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We consider the case of strong materials, i.e. the situation where the growth of integrands from below
guarantees the lack of discontinuities for deformations with finite energy. We show that, in this
case, both lower semicontinuity and relaxation results relay on the a.e. differentiability property of
admissible deformations and on the uniform convergence of weakly convergent sequences bounded in
energy.
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1. Introduction

In this paper we consider minimization problems of the form

J(u) =

∫

Ω

L(Du(x))dx→ min, L ≥ 0, L ∈ C(Rn×m → R), (1)

u
∣

∣

∣

∂Ω
= f, u ∈W 1,1(Ω;Rm), (2)

where Ω is a bounded domain with Lipschitz boundary, and where the notation u ∈
W 1,1(Ω;Rm) means that each component of the function u : Ω → Rm belongs to the
class W 1,1(Ω). Note that L(Du) is a nonnegative measurable function and, therefore,
we assume that J(u) = ∞ if L(Du) /∈ L1.

A well-known approach to study the existence issue via lower semicontinuity with
respect to the weak convergence in W 1,1 is due to Tonelli [67]. We can guarantee this
convergence for a subsequence of any sequence uk with J(uk) ≤ c <∞ provided

L(v) ≥ θ(v), where θ(v)/|v| → ∞ as |v| → ∞.

However this lower semicontinuity property is difficult to characterize in terms of L.
What could be easily characterized is the lower semicontinuity with respect to the
weak* convergence in W 1,∞. C. Morrey [42] has proved that the functional J in (1) is
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lower semicontinuous with respect to the weak* convergence in W 1,∞ if and only if L
is quasiconvex at each A ∈ Rn×m, where quasiconvexity at A means

∫

Ω

L(A+Dφ(x))dx ≥ L(A)meas Ω, ∀φ ∈ C∞
0 (Ω;Rm).

Quasiconvexity does not depend on the domain, see Proposition 2.3. It is stronger than
rank-one convexity, i.e. than the requirement of convexity of all functions t→ L(A+tB)
with rankB = 1, (this is still unknown for the case n = m = 2) though the properties
coincide for quadratic L, see [64].

A well-known class of quasiconvex integrands L is given by polyconvex functions, where
L is called polyconvex if it is a convex function L̃ of the minors of Du. If

L(v) ≥ α|v|n+ǫ + β, α, ǫ > 0, (3)

then sequences bounded in energy are weakly compact in W 1,n+ǫ. All the minors turn
out to be continuous with respect to the weak convergence in W 1,n+ǫ, see [3], [46].
Then the well-known fact that convexity of L̃ implies the lower semicontinuity of the
functional

ξ ∈ L1 →

∫

Ω

L̃(ξ(x))dx

with respect to the weak convergence in L1, see e.g. [47], implies lower semicontinuity
of J . In particular polyconvexity implies quasiconvexity. An advantage is that poly-
convexity and (3) guarantee both the weak convergence and lower semicontinuity of J
on a subsequence of any sequence bounded in energy. Therefore, an existence result in
problem (1), (2) follows. Polyconvexity also fits both (3) and (4), where

L(Du) → ∞ as detDu→ +0; L(Du) = ∞, detDu ≤ 0, (4)

that allows to apply the variational approach to the Mathematical Theory of Elasticity,
as it was suggested by J. M. Ball, cf. [3], [15]. Much later L. Székelyhidi [66] showed
that if we want to avoid the a priori assumption of smallness of u− Id, i.e. if we intend
to switch to nonlinearized Elasticity, then we really have to relay on a variational
approach instead of using the Euler equations, since their Lipschitz solutions may have
everywhere oscillating gradients, contrary to the situation with minimizers, see [22],
[37].

The assumption (3) turns out to be crucial for lower semicontinuity in the energetic
set, as an example by J. M. Ball shows [4]: for

L = µ|Du|n−ǫ + |detDu|, u : B ⊂ Rn → Rn, ǫ > 0, µ > 0, (5)

where B is the unit ball centered at the origin, we have J(Id) > J(x/|x|) provided µ =
µ(ǫ) is sufficiently small, since J(Id) ≥ meas B and x/|x| ∈W 1,n−ǫ with detD(x/|x|) =
0 a.e. Then we can generate a sequence uk with uk ⇀ Id in W 1,n−ǫ for which lower
semicontinuity fails, see Proposition 2.3.

As we see, if (3) fails, polyconvexity and, then, quasiconvexity, does not imply the
lower semicontinuity in the energetic space. This delicate phenomena was studied
for the polyconvex case in many papers, see [1], [10], [13], [21], [25], [38]. A natural
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explanation of the failure of lower semicontinuity is that the formation of discontinuities
require an extra energetic term in addition to the bulk one (1), see [65], [43], [45].
Therefore one can hope that (3) can provide lower semicontinuity also for quasiconvex
L. This issue was raised several times, e.g. in [5]–[7], and we devote our paper to this
question.

Before stating the results of this paper, we mention some known cases where quasicon-
vexity implies lower semicontinuity. E. Acerbi and N. Fusco [2], see also P. Marcellini
[40], showed that this holds for integrands satisfying the so-called standard growth
conditions:

c1| · |
p + c2 ≤ L(·) ≤ c3| · |

p + c4, p > 1, c3 ≥ c1 > 0. (6)

In case L satisfies these estimates with power functions having different and sufficiently
close exponents one can show that lower semicontinuity holds in the class associated
with the higher exponent with respect to the weak convergence associated with the
lower exponent, see [8], [26], [27], [39], [41], [33].

