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1. Introduction

Γ-convergence is a variational convergence for sequences of functionals Ij defined in an
appropriate space Xj, which is intimately related to the asymptotic behaviour of mini-
mum problems min {Ij(u) : u ∈ Xj} . We say that the sequence {Ij} is Γ-convergent,
with respect to an appropriate topology, to the functional I if, for any function u, such
functional evaluated at u is a lower bound for the lower limits of sequences {Ij(uj)},
given any sequence {uj} converging to u. Besides, such lower bound should be attained
for at least one sequence {uj}. See [10, 11]. Given a sequence of integral functionals
{Ij} Γ-converging to a functional I, the main aim is to prove that the Γ-limit I is an
integral functional and its integrand may be represented explicitly.

Many authors have studied Γ-convergence of sequences of functionals of the form

Ij(u) =

∫

Ω

W (jx,∇u(x)) dx

defined in some Sobolev space, where Ω is an open bounded subset of Rn, and {jx} is
the oscillating sequence (with j tending to ∞), under the hypothesis that the function
W : Rn × R

n → R is periodic in the first variable, and satisfies a standard growth
condition. See [6, 13, 14]. A great interest in studying Γ-convergence of functionals with
periodic integrands comes from the description of the macroscopic behaviour of periodic
structures in composite materials, and, in this way, is related to the homogenization
theory. See [2, 5, 7, 27, 22].
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Nevertheless, we could ask about the Γ-convergence in the non-periodic setting: how
could we represent explicitly the integrand of the Γ-limit of sequences of functionals of
the type

Ij(u) =

∫

Ω

W (aj(x),∇u(x)) dx

for general sequences of functions aj : Ω → R
m and with non-periodic integrand

W : Rm×R
n → R ? In [18], an explicit characterization of the integrand of the Γ-limit

(with respect to the weak topology in W 1,p(Ω)) is obtained through a minimization
problem depending only on W , and the Young measure associated with the sequence
{aj}. Such characterization of the integrand makes sense if the sequence {aj} satisfies
the local condition called Average Gradient Property (AGP), see [18, Definition 4.1].
The sequence {aj} is said to satisfy the AGP if, in a neighbourhood of a.e. x ∈ Ω,
any sequence of piecewise constant functions, equal to the average of {aj(x + rj·)}
on subsets of some partition of the unit ball B ⊂ R

n, can be approximated by a
sequence of gradients. However, in practise this condition is not so easy to handle. In
[21] a sufficient condition on the sequence {aj}, called Composition Gradient Property
(CGP), is introduced. Namely, it is proved that if the sequence {aj} satisfies the
CGP, then it also satisfies the AGP. We say that the sequence {aj} satisfies the CGP
if its composition with some continuous, one-to-one field is “essentially a sequence of
gradients� in the sense that may be approximated (in the strong topology of a Lebesgue
space) by a sequence of gradients. In some sense, Γ-limits of integral functionals can
be understood and written down in terms of new integral functionals provided the
sequence of functionals depend on a sequence of functions which, even though they
may not be gradients, “have a gradient structure�.

In this work our aim is to study the Γ-convergence of sequences of functionals satisfying
a non-standard growth condition depending on the periodic laminate structure of the
domain Ω. Precisely, we would like to understand the behaviour of the sequence of
functionals

Fj(u) =

∫

Ω

f(pj(x),∇u(x)) dx,

when f : Rm × R
n → R is a continuous function, convex in the second variable, and

satisfies the nonstandard growth condition

α|ρ||λ| ≤ f(λ, ρ) ≤ β
(

1 + |ρ||λ|
)

for all (λ, ρ) ∈ R
m × R

n, (1)

for some β ≥ α > 0. Here the sequence of functions pj : Ω → R
m stands for a single

laminate (see [4, 15, 16]) defined by

pj(x) = A1χ(0,t)(jx ·
→
n) + A2(1− χ(0,t)(jx ·

→
n)),

for vectors A1, A2 ∈ R
m such that |A1| = p ≤ q = |A2|, and unit vector

→
n ∈ R

n, where

χ(0,t)(y ·
→
n) is the characteristic function of the interval (0, t) over (0, 1), extended by

periodicity to R. Thus the sequence {f(pj(x), ·)} behaves like the power | · |p in the

layers orthogonal to
→
n with proportion t, and like the power | · |q otherwise, i.e.

