Sn of Rn+1 under a quadratic mapping.

Lemma 3.1. Let Θ be the mapping defined by

Θ :

{
Rn+1 → Cn+1

x 7→ A(xx⊤);

then the set Un := Θ(Sn) is a compact base for Cn+1.

Proof. The Θ mapping is quadratic, homogeneous of degre 2, i.e. for all y ∈ Rn+1 and
t ∈ R, Θ(ty) = t2Θ(y). Let x ∈ Cn+1, there exists y ∈ Rn+1 such that x = Θ(y), and
then x0 = Θ(y)0 = ‖y‖2. If x0 = 0, then y = 0 and so x = 0; hence x can be written
as 0 · z where z is any vector of Un. Otherwise

y = ‖y‖ · ỹ with ỹ =
y

‖y‖
∈ Sn,

and x = ‖y‖2 ·Θ(ỹ) = x0 · u, where u = Θ(ỹ) ∈ Un.

Using the definition of Un, it yields that for all x ∈ Un, x0 = ||s||2 = 1, and so Un is
entirely contained in {x ∈ Rn+1 |x0 = 1}, and it can be considered as compact set of
Rn; in the sequel, Un will be considered as a subset of Rn, or as a “flat� subset in Rn+1,
depending on the context.

To get a better intuition about Un, we propose a polyhedral approximation of it. For
example, if we want to find the smallest parallelepiped Pα,β =

∏n

i=1[αi, βi] containing
Un, we have to calculate for each component i in {1, · · · , n}

max
x∈Sn

Θi(x) and min
x∈Sn

Θi(x).

But,
max
x∈Sn

Θi(x) = max
x∈Sn

〈〈A(i), xx⊤〉〉 = max
x∈Sn

〈A(i)x, x〉 = λmax(A
(i)),

the last inequality coming from the Rayleigh-Courant variational formulations for
eigenvalues. We have a similar formulation mutatis mutandis for the minimum. To
find the optimal Pα,β, it suffices to know the largest and the smallest eigenvalues of



388 M. Fuentes / Properties of the Convex Cone of Vectors with Autocorrelated ...

each A(i). The eigenvalues of A(i) matrices are known with analytical formulae from
[18, 20]. In the first reference, the associated eigenvectors are also given but in a form
which is not very intuitive; Here, we give a more concise expression. Let denote by T p

the orthogonal matrix of the Discrete Sinus Transform

T p
kl =

√
2

p+ 1
sin

(
klπ

p+ 1

)
for k, l = 1, · · · , p,

and cp the vectors with components

cpk = cos

(
kπ

p+ 1

)
for k = 1, · · · , p;

then

A(i) = VDiag

([
cp ⊗ Im1

cp+1 ⊗ Im2

])
V ⊤, (4)

where p,m1,m2 are defined from n+ 1 and i by

p =

⌊
n+ 1

i

⌋
, m1 = (p+ 1)i− (n+ 1) and m2 = (n+ 1)− ip, (5)

in such a manner that
n+ 1 = pm1 + (p+ 1)m2.

The diagonalizing matrix V is an orthogonal block matrix

V =


 T p ⊗

[
0m2,m1

Im1

]
T p+1
1:p,1:p+1 ⊗

[
Im2

0m1,m2

]

0m2,pm1
T p+1
p+1,1:p+1 ⊗ Im2


 , (6)

where ⊗ stands for the Kronecker product, and the : is the extraction operator defined
as in [19]; for instance, T p+1

1:p,1:p+1 corresponds to the submatrix with the first p lines and
first p + 1 columns extracted from the matrix T p+1. The expressions (4) and (6) may
seem a little bit complicated, but one has to remember that we want to “diagonalize�
the acyclic correlation: each A(i) is needed to compute the ith component. Acyclic
correlation is well defined for signals with support on the infinite group (Z,+), but here
we are doing computations on a finite space which is better represented by the (Z/(n+
1)Z,+) group. Therefore, one could view this diagonalization as an intermediate and
more intricate case between two simpler cases: the first one is the diagonalization of
circulant matrices by the Fourier matrix (cf. [19, p. 202]) for finite signals; the second
one is the diagonalization of Laurent matrices by means of Fourier series for signals
with infinite support (cf. [7]). We can therefore use this information to obtain an inner
and an outer approximation of Un.

