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Using ε-subdifferential calculus for difference-of-convex (d.c.) optimization, Dür proposed a condition
sufficient for local optimality, and showed that this condition is not necessary in general. Here it is
proved that whenever the convex part is strongly convex, this condition is also necessary. Strong
convexity can always be ensured by changing the given d.c. decomposition slightly. This approach
also allows for a formulation with perturbed ε-subdifferentials which involves only the original d.c.
decomposition, even without imposing strong convexity. We relate this result with another inclusion
condition on perturbed ε-subdifferentials, which even can serve as a quantitative version of a criterion
both necessary and sufficient for local optimality.
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1. Introduction

The difference-of-convex (d.c.) paradigm in continuous optimization can be traced back
to [6, 9, 10, 11] and has been proven useful in a number of areas in optimization [5]. The
underlying mathematical concept is much older and goes at least back to Alexandroff’s
paper from 1950, see [1] and also [4], where E. G. Straus is credited for coining the
abbreviation “d.c.�.

The class of functions f which admit a d.c. decomposition f = g − h, where g : Rn →
R ∪ {+∞} and h : Rn → R are convex functions, has therefore been studied quite
extensively. While this class is large (it contains the twice continuously differentiable
functions) the relevance of theoretical results for algorithmic applications depends on
the choice of the functions g and h in the d.c. decomposition. Still, issues in the context
of optimality conditions remained open, and this note tries to answer some of these
questions, by using ε-subdifferential calculus.

Given an extended-valued closed (i.e., lower semicontinuous) convex function g : Rn →
R ∪ {+∞} and ε ≥ 0, the ε-subdifferential of g at x̄ ∈ R

n with g(x̄) < +∞ is defined
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as
∂εg(x̄) = {y ∈ R

n : g(x)− g(x̄) ≥ y⊤(x− x̄)− ε for all x ∈ R
n} . (1)

In terms of ε-subdifferentials, we have the following characterization of global optimal-
ity, see [7] or [8, p. 101]:

Theorem 1.1. Suppose that x̄ satisfies g(x̄) < +∞. Then x̄ is a global minimizer of

f = g − h if and only if

∂εh(x̄) ⊆ ∂εg(x̄) for all ε ≥ 0 . (2)

The situation for local optimality is different: while Dür has established the following
sufficient condition in [3], she also has specified a counterexample there which shows
that this condition is not necessary.

Theorem 1.2. Suppose that x̄ satisfies g(x̄) < +∞. Then x̄ is a local minimizer of

f = g − h if for some δ > 0

∂εh(x̄) ⊆ ∂εg(x̄) for all ε with 0 ≤ ε ≤ δ . (3)

Recently [2, Thm. 8 in §1.1.5], it has been shown that (3) is necessary and sufficient
in case of (possibly indefinite) quadratic programming over a polyhedron M , given a
natural quadratic d.c. decomposition of f(x) = 1

2
x⊤Qx + c⊤x as follows: decompose

Q = P+ − P− with P± positive-definite, and consider h(x) = 1
2
x⊤P−x− c⊤x as well as

g(x) = 1
2
x⊤P+x+ iM(x) where iM denotes the indicator function

iM(x) =

{

0, if x ∈M,

+∞, else.

Since P+ is positive-definite, the function g(x) − ρ‖x − x̄‖2 is still convex for ρ > 0
small enough. It will turn out below that the latter property also guarantees necessity
of Dür’s condition (3) in the general case.

2. The role of the violating parameter region

In light of the preceding discussion, let us denote by

G(x̄) = {ε > 0 : ∂εh(x̄) 6⊆ ∂εg(x̄)}

the violating parameter region where the required inclusion of (3) does not hold. It
was unclear for a while whether the violating parameter region G(x̄) is convex, i.e.,
an interval. This has been answered recently in the negative by an example [2, Sec-
tion 1.1.4] where G(x̄) can have up to n connected components if x̄ ∈ R

n is a local
minimizer of g − h.