α|ρ|p ≤ f(pj(x), ρ) ≤ β(1 + |ρ|p), if 〈jx ·
→
n〉 ∈ (0, t)

α|ρ|q ≤ f(pj(x), ρ) ≤ β(1 + |ρ|q), if 〈jx ·
→
n〉 ∈ (t, 1),
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for every j ∈ N and ρ ∈ R
n, where 〈y〉 stands for the fractional part of y ∈ R. Notice

that the nonstandard growth condition (1) is different from assuming either

α|ρ|p ≤ f(λ, ρ) ≤ β(1 + |ρ|q), for all (λ, ρ) ∈ R
m × R

n, (2)

or

α|ρ|p(x) ≤ f(pj(x), ρ) ≤ β(1 + |ρ|p(x)), for a.e. x ∈ Ω and all ρ ∈ R
n, (3)

taking some continuous function p : Ω → (1,∞). When the integrand f satisfies the
previous p(x)-growth condition, the associated sequence of functionals Fj is defined in
the generalized Sobolev space W 1,p(x)(Ω) given by

W 1,p(x)(Ω)

=

{

u ∈ L1(Ω) :

∫

Ω

|ηu(x)|p(x)dx <∞,

∫

Ω

|η∇u(x)|p(x)dx <∞, for some η > 0

}

.

See [1, 8, 12]. A great interest in studying this generalized Sobolev spaces comes from
the modelling of the so called electroheological fluids, i.e. special non-Newtonian fluids
which change their mechanical properties in the presence of electromagnetic fluids. See
[23, 24]. Such fluids may be modelled by the homogeneous p(x)-Laplacean

−div
[

p(x) |∇u(x)|p(x)−2∇u(x)
]

= 0 in Ω,

whose weak solutions are in W 1,p(x)(Ω).

Here we want to go further considering a laminate-type growth condition depending
on the parameter j, so that each functional Fj is defined in the generalized Sobolev
space W 1,|pj(x)|(Ω) given by

W 1,|pj(x)|(Ω)

=

{

u ∈ L1(Ω) :

∫

Ω

|ηu(x)||pj(x)|dx <∞,

∫

Ω

|η∇u(x)||pj(x)|dx <∞, for some η > 0

}

,

since it holds

α|ρ||pj(x)| ≤ f(pj(x), ρ) ≤ β(1 + |ρ||pj(x)|) for every ρ ∈ R
n, a.e. x ∈ Ω.

In this way our aim is to study the Γ-convergence of this sequence of functionals Fj

defined in the special generalized space W 1,|pj(x)|(Ω). One of the reasons for this study
comes from the homogenization of the |pj(x)|-Laplacean given by

−div
[

|pj(x)| |∇uj(x)|
|pj(x)|−2∇uj(x)

]

= 0 in Ω,

whose associated energies Fj defined by putting

Fj(u) =

∫

Ω

|∇u(x)||pj(x)| dx (4)

are combination, depending on j, of different powers, and are defined in intermediate
classes of functions between Sobolev spacesW 1,q(Ω) andW 1,p(Ω). See [19]. It is known
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that if the exponents are the same, e.g. p = 2 = q, then the resulting homogenized
density will be also a power-law with the same exponent. See [27, 20, 25]. Moreover Γ-
convergence of functionals with periodic integrands satisfying (p, q)-growth conditions,
with 1 < p ≤ q < p⋆ (p⋆ is the Sobolev exponent of p), was already studied, see [6]; and
the integral representation of the Γ-limit for general sequences of functionals assuming
growth of order p(x) was proved in [9]. In this work, our main contribution is the
explicit characterization of the limit energy density of the sequence {Fj} through a
finite dimensional minimization problem, under no restrictions on the upper exponent
q.

On the other hand, if one considers the Γ-convergence in different topologies and with
different structures on Ω, interesting and surprising phenomena may occur. For in-
stance, the Lavrentiev phenomenon may appear when we take the chess-board structure
on the plane and power-laws, with different powers. Indeed, the asymptotic behaviour
of sequences of functionals given in (4) was already studied in the case of chess-board
structures, i.e. when the integrands behave like the power | · |p on the black squares,
and like the power | · |q on the white squares. In this case, the homogenized integrand
depends on the exponent of the Sobolev space where we are minimizing. See [28, 26].