• The outer approximation is given by

On =
n∏

i=1

[
λmin(A

(i)), λmax(A
(i))
]
.
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But, as showed in [18], the spectrum of A(i) is symmetric with respect to the origin so
λmin(A

(i)) = −λmax(A
(i)), and for

⌊
n+ 1

2

⌋
+ 1 6 i 6 n, we have λmax(A

(i)) = 1/2.

Letting N =
⌊
n+1
2

⌋
, the outer approximation reduces to

On =
N∏

i=1

[
− cos

(
π

⌊n+1
i
⌋+ 2− [i | (n+ 1)]

)
,

cos

(
π

⌊n+1
i
⌋+ 2− [i | (n+ 1)]

)][
−
1

2
,
1

2

]N
,

where [P (x)] stands for the Iverson symbol used in Computer Science[22] for a predicate
P depending on a variable x. For instance, here we have

[i | (n+ 1)] =

{
1 if i divides n+ 1

0 otherwise.

• We obtain the inner approximation by means of eigenvectors: we select an eigenvector
associated with the largest eigenvalue: if i is not a divisor of n+ 1, we take

vi =

[
T p+1
1:p,1 ⊗ ei0

T p+1
p+1,1 ⊗ em2

0

]
,

with ei0 = (1, 0, · · · , 0) ∈ Ri and p, m1 and m2 being defined as previously; when i
divides n+ 1, vi is simply

vi = T p
1:p,1 ⊗ ei0.

Let us compute the values of the Θ application on the vectors vi.

Proposition 3.2. Let µp be the vector of Rp with components

µp
t =

1

2


(p+ 1− t) cos

(
tπ

p+ 1

)
+

sin
(

tπ
p+1

)

tan
(

π
p+1

)


 for t = 1, · · · , p; (7)

then the extreme point of Un with the maximal ith component is

γi = Θ(vi) =





µp ⊗ ei0 if i divides n+ 1,[
µp+1
1:p ⊗ ei0

µp+1
p+1 ⊗ em2

0

]
otherwise.

Proof. To alleviate the notations, we do not write the normalizing factor
√

2
p+2

in the

sequel. Noting firstly in the case where i does not divide n+ 1

vi =

p+1∑

t=1

sin

(
tπ

p+ 2

)
en+1
i(t−1),
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where en+1
p is the (p+ 1)th vector of the canonical basis of Rn+1, then

Θ(vi)j =

n−j∑

k=0

vikv
i
k−j =

n−j∑

k=0

p+1∑

t,s=1

sin

(
tπ

p+ 2

)
sin

(
sπ

p+ 2

)
[k = i(t− 1)][k+ j = i(s− 1)].

We used again the Iverson symbol here to make these computations easier. Thus,
[k = i(t − 1)][k + j = i(s − 1)] equals 1 if and only if j is a multiple of i (eliminating
k in the previous expression yields j = i(s − t)); letting u = s − t, we obtain a single
sum parametrized by t

Θ(vi)iu =

p+1∑

t=1

sin

(
tπ

p+ 2

)
sin

(
(u+ t)π

p+ 2

)
, (8)

for components multiple of i, and

Θ(vi)j = 0,

if i does not divide j. The computation of the closed form (7) for this sum is not
difficult but a little bit tedious to be presented in detail here; the proof in the case
where i divides n+ 1 is almost the same, it is just necessary to observe that

vi =

p∑

t=1

sin

(
tπ

p+ 1

)
en+1
i(t−1).

For the point with minimal ith component, we use the

Corollary 3.3. The extreme point of Un with the minimal ith component is

γ̄i =





(εp ◦ µ
p)⊗ ei0 if i divides n+ 1,[ (

εp ◦ µ
p+1
1:p

)
⊗ ei0

(−1)pµp+1
p+1 ⊗ em2

0

]
otherwise,

where εp = (1,−1, 1, · · · ) ∈ Rp and ◦ is the Hadamard product.