In this paper we assume

c1G(v) + c2 ≤ L(v) ≤ c3G(v) + c4, c3 ≥ c1 > 0, (7)

with a convex and nonnegative function G : Rn×m → R. We also assume that there
exists η > 0 such that

G(·+ v) ≤ c5G(·) + c6, |v| ≤ η, (8)

a requirement on the growth of G.

We prove

Theorem 1.1 (Lower semicontinuity). Let L : Rn×m → R be a continuous and
nonnegative function satisfying (3), (7), and (8). Let u ∈ W 1,n+ǫ(Ω;Rm) and let L be
quasiconvex at Du(x) for a.e. x ∈ Ω.

Then, the convergence uk ⇀ u in W 1,n+ǫ(Ω;Rm) implies

lim inf
k→∞

J(uk) ≥ J(u).

Here we use ⇀ to denote the weak convergence.

In fact we prove a stronger result, namely Theorem 3.3, when (3) is dropped and u, uk ∈
W 1,1, k ∈ N, provided u is a.e. differentiable in the classical sense and ||uk−u||L∞ → 0,
k → ∞.

Corollary 1.2 (Existence). Under assumptions of Theorem 1.1 we assume that L is
everywhere quasiconvex. Then each problem (1), (2) admits a solution provided there
exists at least one admissible function u, i.e. u ∈ W 1,n+ǫ that satisfies both (2) and
J(u) <∞.

Theorem 1.3 (Relaxation). Let L : Rn×m → R be a continuous and nonnegative
function satisfying (3), (7), and (8). Let Lqc : Rn×m → R be the quasiconvexification
of L, i.e.

Lqc(A) := inf

{
∫

Ω

L(A+Dφ(x))dx/meas Ω : φ ∈ C∞
0 (Ω;Rm)

}

. (9)
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Then Lqc is a continuous, nonnegative and quasiconvex function that also satisfies (7).
Moreover the functional

Jqc(u) :=

∫

Ω

Lqc(Du(x))dx

is the lower semicontinuous envelope of J , i.e. Jqc is lower semicontinuous with respect
to the weak convergence in W 1,n+ǫ and for each u ∈ W 1,n+ǫ with Jqc(u) < ∞ there
exists a sequence uk ∈ u+W 1,n+ǫ

0 such that uk ⇀ u in W 1,n+ǫ and J(uk) → Jqc(u) as
k → ∞.

Again we prove a stronger result, Theorem 4.2, where the requirement (3) is omitted
and the relaxation result holds at those deformations that are a.e. differentiable in the
classical sense.

Note that the extra assumptions on strong materials we use in this paper, i.e. the
assumptions (7)–(8), allow us to obtain the results via the most obvious properties of
admissible deformations: continuity and a.e. differentiability. Further progress could
rely on exploiting deeper topological results valid for this case, see e.g. [68], [69]. How-
ever, it is difficult to expect to be able to avoid any requirements on the growth of L
at infinity, since quasiconvexity is a severely nonlocal property, see [34], [35].

First relaxation results were established long ago by Bogolubov [9] in the one-dimen-
sional case n = 1. They were extended to the scalar (m = 1) multi-dimensional case
by I. Ekeland and R. Temam [24] for integrands with the standard growth (6). The
same growth allows to prove the relaxation result for the general case n,m ≥ 1, see
[16]; this result has the form (9). Relaxation obviously fails for L in (5) since in this
case Lqc = L.

The technique we use in this paper does not allow us to consider the nonhomogeneous
situation L = L(x,Du) or a more general case L = L(x, u,Du). These cases can be
appropriately addressed in the context of Young measure theory, provided one can
show that the Young measures generated by sequences bounded in energy can be also
generated by sequences with values of the functional converging exactly to the value
on the Young measure. The latter class of Young measures is called gradient L-Young
measures. In the general case we have only the lower semicontinuity result, i.e., that
the value of the functional on a Young measure does not exceed the liminf of the values
of the functional along the sequence generating the measure.

D. Kinderlehrer & P. Pedregal [32] and J. Kristensen [36] proved that in the case (6) all
Young measures are exhausted by gradient L-Young measures. We showed how to use
this result to prove the relaxation theorem for general Caratheodory integrands [48], of
course also with the property (6); see [17], [2] for earlier relaxation results in this case.
The results of D. Kinderlehrer & P. Pedregal and of J. Kristensen can be extended to
other classes of integrands, i.e., when (7) holds with G(| · |) having a fast growth at
infinity, i.e. G′(·)| · |/G(·) → ∞ as | · | → ∞ [49], or, in the scalar case m = 1, with
L satisfying only the inequality (3) [50]. Consequently the relaxation result holds for
these cases. One can hope to extend the Young measure approach to other classes of
integrands, say to the isotropic case L(A) = L(QAR) for Q,R ∈ SO(n) (see [61]–[63]
for an information on that case), since homogeneous gradient L-Young measures can
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be characterized for general L [51]. An effective way to deal with Young measures
in all problems related to the behaviour of integral functionals on weakly convergent
sequences, see [52] for other such problems, turned out to be an approach to consider
Young measures as measurable functions with values into a special metric space. For
a systematic exposition of this approach to Young measure theory see [53], [54, §4].