2. Main Results

Our main result is the following characterization of the limit energy density ψ, and the
main ingredient in the proof is the laminate (gradient) structure of the domain.

Theorem 2.1. Let Ω be an open bounded set in R
n, with Lipschitz boundary. Let

f : Rm × R
n → R be a continuous function, convex in the second variable, satisfying

the nonstandard growth condition

α|ρ||λ| ≤ f(λ, ρ) ≤ β(1 + |ρ||λ|) for all (λ, ρ) ∈ R
m × R

n,

for some β ≥ α > 0. Consider the sequence of functions pj : Ω → R
m defined by

pj(x) = A1χ(0,t)(jx ·
→
n) + A2(1− χ(0,t)(jx ·

→
n)),

for vectors A1, A2 ∈ R
m such that |A1| = p ≤ q = |A2|, and unit vector

→
n ∈ R

n. The
sequence of functionals Fj given by

Fj(u) =

∫

Ω

f(pj(x),∇u(x)) dx

is Γ-convergent (in the weak topology of W 1,p(Ω)) to the functional

F (u) =

∫

Ω

ψ(∇u(x)) dx,

where ψ : Rn → R is defined by putting

ψ(ρ) = min
Λ1,Λ2∈Rn

{

t f(A1,Λ1) + (1− t) f(A2,Λ2) :

ρ = tΛ1 + (1− t)Λ2, Λ1 − Λ2 ‖
→
n
}

(5)
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or, equivalently,

ψ(ρ) = min
c∈R

{

t f(A1, ρ− (1− t) c
→
n) + (1− t) f(A2, ρ+ t c

→
n)
}

. (6)

We achieve an explicit characterization for the limit energy density ψ through a finite
minimization problem, depending only on t ∈ (0, 1) and

→
n. The function ψ is well

defined by (6) provided, for any ρ ∈ R
n, the function g(ρ, ·) : R → [0,+∞) defined by

putting
g(ρ, c) = t f(A1, ρ− (1− t) c

→
n) + (1− t) f(A2, ρ+ t c

→
n)

is continuous, convex and bounded from below, so that there exists c(ρ) ∈ R satisfying

ψ(ρ) = g(ρ, c(ρ)).

In other words the minimization problem attains its minimum due to the convexity
imposed on the integrand f . From expression (5), we conclude that the Γ-limit F is a
functional defined in the intermediate space denoted by

Ψ(Ω) =
{

u = v + w : v ∈W 1,p(Ω), w ∈W 1,q(Ω)
}

,

which is a Banach space with respect to the norm

‖u‖Ψ = inf
{

‖v‖W 1,p + ‖w‖W 1,q : u = v + w, v ∈W 1,p(Ω), w ∈W 1,q(Ω)
}

.

The condition Λ1−Λ2 ‖
→
n in (5) plays an interesting role in the asymptotic behaviour.

Indeed, for any ρ ∈ R
n parallel to the unit vector

→
n, it holds

ψ(ρ) ≤ tf(A1, tρ) + (1− t)f(A2, 0) ≤ k(1 + |ρ|p),

for some constant k ∈ R. This is clearly seen in the following example.

Let us consider the density f : R× R → R given by

f(λ, ρ) = |ρ− g(λ)|λ

for some continuous function g : R → R, and A1 = 2, A2 = 3. Thus the associated
limit energy density ψ : R → R is defined as the inf-convolution

ψ(ρ) = inf
a,b∈R

{

t|a− g(2)|2 + (1− t)|b− g(3)|3 : ρ = ta+ (1− t)b
}

.

If we take g(2) = 2 and g(3) = 0 then, after some calculus, the optimal pair (a, b) ∈
R× R of the previous minimization problem

for ρ ≥ 2t is















a = 1
t
ρ+

(

1−t
3t2

)

(

(1− t)−
√

(1− t)2 + 6tρ− 12t2
)

b = − 1
3t

(

(1− t)−
√

(1− t)2 + 6tρ− 12t2
)

,

and

for ρ < 2t is















a = 1
t
ρ− (1−t)

3t2

(

(1− t)−
√

(1− t)2 + 12t2 − 6tρ

)

b = 1
3t

(

(1− t)−
√

(1− t)2 + 12t2 − 6tρ

)

,
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with t ∈ (0, 1). Therefore we conclude that for every ρ ∈ R it holds

ψ(ρ) =































(ρ−2t)2

t
− 2(1−t)

27t3
((1− t)2 + 6tρ− 12t2)

3/2

+2(1−t)2

27t3
((1− t)2 + 9tρ− 18t2) if ρ ≥ 2t

(ρ−2t)2

t
− 2(1−t)

27t3
((1− t)2 + 12t2 − 6tρ)

3/2

+2(1−t)2

27t3
((1− t)2 + 18t2 − 9tρ) if ρ < 2t.