Proof. We present the proof for the case where i does not divide n+1, the other case
being very similar and easier to prove: then

λmin(A
(i)) = −λmax(A

(i)) = cos

(
(p+ 1)π

p+ 2

)
,

and for all t = 1, · · · , p+ 1

(−1)t sin

(
tπ

p+ 2

)
= sin

(
t(p+ 1)π

p+ 2

)
.
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So we find that

v̄i =

[ (
εp ◦ T

p+1
1:p,1

)
⊗ ei0

(−1)pT p+1
p+1,1 ⊗ em2

0

]
,

is an eigenvector associated with the smallest eigenvalue of A(i). Re-examinating the
proof of the previous proposition, one sees that a factor (−1)u appears in front of the
sum (8) and gives directly the result.

Now, we can define the inner approximation of Un simply by

In = conv
(
{γi, | i = 1, · · · , n} ∪ {γ̄i, | i = 1, · · · , n}

)
.

For example, we give an illustration in the case where n = 2: we can compute easily
U2, as the evolute of the curve C = {(2 cosω, 2 cos 2ω) | ω ∈ [0, π]}.

U∈ I∈

O∈

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6 0.8

−0.2

−0.2

−0.4

−0.4
−0.6

−0.6−0.8

Figure 3.1: “Sandwiching� Un for n = 2

It would be interesting to use these polyhedral approximations to determine bounds
on the modulus

ρ(Cn+1) =
vol(Cn+1 ∩ Bn+1)

2vol(Bn+1)

of Cn+1 to compare with the results of [21], where the authors use circular and polyhe-
dral approximations to estimate this modulus.

3.2. Nonnegativity of the dot product on Cn+1

As for (Rn
+, 〈·, ·〉) and (S+

n (R), 〈〈·, ·〉〉), Cn+1 is acute for 〈·, ·〉, i.e. the scalar product of
two elements of the cone is nonnegative, or equivalently the angle between any pair
of vectors is less than π

2
. To show that, we need of a basic result connecting circular

and acyclic correlations. It is very similar to results concerning circular and acyclic
convolutions (cf. [32, p. 331])



392 M. Fuentes / Properties of the Convex Cone of Vectors with Autocorrelated ...

Lemma 3.4 (Zero Padding). Let n ∈ N∗, x, y ∈ Rn+1; we denote x̃ = (x, 0, · · · , 0)
and ỹ = (y, 0, · · · , 0) two vectors of R2n+1 completed with zeros; then

corrc(x̃, ỹ)k =

{
corra(x, y)k for k = 0, · · · , n

corra(y, x)2n+1−k for k = n+ 1, · · · , 2n.

For the proof, which is straightforward, one could see [17, p. 15]. Now, we can show
that

Proposition 3.5. Cn+1 is an acute cone, i.e.

∀x, y ∈ Cn+1 〈x, y〉 > 0.

Proof. Let (x, y) ∈ C2
n+1; there exists (z, t) ∈ (Rn+1)2 such that x = corra(z, z) and

y = corra(t, t); then, let us denote z̃ and t̃ the vectors associated with t and z zero
padded up to 2n+ 1,

z̃ =

(
z
0n

)
, t̃ =

(
t
0n

)
and x̃ = corrc(z̃, z̃), ỹ = corrc(t̃, t̃).

If X̃ and Ỹ are respectively the discrete Fourier transforms of x̃ and ỹ on the group
(Z/(2n+ 1)Z,+), the Parseval-Plancherel theorem (cf. [35, p. 26]) says that

〈x̃, ỹ〉
(P.P.)
=

1

2n+ 1
〈X̃, Ỹ 〉.