We have to mention that lower semicontinuity is an industrial tool to establish existence
of solutions in the minimization problems (1), (2). However, in the scalar case m = 1
with the property (3), we were able to characterize those integrands L = L(Du) for
which each minimization problem (1), (2) is solvable [55], [70]; see [11], [12], [20], [29],
[30] for an earlier work in the case of linear boundary data. Again classical differentia-
bility of solutions (of the relaxed problems) turned out to be a crucial property. The
result could be extended to other classes of integrands provided this property would
hold, see e.g. [50], [14]. In the vector-valued case the only known general solvability
result is the situation where L : Ū → R, (L|U)

qc is a quasiaffine function, here U is a
bounded set, see [18], [19], [56] and see [57], [58] for better proofs, [31, p. 218] and [44]
for the nonhomogeneous version.

Finally, recently we established that each integral functional coincides with its formal
lower semicontinuous extension in a set which is dense in the weak topology and the
values taken by the functional on this set completely determine the extension, and
moreover, both the functionals are stable in this set, [54]. This result sharpens the
standard relaxation theorems. It is also valid in the higher order case.

We prove certain auxiliary propositions in §2. In §3 we prove Theorem 1.1; in fact
we establish a bit more general result when (3) is dropped, but we know a priori that
||uk − u||L∞ → 0 as k → 0 and that u is a.e. differentiable in the classical sense. In §4
we prove Theorem 1.3. A more general Theorem 4.2 asserts that the relaxation holds
already under assumptions (7), (8) at those deformations that are a.e. differentiable in
the classical sense. An important ingredient of the proof is a possibility to approximate
any function with finite energy by nearly piece-wise affine ones, both in a strong norm
and in energy, see Lemma 4.1. This approximation is a necessary tool for relaxation
results, see also [49]–[51].

Everywhere in this paper we use the following notations: B(x, ǫ) for a ball in Rn

centered at x with radius ǫ > 0, lA for any affine function with the gradient equal to
A, Ū for the closure of U . Everywhere in this paper we assume that Ω is a bounded
domain in Rn with Lipschitz boundary. Given a subset Ω′ of Ω we define

J(u; Ω′) :=

∫

Ω′

L(Du(x))dx.

2. Auxiliary propositions

In this section we recall and prove a number of auxiliary propositions that are used
later in this paper.

The first is the Vitali covering theorem, see [60, p. 109].

Theorem 2.1. Let U be a bounded subset of Rn and let F be a family of closed subsets
of Rn. Assume that for each x ∈ U there exists r(x) > 0 and a sequence of balls B(x, ǫk)
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with ǫk → 0 as k → ∞ such that for certain sets Ck ∈ F , k ∈ N, we can guarantee
that x ∈ Ck, Ck ⊂ B(x, ǫk), and meas Ck/meas B(x, ǫk) ≥ r(x).

Then there exists an at most countable subfamily of disjoint sets Cj ∈ F such that
meas (U \ ∪jCj) = 0.

Definition 2.2. For ξ ∈ L1, we set

Imξ = {y : ∃x, a Lebesgue point of ξ, such that y = ξ(x)}.

We use Theorem 2.1 to derive

Proposition 2.3. Let L : Rn×m → R be continuous and nonnegative, let A ∈ Rn×m,
and let u ∈ W 1,1

0 (Ω;Rm), with J(lA + u) < ∞. Let also Ω′ ⊂ Rn be an open bounded
set.

Given δ > 0, there exists a function u′ ∈W 1,1
0 (Ω′;Rm) such that:

i) ImDu = ImDu′;

ii)
∫

Ω′ L(A+Du′(x))dx

meas Ω′
=

∫

Ω L(A+Du(x))dx

meas Ω
, and

iii)
||u′||L1(Ω′)

meas Ω′
≤
δ||u||L1(Ω)

meas Ω
.

Proof. Without loss of generality we assume that Ω contains the origin.

For each ǫ > 0 we define uǫ(x) = ǫu(x/ǫ). Then uǫ ∈W 1,1
0 (ǫΩ;Rm), Duǫ(x) = Du(x/ǫ)

and, therefore,
∫

ǫΩ

L(A+Duǫ(x))dx = ǫn
∫

Ω

L(A+Du(y))dy. (10)

We also have
∫

ǫΩ

|uǫ(x)|dx = ǫ

∫

ǫΩ

|u(x/ǫ)|dx = ǫn+1

∫

Ω

|u(y)|dy, i.e.

||uǫ||L1(ǫΩ)/meas (ǫΩ) = ǫ||u||L1(Ω)/meas Ω. (11)

We define F to be the family of all sets of the form x + ǫΩ̄, where ǫ < δ, x ∈ Ω′,
and (x + ǫΩ̄) ⊂ Ω′. Then F satisfies all the assumptions of Theorem 2.1 for the case
U = Ω′. We can apply that theorem to find an at most countable collection xj ∈ Ω′,
and ǫj < δ, such that the sets Cj := xj + ǫjΩ̄, j ∈ N, do not intersect and Cj ⊂ Ω′,
j ∈ N, meas (Ω′ \ ∪jCj) = 0.