Next we proceed to relate G(x̄) to the question of finding an improving point. To this
end, recall [8, Theorem XI.2.1.1] that the value of the support functional to the convex
set ∂εg(x̄) at any direction d is given by the ε-directional derivatives w.r.t. d,

g′ε(x̄; d) = inf
t>0

φd(t) + ε

t
with φd(t) = g(x̄+ td)− g(x̄) , (4)
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and similarly for ∂εh(x̄),

h′ε(x̄; d) = inf
t>0

ψd(t) + ε

t
with ψd(t) = h(x̄+ td)− h(x̄) . (5)

So, whenever ε ∈ G(x̄), there must be a direction d such that h′ε(x̄; d) > g′ε(x̄; d) and
vice versa; indeed, d can be chosen as a normal direction of a hyperplane separating
∂εg(x̄) from a point in ∂εh(x̄) \ ∂εg(x̄).
The following result can be found in [3]. For the sake of being self-contained, we provide
a short proof.

Theorem 2.1. If x ∈ R
n satisfies g(x) − h(x) < g(x̄) − h(x̄) < +∞ and y ∈ ∂0h(x),

then

ε = h(x̄)− h(x)− y⊤(x̄− x) ∈ G(x̄) .

Conversely, if ε ∈ G(x̄) and h′ε(x̄; d) > g′ε(x̄; d), then d is an improving direction: there

is a t > 0 such that x = x̄+ td satisfies g(x)− h(x) < g(x̄)− h(x̄).

Proof. First we note that the specified y and ε satisfy y ∈ ∂εh(x̄). Indeed, for any z,
we get

h(z)− h(x̄) = h(z)− h(x) + h(x)− h(x̄)

≥ y⊤(z − x) + h(x)− h(x̄) = y⊤(z − x̄)− ε .

On the other hand, we know

g(x)− g(x̄) < h(x)− h(x̄) = y⊤(x− x̄)− ε ,

so that y /∈ ∂εg(x̄), and hence ε ∈ G(x̄).

Conversely, g′ε(x̄; d) < h′ε(x̄; d) implies the existence of t > 0 such that

φd(t) + ε

t
<
ψd(t) + ε

t
.

Then (4) and (5) imply g(x)− g(x̄) < h(x)− h(x̄), which completes the proof.

3. Dür’s delta and the main result

Now define Dür’s delta as δ(x̄) = infG(x̄). Suppose x̄ is a local, nonglobal solution.
Then Theorem 2.1 gives an upper bound for δ(x̄) if we know an improving feasible
solution. Conversely, this result suggests that searching for ε beyond δ(x̄) < +∞ may
be a good strategy for escaping from nonglobal optima. Further, Theorems 1.1 and 1.2
state

δ(x̄) = ∞ ⇐⇒ x̄ is a global minimizer of g − h ;

δ(x̄) > 0 =⇒ x̄ is a local minimizer of g − h ,

while the following result will specify a condition on g such that the last implication
arrow can be reverted, too.
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Theorem 3.1. Let x̄ be a local minimizer of f = g − h:

g(x)− g(x̄) ≥ h(x)− h(x̄) for all x with ‖x− x̄‖ ≤ η (6)

and suppose that g is strongly convex, i.e., g(x) − ρ‖x − x̄‖2 is still convex for some

small ρ > 0. Then

∂εh(x̄) ⊆ ∂εg(x̄) for all non-negative ε ≤ ρη2 .

In other words, δ(x̄) ≥ ρη2.

Proof. For a direction d with ‖d‖ = η, we again consider the ε-directional derivatives
w.r.t. d as in (4) and (5). Obviously,

h′ε(x̄; d) = inf
t>0

ψd(t) + ε

t
≤ inf

t∈ ]0,1]

ψd(t) + ε

t
≤ inf

t∈ ]0,1]

φd(t) + ε

t
(7)

and we claim that
h′ε(x̄; d) ≤ g′ε(x̄; d) for all ε ≤ ρη2 . (8)

For this purpose introduce the convex function g(x) = g(x)− ρ‖x− x̄‖2. Then

φd(t) + ε

t
=

g(x̄+ td)− g(x̄)

t
+
ρη2t2 + ε

t
=

φd(t)

t
+ tρη2 +

ε

t
,

with the obvious notation φd(t) = g(x̄+td)−g(x̄). The minimum of the (strictly convex)

function tρη2 + ε
t
is attained at to =

√

ε
ρη2

. By convexity of g, the difference quotient

φd(t)
t

is increasing in t. Altogether, φd(t)+ε
t

attains its minimum at some tε ≤ to ≤ 1 if
ε ≤ ρη2. We therefore see from (7) that, when ε ≤ ρη2, then

h′ε(x̄; d) ≤ inf
t∈ ]0,1]

φd(t) + ε

t
= g′ε(x̄; d)

and our claim (8) is established. Hence at d, the support functional of ∂εh(x̄) does not
exceed that of ∂εg(x̄). Because the (normalized) direction d was arbitrary, this just
means ∂εh(x̄) ⊆ ∂εg(x̄) which is what we wanted to prove.