But one can observe that, due to the correlation theorem [4]

X̃i = ZiZi = |Zi|
2

> 0 for all i ∈ {0, · · · , 2n},

which is also true for Ỹ , we deduce 〈x̃, ỹ〉 > 0. By decomposing the dot product we
have

〈x̃, ỹ〉 = x̃0ỹ0 +
n∑

i=1

x̃iỹi +
2n∑

i=n+1

x̃iỹi

= x0y0 +
n∑

i=1

xiyi +
2n∑

i=n+1

corrc(ỹ, ỹ)icorrc(t̃, t̃)i

= x0y0 +
n∑

i=1

xiyi +
2n∑

i=n+1

corra(y, y)2n+1−icorra(t, t)2n+1−i

= x0y0 + 2
n∑

i=1

xiyi,

where we have used the Zero Padding Lemma. Letting A = x0y0 = ||t||2||z||2 > 0 and
B =

∑n

i=1 xiyi, this yields
A+ 2B > 0,

and we conclude with

〈x, y〉 = A+B > A− A/2 = A/2 > 0.
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3.3. The Matryoshka property

The cones C0, C1, · · · , Cn+1, are in a sense “nested�: the orthogonal projection of Cn+1

on Rn is Cn, or in an equivalent way,

Proposition 3.6. Let ℑ : Rn → Rn+1 be the injective linear mapping defined by
ℑ(x) = (x, 0); then

ℑ(Cn) = Cn+1 ∩ {xn = 0}.

The proof being trivial is not given here. For the details, cf. [17, p. 44].

3.3.1. Using a support function to define Cn+1

The support function σE of the subset E ⊂ Rn being defined as

σE : Rn → R ∩ {+∞}
x 7→ sup

s∈E
〈x, s〉,

there is a one-to-one correspondence between closed convex sets and support functions
(see [26, p. 211]) summarized by the following formula

σE = σconv(E).

where conv stands for the closed convex hull of a set. Another way to view this one-
to-one mapping is to say that the support function of a set “could see only its convex
hull�. Let

g(x) = max
ω∈[0,π]

〈−v(ω), x〉,

where v(ω) was previously defined in (1) and we can use the max notation since [0, π]
is a compact set and ω 7→ 〈v(ω), x〉 is continuous; one can remark that denoting

S = {−v(ω) | ω ∈ [0, π]}, (9)

g = σS is therefore the support function of S. Since g(x) is the minimal value of the
trigonometric polynomial up to a change of sign, one could check if x belongs to Cn+1,
according to the following proposition.

Proposition 3.7. Belonging to Cn+1 is characterized by the sign of g:

(i) x ∈ Cn+1 ⇔ g(x) 6 0

(ii) x ∈ int Cn+1 ⇔ g(x) < 0

(iii) x ∈ ∂Cn+1 ⇔ g(x) = 0.

3.3.2. Tangent and Normal cones to Cn+1 at a point of Cn+1

In convex analysis, to retrieve information about the local geometry of a set, we dispose
of two fundamental convex sets: the tangent and the normal cone; as defined in [26,
p. 136], the tangent cone T (C, x) to a convex set C at a point x ∈ C is defined as

T (C, x) = cl {d ∈ Rn | d = α(y − x), y ∈ C, α ∈ R+},
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where cl(·) denotes the closure. In our case, since

Cn+1 = {x ∈ Rn+1| − 〈v(ω), x〉 6 0, ∀ω ∈ [0, π]},

we can give the simple definition

T (Cn+1, x) = {d ∈ Rn+1 | 〈s, d〉 6 0, ∀s ∈ J(x)},

where
J(x) = {−v(ω)| ω ∈ [0, π], 〈v(ω), x〉 = 0}.

This yields

T (Cn+1, x) = {d ∈ Rn+1 |〈v(ω), d〉 > 0, for all ω such that 〈v(ω), x〉 = 0}.

The second fundamental set associated with C is the normal cone at x defined by

N(C, x) = {d ∈ E | ∀y ∈ C, 〈y − x, d〉 6 0}.

Using again the definition of Cn+1, we can describe simply N(C, x) by

N(Cn+1, x) = cone {−v(ω) | ∃ω ∈ [0, π], 〈v(ω), x〉 = 0}, (10)

where cone(·) denotes the convex conical hull, i.e.

cone(E) =

{
k∑

i=1

αixi : xi ∈ E, αi > 0, k ∈ N∗

}
.