We define u′ ∈W 1,1
0 (Ω′;Rm) as follows: set u′(x) = uǫj(x− xj) for x ∈ Cj, j ∈ N, and

u′ = 0 otherwise. Then, from (10), we have

∫

Ω′

|u′| =
∑

∫

ǫjΩ

|uǫj(x)| ≤
δ

meas (Ω)

∑

meas (ǫjΩ)

∫

Ω

|u|

proving the validity of the Proposition.
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Proposition 2.4. Let L be a nonnegative continuous function that satisfy (7), let A ∈
Rn×m, and let u ∈W 1,1

0 (Ω;Rm) be such that J(lA + u) <∞.

Then given δ > 0 there exists a function φ ∈ C∞
0 (Ω;Rm) with

|J(lA + φ)− J(lA + u)| < δ. (12)

This proposition says that the infimums of the functional (1) in the classes {lA + u :
u ∈ W 1,1

0 } and in {lA + φ : φ ∈ C∞
0 } coincide, provided that (7) holds. This fact

does not hold in general, as example (5) shows. An open problem is to verify whether
Proposition 2.4 remains valid for strong materials, i.e. for L satisfying only (3), see [28]
for a relevant information.

Proof of Proposition 2.4. By Proposition 2.3, given an open set Ω′ ⊂⊂ Ω with
Lipschitz boundary, we can find a function u′ ∈W 1,1

0 (Ω′;Rm) such that

∫

Ω′

L(A+Du′(x))dx/meas Ω′ =

∫

Ω

L(A+Du(x))dx/meas Ω, (13)

Set u′ = 0 in Ω \ Ω′ and consider the ǫ-mollifications wǫ of u
′. Then wǫ ∈ C∞

0 (Ω;Rm)
for ǫ > 0 sufficiently small, wǫ → u′ in W 1,1(Ω;Rm) as ǫ → 0, cf. [23]. Let also gǫ be
the ǫ-mollifications of the function g := G(A+Du′) : Ω → R. Then gǫ → g in L1. By
Jensen inequality (G is convex) we obtain

G(A+Dwǫ(x)) ≤ gǫ(x), x ∈ Ω.

This, (7), and the convergences gǫ → g, Dwǫ → Du′ in L1 for ǫ → 0 allow to assert
that L(A+Dwǫ) → L(A+Du′) in L1 as ǫ→ 0, e.g. via Lemma 4.3 of [59].

Since Ω′ can be taken with meas (Ω \ Ω′) arbitrarily small and since (13) holds we
obtain (12).

The proof is complete.

Lemma 2.5. Let L : Rn×m → R be a continuous and nonnegative function. We define
Lqc : Rn×m → R as follows

Lqc(A) := inf{J(lA + φ)/meas Ω : φ ∈ C∞
0 (Ω;Rm)}.

Then Lqc is a continuous, nonnegative, and quasiconvex function.

We include proof of this lemma for convenience of the reader. Its versions are well-
known in the literature, starting with [16].

Proof. Obviously Lqc ≥ 0.

To prove the continuity of Lqc we establish both lower semicontinuity and upper semi-
continuity.

Given φ ∈ C∞
0 (Ω;Rm) and given a sequence Aj → A, j → ∞, we have J(lAj

+ φ) →
J(lA + φ), j → ∞. This gives upper semicontinuity of Lqc at A.
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To prove lower semicontinuity, given ǫ > 0, we consider φj ∈ C∞
0 (Ω;Rm), j ∈ N, such

that
|Lqc(Aj)meas Ω− J(lAj

+ φj)| < ǫ. (14)

Let Ω′ ⊂⊂ Ω be an open set with Lipschitz boundary. By Proposition 2.3 applied to
φj and by (14) we can find φ′

j ∈W 1,∞
0 (Ω′;Rm) such that

|Lqc(Aj)meas Ω′ − J(lAj
+ φ′

j; Ω
′)| < ǫmeas Ω′/meas Ω, j ∈ N. (15)

Let ψ ∈ C∞
0 (Ω) be such that ψ = 1 in Ω′, 0 ≤ ψ ≤ 1. For each j ∈ N we define

fj := ψ(lAj
+ φ′

j) + (1− ψ)lA; here φ′
j = 0 in Ω \ Ω′.

Then fj ∈ lA +W 1,∞
0 (Ω;Rm) and, therefore,

Lqc(A)meas Ω ≤ J(fj), j ∈ N. (16)

For each j ∈ N we have

Dfj = Dψ ⊗ (lAj
− lA + φ′

j) + A+ ψ(Aj − A+Dφ′
j).

In Ω′ we have Dψ = 0, ψ = 1 and, therefore,

Dfj = Aj +Dφ′
j, j ∈ N; (17)

in Ω \ Ω′ we have φ′
j = 0 and, therefore,

Dfj = A+ ψ(Aj − A) +Dψ ⊗ (lAj
− lA), j ∈ N. (18)

Then (17), (18) imply

lim sup
i→∞

|J(fj)− J(lAj
+ φ′

j; Ω
′)| ≤ J(lA; Ω \ Ω′), (19)

and, therefore, we can also use (15), (16) to infer

Lqc(A)meas Ω ≤ lim inf
j→∞

J(fj) ≤ lim inf
j→∞

Lqc(Aj)meas Ω′ + ǫ+ J(lA; Ω \ Ω′).

Since Ω′ can be taken with meas (Ω \ Ω′) arbitrarily small we obtain

Lqc(A) ≤ lim inf
j→∞

Lqc(Aj) + ǫ/meas Ω.

Lower semicontinuity of Lqc at A and, then, continuity at A is established.