4. Perturbations and local optimality conditions

As already mentioned, local optimality of x̄ does not imply (3) with δ > 0. On the
other hand, it does imply inclusions resembling it, with perturbed forms of approximate
subdifferentials.

For a motivation, recall the familiar condition

∂0h(x̄) ⊆ ∂0g(x̄) (9)

necessary for x̄ to be a local minimizer of f = g − h. Below we will specify conditions
– (10), (12) and their consequences (13), (14) – involving explicitly the size η of the
optimality neighborhood in (6), as well as an arbitrary parameter ε. All of these
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formulae yield the above condition (9) as a limiting case for εց 0; hence they may be
viewed as a quantitative sharpening of (9). In what follows, Bτ = {y ∈ R

n : ‖y‖ ≤ τ}
will denote the ball of radius τ centered at the origin.

Our first optimality condition can be obtained by enforcing strong convexity via an
alternative d.c. decomposition: setting qρ(x) = ρ‖x− x̄‖2, we have

f = gρ − hρ with gρ = g + qρ and hρ = h+ qρ .

In order to apply Theorem 3.1 again, we need to express the ε-subdifferential of a sum
such as gρ or hρ:

Lemma 4.1. Consider two closed convex functions r and q such that r(x̄) < +∞ and

q(x) < +∞ for all x ∈ x̄+Bτ for some τ > 0. Then

∂ε(r + q)(x̄) =
⋃

σ∈[0,ε]

[∂σr(x̄) + ∂ε−σq(x̄)] for all ε ≥ 0 .

Proof. By assumption, {x̄} ⊆ dom r and {x̄} + Bτ ⊆ dom q. It follows that −Bτ ⊆
dom r−dom q: the qualification condition 0 ∈ int (dom r−dom q) holds and [8, Thms.
X.2.3.2, XI.3.1.1] apply.

Note that strong convexity of g is not needed in the next result.

Theorem 4.2. Suppose (6) holds. Then for all ε > 0 and all δ ∈ [0, ε],

∂δh(x̄) +B 2

η

√
(ε−δ)ε

⊆
⋃

σ∈[0,ε]

[

∂σg(x̄) +B 2

η

√
(ε−σ)ε

]

. (10)

Proof. Because gρ is strongly convex, we know from Theorem 3.1 that

∂εhρ(x̄) ⊆ ∂εgρ(x̄) for all ε ≤ ρη2 .

Now apply Lemma 4.1 twice with q = qρ, once combined with r = hρ and once combined
with r = gρ. We have for all ε ∈ [0, ρη2] and all δ ∈ [0, ε]

∂δh(x̄) + ∂ε−δqρ(x̄) ⊆
⋃

σ∈[0,ε]

[∂σg(x̄) + ∂ε−σqρ(x̄)] . (11)

Next we use [8, Example XI.1.2.2]: for all τ ≥ 0

∂τqρ(x̄) = ∂τ (ρq1)(x̄) = ρ ∂τ/ρq1(x̄) = ρB
2
√

τ/ρ
= B2

√
τρ .

Hence (11) reads

∂δh(x̄) +B
2
√

(ε−δ)ρ
⊆

⋃

σ∈[0,ε]

[

∂σg(x̄) +B
2
√

(ε−σ)ρ

]

.

This holds whenever 0 ≤ δ ≤ ε ≤ ρη2. Now, given ε > 0, we rather define ρ > 0 such
that these inequalities hold, namely ρ = ε/η2 and we arrive at (10).
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Another inclusion can be obtained, in which the left-hand side just involves the ap-
proximate subdifferential itself. This inclusion turns out to be necessary and sufficient
for local optimality.