Knowing N(Cn+1, x) gives us more information about the boundary of Cn+1, that we
carry out in the next subsection

3.3.3. The boundary of Cn+1 is not polyhedral

The normal cone corresponds in convex analysis to the generalization of the set of
normal directions to the tangent space for differential manifolds. One could see that if
at x the tangent cone is a half-space (its boundary being therefore the tangent space),
then the normal cone reduces to a half-line orthogonal to the tangent space; such x is
often called a smooth or regular point. For instance, x1 = e0 +

1
2
e2 is such a point of

∂Cn+1; indeed
〈x1, v(ω)〉 = 1 + cos(2ω) > 0,

which vanishes for ω = π
2
; then x1 ∈ ∂Cn+1 and

N(Cn+1, x
1) = cone{(−1, 0, 2, 0, · · · , 0)},

which guarantees that x1 is a regular point. To show that ∂Cn+1 is not polyhedral, it
is sufficient to prove that around x1 the curvature of ∂Cn+1 does not locally equal zero.
For that, we consider the direction d = (0, 1, 0, · · · , 0); it is clear that d is orthogonal
to x1. Then, computing

g(x1 + εd) = max
ω∈[0,π]

{−1− 2ε cosω − cos(2ω)},
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where the maximum is reached for ω0 = − arccos(ε/2), we obtain

∇g(x1 + εd) =




−1
ε

2− ε2


 .

That implies

∇g(x1 + εd)−∇g(x1)

ε
=




0
1
−ε


 ,

which shows that the variation of ∇g along the direction d is nonlinear. The curvature
does not equal zero locally at least in a neighborhood of x1, and x1 cannot belong to
an exposed face of dimension greater than one. The boundary of Cn+1 does not present
an uniform regularity like the second order cone, but smooth parts and polyhedral
parts, as for the cone S+

n (R); Fig. 3.2 represents the boundary of Cn+1, obtained by
translating (and rescaling) the compact U2 from Fig. 3.1 into the direction e0; the point
x1 lies in the plane containing U2 at the top of the smooth part.

x0 x1

x2

x1

0

0

0

0.25

0.25

0.5

0.5

0.5

0.75

−0.25

−0.5

−0.5

1

Figure 3.2: the cone C3

3.3.4. Faces and facets of Cn+1

We know that Cn+1 has not a boundary with an uniform regularity, but it is possible to
get more information about the facial structure of Cn+1. We need first some definitions.

Definition 3.8. Let C be a convex subset of Rn. We call an exposed face each set
F ⊂ C verifying: there exists (a, b) ∈ Rn × R such that

{
∀x ∈ C, 〈a, x〉 6 b

F = C ∩ {x ∈ Rn | 〈a, x〉 = b}.
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It means that Ha,b = {x ∈ Rn | 〈a, x〉 = b} is a supporting hyperplane of C, i.e.

C ⊂ H−
a,b = {x ∈ Rn | 〈a, x〉 6 b},

and Ha,b contains the affine hull of F . In the sequel, we simply speak of exposed faces.
A facet is a face of dimension n − 1. In this section, we are seeking faces or facets of
Cn+1. In fact, one could observe that for finding the faces of a convex cone, we can
restrict our research to hyperplanes containing the origin, i.e. which can be written as
Hs = {x ∈ Rn+1 | 〈s, x〉 = 0} due to the following lemma

Lemma 3.9. Let K be a cone and Ha,b = {x ∈ Rn |〈a, x〉 = b} a supporting hyperplane
of K such that K ∩Ha,b 6= ∅; then b = 0.

For a proof, one could see [2, p. 65] The boundary and extreme rays of Cn+1 are
known for long time [27, 28]. The boundary is described by the vectors x such that
〈x, v(ω)〉 has at least one zero on [0, π]. In particular, the extreme rays of Cn+1 are even
trigonometric polynomials which vanish exactly n times on [0, π]. One could conjecture
that a face of dimension k would correspond to polynomials vanishing n+ 1− k times
on [0, π]. Unfortunately, to our knowledge, there is no such result in the literature.
One fact related to this conjecture is that the extreme rays of the dual cone of Cn+1

are composed with the vectors of the form λv(ω) (see [27, p. 43]). Using this result,
one computes the facets of Cn+1, establishing necessary conditions about the normal
directions to the facets.