To prove quasiconvexity of Lqc enough to establish the inequality

Lqc(A)meas ≤

∫

Ω

Lqc(A+Dφ(x))dx (20)

for piece-wise affine φ ∈W 1,∞
0 (Ω;Rm), i.e. for the case when Ω can be decomposed as

a countable union of disjoint Lipschitz domains Ωj, j ∈ N, with φ : Ωj → Rm affine
for each j ∈ N and a set of zero measure. We assume that Dφ = Aj in Ωj, j ∈ N.
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Given ǫ > 0 for each j ∈ N we can find φj ∈ C∞
0 (Ωj;R

m) with

Lqc(A+ Aj)meas Ωj ≥

∫

Ωj

L(A+ Aj +Dφj(x))dx− ǫmeas Ωj, (21)

cf. Proposition 2.3. For each j ∈ N we define ψj ∈W 1,∞
0 (Ω;Rm) as follows:

ψj = φ+ φi in Ωi if i ≤ j, ψj = φ otherwise.

Then (21) implies

Lqc(A)meas Ω ≤

∫

Ω

L(A+Dψj(x))dx =
∞
∑

i=1

∫

Ωi

L(A+Dψj(x))dx

≤

j
∑

i=1

{Lqc(A+ Ai)meas Ωi + ǫmeas Ωi}

+
∑

i>j

∫

Ωi

L(A+Dφ(x))dx, j ∈ N. (22)

The right-hand side in (22) converges to

∞
∑

i=1

Lqc(A+ Ai)meas Ωi + ǫmeas Ω =

∫

Ω

Lqc(A+Dφ(x))dx+ ǫmeas Ω.

This way we obtain (20), i.e. Lqc is quasiconvex at A.

Proof of Lemma 2.5 is complete.

3. Proof of Theorem 1.1

We will exploit certain advantages that are guaranteed by the situation of strong ma-
terials, i.e. by the inequality (3).

Lemma 3.1. Let u ∈ W 1,n+ǫ(Ω;Rm). Then u is continuous and a.e. differentiable in
the classical sense.

In case uk ∈W 1,n+ǫ(Ω;Rm) and uk ⇀ u inW 1,n+ǫ, k → ∞, we also have ||uk−u||C → 0.

See e.g. [23, Ch. 4,6] for a proof.

Lemma 3.2. Let fk : Ω → [0,∞[ satisfy ||fk||L1(Ω) < const <∞, k ∈ N.

Then there exists a subsequence (not relabeled) and a Radon measure µ supported in
Ω̄ such that fk ⇀

∗ µ in the sense of measures. Moreover µ = µs + µr, where µs, µr

are Radon measures such that µs is singular, µr is regular with respect to Lebesque
measure; in particular µr = fdx with f ∈ L1(Ω).

Again see [23, Ch. 1] for these results.

In this section we establish a more general, than Theorem 1.1, result which is
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Theorem 3.3. Let L : Rn×m → R be continuous and nonnegative. Assume that L
satisfies both (7) and (8).

Let u ∈ W 1,1(Ω;Rm) satisfy J(u) < ∞ and assume that u is a.e. differentiable in the
classical sense, L is quasiconvex at Du(x) for a.e. x ∈ Ω.

If uk ∈W 1,1(Ω;Rm), k ∈ N, and if ||uk − u||L∞ → 0, k → ∞, then

lim inf
k→∞

J(uk) ≥ J(u).

Proof. The result follows in case J(uk) → ∞, k → ∞. Therefore we may assume
without loss of generality that

J(uk) → I <∞, k → ∞. (23)

Moreover by Lemma 3.2 we may also assume that the functions fk := L(Duk), k ∈ N,
generate a Radon measure µ supported in Ω̄:

fk ⇀
∗ µ, k → ∞. (24)

Let x0 ∈ Ω be a point of classical differentiability of u, a Lebesque point of the functions
x ∈ Ω → Du(x), x ∈ Ω → G(Du(x)), and a point of quasiconvexity of L at Du(x).

Our aim is to prove the following main estimate: given δ > 0 there exists r(x0, δ) > 0
such that for each r ≤ r(x0, δ) there exists k(r) ∈ N such that for k ≥ k(r) we have

∫

B(x0,r)

L(Du(x))dx

≤

∫

B(x0,r)

L(Duk(x))dx+ δmeas B(x0, r) + cµ
{

B̄(x0, r) \B(x0, (1− δ)r)
}

. (25)

Classical differentiability of u at x0 means

u(x) = u(x0) + 〈Du(x0), x− x0〉+ o(x− x0) = lA + o(x− x0), here A = Du(x0),

where |o(x − x0)| ≤ w(|x − x0|) with w being a nonnegative nonincreasing function
such that w(r)/r → 0 as r → +0.

We may consider another nonnegative nonincreasing function w1 such that w1(r) → 0
and w(r)/w1(r)r → 0 as r → +0.