Theorem 4.3. The local optimality property (6) holds if and only if

∂εh(x̄) ⊆
⋃

σ∈[0,ε]

[

∂σg(x̄) +B ε−σ
η

]

for all ε > 0 . (12)

Proof. Let iη be the indicator function of the ball x̄+Bη centered at x̄ with radius η.
Clearly, the local optimality property (6) holds if and only if x̄ is a global minimizer of
the d.c. function f + iη = (g + iη)− h and Theorem 1.1 applies. Using Lemma 4.1 for
the sum g + iη, we see that (6) holds if and only if

∂εh(x̄) ⊆
⋃

σ∈[0,ε]

[∂σg(x̄) + ∂ε−σiη(x̄)] for all ε > 0 .

Subdifferentiating the indicator function of a ball is straightforward from the definition
(1): we obtain ∂τ iη(x̄) = B τ

η
and (12) is established.

We stress that (10) and (12) hold for all positive ε. Fixing δ or σ in these formulae
yields some simplifications which are worth mentioning. As it happens, large values of
δ ≤ ε in (10) do not provide much information, as compared to (12); but setting δ = 0
gives a definitely different inclusion, namely

∂0h(x̄) +B 2ε
η

⊆
⋃

σ∈[0,ε]

[

∂σg(x̄) +B 2

η

√
(ε−σ)ε

]

for all ε > 0 . (13)

The left-hand side (lhs) of (13) is a perturbation of the lhs of (9). On the other hand,
monotonicity arguments in (12) yield a really closed formula:

Corollary 4.4. If x̄ satisfies (6), then

∂εh(x̄) ⊆ ∂εg(x̄) +Bε/η for all ε > 0 . (14)

Proof. Just observe in (12) that ∂σg(x̄) ⊆ ∂εg(x̄) and B(ε−σ)/η ⊆ Bε/η for all σ ∈
[0, ε].

Finally, we illustrate the above four formulae on Dür’s counterexample [3, Example 2.1].
Here g(x) = [(x− 1)+]

2 and h(x) = [(−1− x)+]
2 where t+ = max {0, t}, so that x̄ = 0

is a local minimizer of f = g − h with maximal η = 1 in (6). The approximate
subdifferentials are

∂σg(0) = [0, r(σ)] and ∂σh(0) = [−r(σ), 0] ,

with r(σ) := 2
√
1 + σ− 2. Note that r is concave with r′(0) = 1; this implies r(σ) ≤ σ

for all σ ≥ 0. Hence lhs (14) ⊆ [−ε, 0] while the right-hand side (rhs) of (14) for η = 1
is [−ε, ε+ r(ε)].
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Setting s(δ) := 2
√

(ε− δ)ε, the sets involved in (10) are (with η = 1)







lhs (10) = [−r(δ)− s(δ), s(δ)] ,

rhs (10) =
⋃

σ∈[0,ε]
[−s(σ), r(σ) + s(σ)] . (15)

Note that s is concave with s′(0) = −1, hence decreasing; also r + s is concave and
decreasing, because (r + s)′(0) = 0. As a result,

rhs (10) = [−s(0), r(0) + s(0)] = [−2ε, 2ε] .

The same monotonicity arguments show that

∀δ ∈ [0, ε], lhs (10) ⊆ [−r(0)− s(0), s(0)] = [−2ε, 2ε] ,

so that (10) does hold. Its consequence (13), obtained by fixing δ = 0 in (15), is then
an identity: lhs (13) = [−2ε, 2ε] = rhs (10) = rhs (13).

Now we illustrate the necessary and sufficient character of (12), which must be true for
η ≤ 1 and false for η > 1. Its left-hand side is ∂εh(0) = [−r(ε), 0], while its right-hand
side is

⋃

σ∈[0,ε]

[

σ − ε

η
, r(σ) +

ε− σ

η

]

.

The right end-points of the segments in the above union are clearly non-negative, so
(12) holds if and only if

r(ε) ≤ ε− σ

η
, for all ε > 0 and some σ ∈ [0, ε],

which means
r(ε) ≤ ε

η
, for all ε > 0.

Remembering that r(ε) ≤ ε and r(ε)
ε

→ r′(0) = 1 as ε ց 0, this holds if and only if
η ≤ 1.
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