Proposition 3.10. Cn+1 has two facets with outgoing normal directions s1= (1, 2,· · ·, 2)
and s2 = (1,−2, · · · , 2(−1)n).

Proof. First, let us look at the necessary condition: if F is a facet, we can write F as
F = Cn+1 ∩Hs. Since s is an outgoing normal direction to the face, and Hs a support
hyperplane of Cn+1, we have

Cn+1 ⊂ H−
s = {x ∈ Rn+1 | 〈s, x〉 6 0},

and we deduce that s belongs necessary to C◦
n+1. Now, we show that s is necessarily an

extreme ray of C◦
n+1. Assume there exists linearly independent s1, s2 ∈ C◦

n+1 such that

s = s1 + s2.

Since F has dimension n, we can find x1, · · · , xn linearly independent vectors and
orthogonal to the normal direction s

0 = 〈s, xi〉 = 〈s1, xi〉︸ ︷︷ ︸
60

+ 〈s2, xi〉︸ ︷︷ ︸
60

for i = 1, · · · , n.

A sum of nonpositive terms is zero if and only if each term is zero, thus

〈s1, xi〉 = 〈s2, xi〉 = 0 for i = 1, · · · , n.

Therefore, s1 and s2 belong to the vector space Span ({x1, · · · , xn})
⊥ which is of di-

mension one, this contradicts the linear independence of the two vectors. Using now a
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result from [27, p. 43], concerning the extreme rays of the dual cone of Cn+1, we deduce
that there exists ω1 ∈ [0, π] such that, s is colinear to v(ω1); therefore

A⋆(s) = αA⋆(−v(ω1)) = −αRe (zω1
(z∗ω1

)⊤),

where zω was defined in (3) and one see that A⋆(s) is a matrix of rank at most 1.
With a simple argument on the structure of the matrix, one proves that s1 and s2 are
up to a multiplicative constant the only solutions for s to respect the rank constraint
on A⋆(s) (see [9, p. 252]). Now, let us verify that s1 and s2 are actually directions
exposing a facet. Let us start with Fs1 = Cn+1 ∩Hs1 and consider the following points
(0, p1, · · · , pn) where

pi = 2e0 − ei for i = 1, · · · , n;

then according to Proposition 3.7,

g(pk) = −min
ω∈[0,π]

〈pk, v(ω)〉 = −min
ω∈[0,π]

2(1− cos kω) = 0,

therefore pk ∈ ∂Cn+1 ⊂ Cn+1. But, noticing that 〈pk, s1〉 = 0 for all k, and the system
of points (pk)k=1,··· ,n being clearly of full rank, there exist n + 1 affinely independent
points belonging to Fs1 = Cn+1 ∩Hs1 ; hence dim (affFs1) = n. For s2, consider 0 and
the system of points qi, for i = 1, · · · , n, defined by

qi = 2e0 + (−1)iei,

and conclude in a similar way.

One could have a look at Fig. 3.2, where the two facets of Cn+1 are respectively or-
thogonal to the directions s1 = (1, 2, 2) and s2 = (1,−2, 2); the two directions are also
visible on Fig. 4.1 as edges of the unique facet of C◦

n+1.

4. Polarity

Conic duality is the equivalent in convex analysis of the linear duality in linear analysis
where roughly speaking, equalities are replaced by inequalities. As in the linear case,
it is sometimes simpler to do computations in the dual space (e.g., less of parameters,
etc...), and retrieve afterwards relevant information by duality. An equivalent in convex
analysis of orthogonal decomposition, is the classical Moreau result

Theorem 4.1 (Moreau). Let F ⊂ E be a closed convex cone and (x, xF , xF ◦) ∈ E3;
then the following conditions are equivalent:

(i) x = xF + xF ◦ , xF ∈ F, xF ◦ ∈ F ◦, and 〈xF , xF ◦〉E = 0,

(ii) xF = pF (x) and xF ◦ = pF ◦(x).

F ◦ stands here for the polar cone of F , i.e.

F ◦ = {x ∈ E | ∀y ∈ F, 〈x, y〉E 6 0}.