Notice that ψ has quadratic growth depending on the parameter t ∈ (0, 1) in the sense
that

lim
|ρ|→∞

ψ(ρ)

ρ2
=

1

t
.

So we conclude that the sequence of energies

Fj(u) =

∫

Ω

|u′(x)− g(pj(x))|
pj(x) dx,

with p = 2 and q = 3, Γ-converges to the quadratic functional F defined by

F (u) =

∫

Ω

ψ(u′(x)) dx.

More general, we may state the following corollary.

Corollary 2.2. Let h : R → (0,+∞) and g : R → R
n be continuous functions such

that h(λ) ≥ γ > 0. Let pj : Ω → {p, q} be defined by

pj(x) = p χ(0,t)(jx ·
→
n) + q(1− χ(0,t)(jx ·

→
n)),

with 1 < p ≤ q < ∞, t ∈ (0, 1), and
→
n ∈ R

n such that |
→
n| = 1. Then the sequence of

functionals

Fj(u) =

∫

Ω

h(pj(x)) |∇u(x)− g(pj(x))|
pj(x) dx (7)

is Γ-convergent (in the weak topology of W 1,p(Ω)) to the functional F whose density
ψ : Rn → R is given by

ψ(ρ) = min
c∈R

{

t h(p) |ρ− (1− t)c
→
n − g(p)|p + (1− t)h(q) |ρ+ tc

→
n − g(q)|q

}

.

It is worthwhile to stress how the limit energy density is defined explicitly through a
finite dimensional minimization problem. On the other hand, notice that functionals
Fj in (7) are associated to equations of type

−div
[

h(pj(x))pj(x)|∇u(x)− g(pj(x))|
pj(x)−2(∇u(x)− g(pj(x)))

]

= 0 in Ω.

Therefore we may say that the sequence of solutions uj of the previous family of
pj(x)-Laplaceans weak converges, as j tends to ∞, to the solution of the homogenized
equation

−div [∇ψ(∇u(x))] = 0 in Ω.
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3. Proof of Theorem 2.1

The proof of Theorem 2.1 is divided into two parts.

Step 1 : We want to prove for any weak convergent sequence {uj} to u in W 1,p(Ω), it
holds

lim inf
j→∞

∫

Ω

f(pj(x),∇uj(x)) dx ≥

∫

Ω

ψ(∇u(x)) dx. (8)

Let {uj} be a weak convergent sequence to u in W 1,p(Ω), and ν = {νx}x∈Ω be the
joint Young measure associated with the sequence of pairs {(pj,∇uj)} supported on
R

m × R
n. Thus we have

lim inf
j→∞

∫

Ω

f(pj(x),∇uj(x)) dx ≥

∫

Ω

∫

Rm×Rn

f(λ, ρ) dνx(λ, ρ) dx.

From the slicing decomposition of the joint Young measure ν, it follows that, for a.e.
x ∈ Ω,

νx(λ, ρ) = µλ,x(ρ)⊗ σ(λ)

= t µA1,x(ρ)⊗ δA1(λ) + (1− t)µA2,x(ρ)⊗ δA2(λ)

for some probability measures µA1,x and µA2,x, provided the sequence {pj} generates
the homogeneous Young measure σ = t δA1 + (1− t) δA2 . Then

∫

Ω

∫

Rm

∫

Rn

f(λ, ρ) dµλ,x(ρ) dσ(λ) dx

=

∫

Ω

[

t

∫

Rn

f(A1, ρ) dµA1,x(ρ) + (1− t)

∫

Rn

f(A2, ρ) dµA2,x(ρ)

]

dx

≥

∫

Ω

[t f(A1, φ(x,A1)) + (1− t)f(A2, φ(x,A2))] dx,

applying Jensen’s inequality and considering the map φ : Ω × R
m → R

n defined by
putting

φ(x, λ) =

∫

Rn

ρ dµλ,x(ρ).