Given r > 0 we define urk ∈ lA +W 1,1
0 (B(x0, r);R

m) by

urk := φuk + (1− φ)lA,

where φ ∈ C∞
0 (B(x0, r)), 0 ≤ φ ≤ 1, φ = 1 in B(x0, r(1− w1(r))); we can choose φ to

satisfy the inequality

|Dφ| ≤
2

rw1(r)
. (26)

In B(x0, r(1− w1(r)) we have
Durk = Duk. (27)



M. A. Sychev / First General Lower Semicontinuity and Relaxation Results ... 193

In B(x0, r) \B(x0, r(1− w1(r)) we have

Durk = φ(Duk) + (1− φ)Du(x0) +Dφ⊗ (uk − lA), (28)

where due to (26)

|Dφ⊗ (uk − lA)| ≤
2

rw1(r)
2w(r) ≤ η (29)

provided r is sufficiently small and ||uk − u||L∞(B(x0,r);Rm) ≤ w(r) that holds for all
k ≥ k(r), see (8) for the definition of η > 0. Then (8), (28), (29) and convexity of G
imply

G(Durk(x)) ≤ c5G(φ(Duk(x)) + (1− φ)Du(x0)) + c6

≤ c5φG(Duk(x)) + (1− φ)G(Du(x0)) + c6.

Therefore the inequality (7) implies

L(Durk(x)) ≤ c7{L(Duk(x)) + L(Du(x0))}+ c8. (30)

By Proposition 2.4 and by quasiconvexity of L at Du(x0)) we infer (see also (27), (30))
∫

B(x0,r)

L(Du(x0))dx ≤

∫

B(x0,r)

L(Durk(x))dx

≤

∫

B(x0,r(1−w1(r)))

L(Duk(x))dx

+ c7

∫

B(x0,r)\B(x0,r(1−w1(r)))

{L(Duk(x)) + L(Du(x0))}dx

+ c8meas {B(x0, r) \B(x0, r(1− w1(r)))}. (31)

Moreover
∣

∣

∣

∣

∫

B(x0,r)

{L(Du(x))− L(Du(x0))}dx

∣

∣

∣

∣

≤ w2(r)meas B(x0, r), (32)

where w2(r) → 0 as r → +0.

Then (31), (32) result in
∫

B(x0,r)

L(Du(x))dx

≤ w2(r)meas B(x0, r) +

∫

B(x0,r)

L(Duk(x))dx

+ c7

∫

B̄(x0,r)\B(x0,r(1−w1(r)))

L(Duk(x))dx

+ (c7L(Du(x0)) + c8)meas {B(x0, r) \B(x0, r(1− w1(r)))}

≤

∫

B(x0,r)

L(Duk(x))dx+ {w2(r) + (c7L(Du(x0)) + c8)c9w1(r)}meas B(x0, r)

+ c7

∫

B̄(x0,r)\B(x0,r(1−w1(r)))

L(Duk(x))dx. (33)
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In case r > 0 is sufficiently small and k ≥ k(r) we can guarantee that the second term
in the right-hand side does not exceed δmeas B(x0, r)/2 and that c7c9w1(r) ≤ δ/2.
The third term does not exceed

c7µ(B̄(x0, r) \B(x0, r(1− w1(r))) + c7meas {B̄(x0, r) \B(x0, r(1− w1(r)))}

for k sufficiently large, see (24). Since the second term in the last expression is less
than c7c9w1(r)meas B(x0, r) we infer (25) with c = c7.

Now we can use (25) to prove the theorem.

By Lemma 3.2 µ = µs+ fdx with f ∈ L1(Ω). Then we can find a compact set Kδ ⊂ Ω̄
of zero measure such that µs(Ω \Kδ) ≤ δ. Consider the set U ⊂ (Ω \Kδ) as union of
all those points x0 ∈ (Ω \Kδ) where (25) holds; then meas U = meas Ω. By (25) we
can define a Vitali cover of U . Then Theorem 2.1 allows to find a finite collection of
disjoint balls B̄1, . . . , B̄M ⊂ (Ω \ Kδ), with meas (Ω \ ∪M

i=1Bi) ≤ δ, for each of which
(25) holds if k ≥ max{k(i) : i = 1, . . . ,M}. For these k we have

∫

∪M
i=1Bi

L(Du(x))dx ≤

∫

∪M
i=1Bi

L(Duk(x))dx+ δ
(

meas ∪M
i=1Bi

)

+ cµs(Ω \Kδ) + c||f ||L1(∪M
i=1(Bi\(1−δ)Bi))

≤ J(uk) + δ(meas Ω + c) + c||f ||L1(Ωδ), (34)

where meas Ωδ ≤ c9δmeas Ω. Therefore

lim inf
k→∞

J(uk) ≥ J(u).

Proof. Proof of Theorem 1.1 can be reduced to the situation considered in Theorem
3.3. In case (23) holds we can use (7) and lower semicontinuity with respect to the
weak convergence in L1 of integral functionals with convex integrands, see e.g. [47], to
derive J(u) <∞. Then Lemma 3.1 asserts that the assumptions of Theorem 1.1 imply
the assumptions of Theorem 3.3. This proves the result.

The result of Corollary 1.2 immediately follows from Theorem 1.1.

4. Proof of Theorem 1.3

A crucial ingredient of the proof of Theorem 1.3 is an approximation of admissible
functions by nearly piece-wise affine ones both in W 1,1-norm and in energy.

Let Ω′ be an open bounded set of Rn. We say that a function f : Ω′ → Rm is finitely
piece-wise affine in Ω′ provided there is a decomposition of Ω′ into a finite collection
of open disjoint sets, in each of which f is affine, and a set of zero measure.

Lemma 4.1. Let L be a continuous and nonnegative function and let L satisfy (7), (8).
Let also u ∈W 1,1(Ω;Rm) be a.e. differentiable in the classical sense with J(u) <∞.