For a proof, see e.g. [26, p. 121]. F ◦, the negative polar of F , is a cone which enjoys
several interesting properties and enables us to dualize conical constraints. For exam-
ple, in some cases, computing the projection xF of a point x on a cone F could be
cheaper by computing firstly the projection xF ◦ of x on F ◦ and retrieving xF simply
by the difference xF = x−xF ◦ . Before determining the polar of Cn+1, we need to define
a subspace of Sn+1(R) which is involved in the computation.
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4.1. Adjoint operator of A and symmetric Toeplitz matrices

Let us denote by A⋆ the adjoint of A respect to 〈·, ·〉 and 〈〈·, ·〉〉 defined by

A⋆ : Rn+1 → Sn+1(R)

(x0, · · · , xn) 7→
n∑

i=0

xiA
(i),

For x ∈ Rn+1, A⋆(x) has the following structure

A⋆(x) =
1

2




2x0 x1 · · · xn

x1 2x0
. . .

...
...

. . . . . . x1

xn · · · x1 2x0


 .

The operator A⋆ is a one-to-one mapping and realizes an isomorphism from Rn+1 on
its image A⋆(Rn+1), the set of symmetric Toeplitz matrices.

Definition 4.2. We denote by Tn+1(R) the subspace of Sn+1(R)

A⋆
(
Rn+1

)
= aff {A(0), A(1), · · · , A(n)}.

In other words,

Tn+1(R) = {M ∈ Sn+1(R) | ∃x ∈ Rn+1 such that Mij = x|i−j| for i, j = 1, · · · , n+ 1}.

The set Tn+1(R) consists of symmetric matrices which are constant along their diago-
nals. This class of matrices is well-known: there are lots of fast algorithms to invert
them or to compute their eigenvalues. For asymptotical results on their spectra see
[7, 23]. For result in finite dimension, one could see [5, 11]. Tn+1(R) is of dimension of
n + 1 and the family of matrices A(0), A(1), · · · , A(n) forms a basis of that space. The
one-to-one mapping A⋆ realizes a identification between Tn+1(R) and Rn+1 for defining
C◦
n+1.

4.2. The polar cone of Cn+1

4.2.1. Formulation by constraints

Proposition 4.3. The (negative) polar cone of Cn+1 is, up to the A⋆ identification,
the set of semi-definite negative Toeplitz matrices, i.e.

C◦
n+1 = {x ∈ Rn+1 | A⋆(x) � 0}.

This proof was already presented in [1, 15, 27, 28] under various forms; we recall it
here for completeness.

Proof. We seek s ∈ Rn+1 such that, for all x ∈ Cn+1, 〈s, x〉 6 0; then

∀y ∈ Rn+1 〈s,A(yy⊤)〉 6 0 ⇔ 〈〈A⋆(s), yy⊤〉〉 6 0 ⇔ 〈A⋆(s)y, y〉 6 0.

In other words, A⋆(s) is a semi-definite negative matrix.
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The formulation A⋆(x) � 0 guarantees that the Toeplitz form,

n∑

k=0

n∑

l=0

yk−lxkx̄l

is nonnegative with

yk =





x0 if k = 0

xk/2 if 1 6 |k| 6 n

0 otherwise.

Using Bochner’s theorem ([35, p. 19]), we know there exists a positive measure σ on
[0, 2π] such that

−
1

2
x|k| =

∫ 2π

0

e−iktdσ(t) for all k ∈ Z.

Since xk is a real number, it yields

xk =





−

∫ 2π

0

dσ if k = 0

∫ 2π

0

(−2 cos kt)dσ(t) for k = 1, · · · , n,

or, in other words, x belongs to the conical convex hull of S = {−v(ω)|ω ∈ [0, π]}.
According to [28], this is nothing else than the formulation by generators of C◦

n+1.

One noteworthy difference with classical cones – (R+)
n,Ln(R),S

+
n (R) – of convex anal-

ysis, is that Cn+1 is not self-dual, i.e. C◦
n+1 6= −Cn+1. For that reason, a numerical

approach of optimization problems involving Cn+1 via its polar cone presents a reduced
complexity: n parameters versus n(n + 1)/2 under the form of the relation (2) in
Proposition 2.8.