Notice that the measure θ = {θx}x∈Ω given by θx = t µA1,x+(1− t)µA2,x is the gradient
Young measure associated with the sequence {∇uj}, so that its weak limit ∇u may be
represented as

∇u(x) = t

∫

Rn

ρ dµA1,x(ρ) + (1− t)

∫

Rn

ρ dµA2,x(ρ)

= t φ(x,A1) + (1− t)φ(x,A2) for a.e. x ∈ Ω.

Moreover, for fixed x ∈ Ω,

t f(A1, φ(x,A1)) + (1− t) f(A2, φ(x,A2))

≥ min
Λ1,Λ2∈Rn

[t f(A1,Λ1) + (1− t) f(A2,Λ2)]
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whenever ∇u(x) = tΛ1 + (1− t)Λ2 and Λ1 − Λ2 is parallel to
→
n. In this way we reach

inequality (8).

Step 2 : We will prove there exists a weak convergent sequence {uj} to u in W 1,p(Ω)
such that

lim sup
j→∞

∫

Ω

f(pj(x),∇uj(x)) dx ≤

∫

Ω

ψ(∇u(x)) dx.

For each ρ ∈ R
n there exists c(ρ) ∈ R such that

ψ(ρ) = tf(A1, ρ− (1− t)c(ρ)
→
n) + (1− t)f(A2, ρ+ tc(ρ)

→
n).

So let u ∈W 1,p(Ω) be such that
∫

Ω

ψ(∇u(x)) dx =

∫

Ω

[

tf(A1,∇u(x)− (1− t)c(∇u(x))
→
n)

+(1− t)f(A2,∇u(x) + tc(∇u(x))
→
n)
]

dx < ∞,

where c(∇u(·)) is the minimizer of the problem for ψ(∇u(·)).

Consider the increasing sequence {Ωl}l∈N of subsets of Ω defined by

Ωl = {x ∈ Ω : |∇u(x)| < l}

such that |Ω \ Ωl| tends to 0 as l goes to ∞. Since u is a Lipschitz function in Ωl,
then there exists an extension ul : R

n → R, such that ul(x) = u(x) for any x ∈ Ωl,
preserving the Lipschitz constant.

For a fixed l ∈ N, let us take the Lipschitz function v = ul such that
∫

Ωl
ψ(∇v(x)) dx =

∫

Ωl
ψ(∇u(x)) dx < ∞. From [17, Lemma 7.9], there exists a set of points {x

(j)
k } ⊂

Ωl \N , |N | = 0, and positive numbers {r
(j)
k }, r

(j)
k < 1/j, such that, for each j ∈ N, the

family of pairwise disjoint balls {x
(j)
k + r

(j)
k B}k (B is the unit ball in R

n) satisfies

Ωl =
⋃

k

(

x
(j)
k + r

(j)
k B

)

⋃

N,

and
∫

Ωl

ψ(∇u(x)) dx =

∫

Ωl

[

tf(A1,∇u(x)− (1− t)c(∇u(x))
→
n)

+(1− t)f(A2,∇u(x) + tc(∇u(x))
→
n)
]

dx

= lim
j→∞

∑

k

[

tf(A1,∇u(x
(j)
k )− (1− t)c(∇u(x

(j)
k ))

→
n)

+(1− t)f(A2,∇u(x
(j)
k ) + tc(∇u(x

(j)
k ))

→
n)
]

|x
(j)
k + r

(j)
k B|.

For a.e. x
(j)
k ∈ Ωl, let us define the sequence of functions w

(j,k)
i : B → R by putting

w
(j,k)
i (y) =

(

∇u(x
(j)
k ) + tc(∇u(x

(j)
k ))

→
n
)

· y −
c(∇u(x

(j)
k ))

i

∫ iy·
→

n

0

χ(0,t)(s) ds,
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with

∇w
(j,k)
i (y) =

(

∇u(x
(j)
k )− (1− t)c(∇u(x

(j)
k ))

→
n
)

χ(0,t)(iy ·
→
n)

+
(

∇u(x
(j)
k ) + tc(∇u(x

(j)
k ))

→
n
)

(1− χ(0,t)(iy ·
→
n)),

such that {w
(j,k)
i } converges weakly⋆ to ∇u(x

(j)
k )y in W 1,∞(B). Then, the sequence of

pairs {(pi(x
(j)
k + r

(j)
k ·),∇w

(j,k)
i )} generates the homogeneous Young measure ν

x
(j)
k

, with

compact support in R
m × R

n, given by

ν
x
(j)
k

= t δ
(A1,∇u(x

(j)
k )−(1−t)c(∇u(x

(j)
k ))

→

n )
+ (1− t) δ

(A2,∇u(x
(j)
k )+tc(∇u(x

(j)
k ))

→

n )
.