Then there exist open sets Ωk ⊂⊂ Ω with Lipschitz boundary and functions uk ∈
u +W 1,1

0 (Ω;Rm) such that uk : Ωk → Rm is finitely piece-wise affine in Ωk, k ∈ N,
and

meas (Ω \ Ωk) → 0, ||uk − u||W 1,1∩L∞(Ω) → 0, J(uk) → J(u) as k → ∞.
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Proof. Let x0 ∈ Ω be a Lebesque point of the functions x → Du(x), x → L(Du(x))
and a point of classical differentiability of u. Then

u(x) = u(x0) + 〈Du(x0), x− x0〉+ o(x− x0) = lA + o(x− x0), A := Du(x0),

where |o(x−x0)| ≤ w(|x−x0|) with a nonnegative nonincreasing function w such that
w(r)/r → 0 as r → +0.

We can find another nonnegative nonincreasing function w1 such that w1(r) → 0,
w(r)/rw1(r) → 0 as r → +0.

Given r > 0 we define ur : B(x0, r) → Rm as follows:

ur = φlA + (1− φ)u,

where φ ∈ C∞
0 (B(x0, r)), φ = 1 in B(x0, r(1− w1(r))), 0 ≤ φ ≤ 1. The function φ can

be chosen satisfying the inequality

|Dφ| ≤ 2/rw1(r).

Then ur ∈ u+W 1,1
0 (B(x0, r);R

m) and

Dur(x) = φ(Du(x0)−Du(x)) +Du(x) +Dφ(x)⊗ (lA − u(x)). (35)

In B(x0, r(1− w1(r))) we have

Dur(x) = Du(x0). (36)

In B(x0, r) \B(x0, r(1− w1(r))) we have

Dur(x) = φDu(x0) + (1− φ)Du(x) +Dφ(x)⊗ (lA − u(x)). (37)

If r > 0 is sufficiently small then the last term in (37) does not exceed by modulus
2w(r)/rw1(r) ≤ η, see (8), and we can apply (8) to infer

G(Dur(x)) ≤ c5φG(Du(x0)) + c5(1− φ)G(Du(x)) + c6.

Due to (7)
∫

B(x0,r)\B(x0,r(1−w1(r)))

L(Dur(x))dx

≤ c7

∫

B(x0,r)\B(x0,r(1−w1(r)))

{L(Du(x0)) + L(Du(x))}dx

+ c8meas (B(x0, r) \B(x0, r(1− w1(r)))

≤ {c7L(Du(x0)) + c8}c9w1(r)meas B(x0, r)

+ c7

∫

B(x0,r)\B(x0,r(1−w1(r)))

L(Du(x))dx

≤ δmeas B(x0, r) + c7

∫

B(x0,r)\B(x0,r(1−w1(r)))

L(Du(x))dx (38)
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if r is sufficiently small and δ > 0 is beforehand fixed.

For sufficiently small r > 0 we also have

||ur − u||L∞(B(x0,r)) ≤ ||φ(lA − u)||L∞ ≤ w(r) ≤ δ, (39)

||Dur −Du||L1(B(x0,r))

≤

∫

B(x0,r(1−w1(r)))

|Du(x0)−Du(x)|dx

+

∫

B(x0,r)\B(x0,r(1−w1(r)))

|φ(Du(x0)−Du(x)) +Dφ⊗ (lA − u)|dx

≤

∫

B(x0,r)

|Du(x0)−Du(x)|dx+ (2w(r)/rw1(r))c9w1(r)meas B(x0, r)

≤ w2(r)meas B(x0, r) + 2c9(w(r)/r)meas B(x0, r) ≤ δmeas B(x0, r) (40)

since w(r)/r, w2(r) → 0 as r → +0 (recall that x0 is a Lebesque point for the function
x→ Du(x)).

Finally, due to (36), (38) we can take r > 0 so small that w1(r) ≤ δ and

∣

∣

∣

∣

∫

B(x0,r)

{L(Du(x))− L(Dur(x))}dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

B(x0,r(1−w1(r)))

{L(Du(x))− L(Du(x0))}dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

B(x0,r)\B(x0,r(1−w1(r)))

{L(Du(x))− L(Dur(x))}dx

∣

∣

∣

∣

≤ 2δmeas B(x0, r) + (c7 + 1)

∫

B(x0,r)\B(x0,r(1−δ))

L(Du(x))dx, (41)

here we exploited the assumption that x0 is a Lebesque point for the function x →
L(Du(x)).

Given k ∈ N we can apply (39)–(41) and the Vitali covering theorem (Theorem 2.1)
to find a finite collection of disjoint balls B̄1, . . . , B̄M(k) ⊂ Ω such that

meas
(

Ω \ ∪
M(k)
i=1 Bi

)

≤ 1/k (42)

and for each Bi = B(xi, ri), i = 1, . . . ,M(k), the estimates (39)–(41) holds for δ = 1/k
with uri ∈ u+W 1,1

0 (B(xi, ri) : R
m) such that uri is affine in B(xi, (1− 1/k)ri).

Then we define uk = uri in Bi, i = 1, . . . ,M(k), uk = u otherwise.