Using the formulation A⋆(x) � 0 for the polar cone, we can deduce a new expression
for N(Cn+1, x): indeed, one knows that for a closed convex cone K (cf. [26, p. 137])

N(K, x) = {y ∈ K◦ | 〈x, y〉 = 0}.

Here, this gives:

N(Cn+1, x) = {y ∈ Rn+1 | A⋆(y) � 0, 〈x, y〉 = 0}.

4.2.2. Optimality conditions

One of the main applications of normal cones to a convex set is to write first order
optimality conditions for optimization problems with constraints involving this set.
Recalling from [26, p. 293] that if ones minimizes a convex function f on a convex set
C, then x̄ is a minimizer if and only if

x̄ ∈ C and 0 ∈ ∂f(x̄) +N(C, x̄).
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Figure 4.1: the polar cone C◦
3

Here ∂f(x̄) stands for the subdifferential of f at x̄

∂f(x̄) = {s ∈ E | ∀y ∈ E, 〈s, y − x̄〉+ f(x̄) 6 f(y)}.

For example, if one wants to project c on Cn+1, one seeks a minimizer of f(x) =
1
2
||c− x||22, and the optimality conditions become

x̄ ∈ Cn+1 and 0 = x̄− c+ s with A⋆(s) � 0 and 〈s, x̄〉 = 0,

which can be summarized in

(Opt)





x̄ ∈ Cn+1

A⋆(c− x̄) � 0

〈x̄, c− x̄〉 = 0.

(11)

Noting that the second condition is equivalent to c − x̄ ∈ C◦
n+1, we have exactly the

three conditions stated by Theorem 4.1 with F = Cn+1.

4.2.3. A formulation by generators

We previously said that, using Bochner’s theorem, one can find a formulation by gener-
ators of C◦

n+1; nevertheless one can obtain the same result using only tools from convex
analysis:

Proposition 4.4. Let S = {−v(ω) : ω ∈ [0, π]}, then

C◦
n+1 = cone(S).

This formulation describes C◦
n+1 as the convex conical hull of a parametric curve of

Rn+1. The proof of this result was given firstly by Krein et Nudelman in [28, p. 58].
One could derive (10) for x = 0 (the normal cone to a cone at x = 0 is the polar cone).
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Proof. Since
Cn+1 = {x ∈ Rn+1|〈x,−v(ω)〉 6 0 for ω ∈ [0, π]},

by means of the generalized Farkas lemma ([26, p. 131]), if

〈y, x〉 6 0 for all x ∈ Cn+1,

then (
y
0

)
∈ cone

({(
0
1

)}
∪

{(
−v(ω)

0

)}

ω∈[0,π]

)
.

We deduce that
C◦
n+1 ⊂ cone(S).

Conversely, if y ∈ cone(S), there exists (α0, · · · , αn) ∈ (R+)
n+1 such that

y = −
n∑

k=0

αkv(ωk) with ωk ∈ [0, π];

and for x ∈ Cn+1,

〈y, x〉 = −
n∑

k=0

αk〈v(ωk), x〉 6 0,

which implies cone(S) ⊂ C◦
n+1.

4.3. Conclusion

We have reviewed some results concerning the cone of vectors with autocorrelated com-
ponents. This cone, which is clearly useful for applications in signal processing such as
filtering or autocorrelation estimation, should deserve a better attention, in our opin-
ion. In further support of this claim, we have studied thoroughly the geometry of Cn+1

proving some results about the acuteness, the facial structure, and giving approxima-
tions of a compact base of that cone. We hope this review improve the knowledge
about this cone and incite to pay more attention to this cone, or its extensions to the
multivariate case; In particular, the application of the bivariate case for image process-
ing has begun with the works [34, 14, 30]. In that case, cones which remain interesting
are rather nonnegative trigonometric polynomials and sums-of-squares polynomials,
which can be handled through the convex analysis paradigm thanks to linear matrix
inequalities. The chapter 4 of [17] details some results and algorithms along these lines.
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