The inequality (39) implies
||uk − u||L∞ ≤ 1/k. (43)

The inequality (40) implies

||Duk −Du||L1 ≤ (1/k)meas Ω. (44)
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Finally the inequality (41) implies

|J(uk)− J(u)| ≤ (2/k)meas Ω + (c7 + 1)

∫

∪
M(k)
i=1 (B(xi,ri)\B(xi,ri(1−1/k))

L(Du(x))dx

= 2meas Ω/k + (c7 + 1)J(u; Ω̃k)

with meas Ω̃k → 0 as k → ∞. Therefore

J(uk) → J(u), k → ∞. (45)

The inequalities (43)–(45) imply the convergences

||uk − u||L∞ → 0, ||uk − u||W 1,1 → 0, J(uk) → J(u) as k → ∞.

Moreover uk is affine in B(xi, ri(1−1/k)), i = 1, . . . ,M(k). Since meas (Ω\∪
M(k)
i=1 B(xi,

ri(1− 1/k))) → 0 as k → ∞ the proof is complete.

As we already mentioned in Introduction in this section we establish a bit stronger,
than Theorem 1.3, result – we prove the relaxation theorem in the case (7), (8) at
deformations which are a.e. differentiable in the classical sense.

Theorem 4.2. Let L : Rn×m → R be a continuous and nonnegative function that
satisfies (7), (8).

Then Lqc is also continuous and nonnegative, moreover it is quasiconvex and satisfies
(7). In case u ∈ W 1,1(Ω;Rm) with Jqc(u) < ∞ and u is a.e. differentiable in the
classical sense there exists a sequence uk ∈ u+W 1,1

0 (Ω;Rm) such that ||uk−u||L∞ → 0
and J(uk) → Jqc(u) as k → ∞.

Proof. By Lemma 2.5 the integrand Lqc is nonnegative, continuous and quasiconvex.
It also satisfies the same estimates (7) as L. In fact, the right-hand side inequality
holds since Lqc ≤ L; the left-hand side inequality is valid since the function c1G(·)+ c2
is convex and we may apply the Jensen inequality to derive

c1G(A) + c2 ≤ c1

∫

Ω

G(A+Dφ(x))dx+ c2

≤

∫

Ω

L(A+Dφ(x))dx, ∀φ ∈ C∞
0 (Ω;Rm),

i.e. c1G(A) + c2 ≤ Lqc(A).

Let u ∈ W 1,1(Ω;Rm) be a.e. differentiable in the classical sense and let Jqc(u) < ∞.
Be Lemma 4.1 we can isolate functions uk ∈ u+W 1,1

0 (Ω;Rm) and open sets Ωk ⊂⊂ Ω,
k ∈ N, such that each Ωk has Lipschitz boundary and uk : Ωk → Rm is finitely
piece-wise affine in Ωk, k ∈ N; moreover

meas (Ω \ Ωk) → 0, ||uk − u||W 1,1∩L∞(Ω) → 0, Jqc(uk) → Jqc(u) as k → ∞. (46)

Then
Lqc(Duk(·)) → Lqc(Du(·)) in L1, k → ∞, (47)
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cf. e.g. Lemma 4.3 of [59].

Given k ∈ N we decompose Ωk into a finite collection of disjoint open sets Ωj
k, j ∈

{1, . . . ,M(k)}, such that uk : Ωj
k → Rm is affine for each j ∈ N and a set of zero

measure. For each j ∈ {1, . . . ,M(k)} we may isolate φk
j ∈W 1,∞

0 (Ωj
k;R

m) with

∣

∣Jqc
(

uk; Ω
j
k

)

− J
(

uk + φk
j ; Ω

j
k

)
∣

∣ ≤
1

k
meas Ωj

k, (48)

||φk
j ||L∞(Ωj

k)
≤ 1/k, (49)

cf. Proposition 2.3.

We define wk : Ω → Rm as follows

wk = uk + φk
j in Ωj

k, j ∈ {1, . . . ,M(k)},

wk = uk in Ω \ Ωk.

Then (46), (49) imply

||wk − u||L∞ → 0, k → ∞.

Moreover wk ∈ u+W 1,1
0 (Ω;Rm) and

|J(wk)− Jqc(u)| ≤ |J(wk; Ωk)− Jqc(u; Ωk)|+ |J(uk; Ω \ Ωk)− Jqc(u; Ω \ Ωk)|. (50)

The first term in the right-hand side does not exceed

|J(wk; Ωk)− Jqc(uk; Ωk)|+ |Jqc(uk; Ωk)− Jqc(u; Ωk)|, (51)

where the first term in (51) converges to zero by (48) and the second term in (51)
converges to zero by (47). The second term in (50) converges to zero since meas (Ω \
Ωk) → 0 (and, then, Jqc(u; Ω \ Ωk) → 0 as k → ∞) and since

∫

Ω\Ωk

G(Duk(x))dx→ 0, k → 0,

because of (47) and (7).

Therefore J(wk) → Jqc(u) as k → ∞.

This completes the proof of the theorem.

Proof of Theorem 1.3. By Theorem 4.2 and by Lemma 3.1 given u ∈ W 1,1(Ω;Rm)
with Jqc(u) <∞ we can isolate a sequence uk ∈ u+W 1,1

0 (Ω;Rm) such that

||uk − u||L∞ → 0, J(uk) → Jqc(u) as k → ∞.

Then (3) implies uk ⇀ u in W 1,n+ǫ. This completes the proof of the theorem.
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