In particular, we have

lim
i→∞

1

|B|

∫

B

f(pi(x
(j)
k + r

(j)
k y),∇w

(j,k)
i (y)) dy

=
[

tf(A1,∇u(x
(j)
k )− (1− t)c(∇u(x

(j)
k ))

→
n) + (1− t)f(A2,∇u(x

(j)
k ) + tc(∇u(x

(j)
k ))

→
n)
]

.

Now, for each i ∈ N, consider smooth cut-off functions gi : B → [0, 1] for which

gi(y) = 1 if y ∈ Di =

{

dist(y, ∂B) ≥
2

i2

}

,

gi(y) = 0 if y ∈

{

dist(y, ∂B) ≤
1

i2

}

,

so that we may define the sequence of functions u
(j)
i : Ωl → R by putting

u
(j)
i (x) =

(

r
(j)
k w

(j,k)
i

(

x− x
(j)
k

r
(j)
k

)

+ u(x
(j)
k )

)

gi

(

x− x
(j)
k

r
(j)
k

)

+u(x)

(

1− gi

(

x− x
(j)
k

r
(j)
k

))

if x ∈ x
(j)
k + r

(j)
k B. Thus we have

∇u
(j)
i (x) = ∇w

(j,k)
i

(

x− x
(j)
k

r
(j)
k

)

gi

(

x− x
(j)
k

r
(j)
k

)

+ ∇u(x)

(

1− gi

(

x− x
(j)
k

r
(j)
k

))

+
1

r
(j)
k

(

r
(j)
k w

(j,k)
i

(

x− x
(j)
k

r
(j)
k

)

+ u(x
(j)
k )− u(x)

)

∇gi

(

x− x
(j)
k

r
(j)
k

)

= ∇w
(j,k)
i

(

x− x
(j)
k

r
(j)
k

)

gi

(

x− x
(j)
k

r
(j)
k

)

+∇u(x)

(

1− gi

(

x− x
(j)
k

r
(j)
k

))

−

(

u(x)− u(x
(j)
k )

r
(j)
k

−∇u(x
(j)
k )

(

x− x
(j)
k

r
(j)
k

))

∇gi

(

x− x
(j)
k

r
(j)
k

)

−

(

∇u(x
(j)
k )

(

x− x
(j)
k

r
(j)
k

)

− w
(j,k)
i

(

x− x
(j)
k

r
(j)
k

))

∇gi

(

x− x
(j)
k

r
(j)
k

)
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if x ∈ x
(j)
k + r

(j)
k B, where

{

∇u(x
(j)
k )

(

· −x
(j)
k

r
(j)
k

)

− w
(j,k)
i

(

· −x
(j)
k

r
(j)
k

)}

converges strongly,

as i→ ∞, to 0 in L∞(x
(j)
k + r

(j)
k B), and

lim
j→∞

sup
k

∫

x
(j)
k +ε

(j)
k B

∣

∣

∣

∣

∣

u(x)− u(x
(j)
k )

r
(j)
k

−∇u(x
(j)
k )

(

x− x
(j)
k

r
(j)
k

)
∣

∣

∣

∣

∣

q

dx

= lim
j→∞

sup
k
(r

(j)
k )n

∫

B

∣

∣

∣

∣

∣

u(x
(j)
k + r

(j)
k y)− u(x

(j)
k )

r
(j)
k

−∇u(x
(j)
k )y

∣

∣

∣

∣

∣

q

dy

≤ lim
j→∞

sup
k
(r

(j)
k )n

∫

B

∣

∣

∣
∇u(x

(j)
k + r

(j)
k y)−∇u(x

(j)
k )
∣

∣

∣

q

dy = 0,

for any q ≥ p. Therefore

lim
j→∞

lim
i→∞

∫

Ωl

f(pi(x),∇u
(j)
i (x)) dx

= lim
j→∞

lim
i→∞

∑

k

[

∫

x
(j)
k +r

(j)
k Di

f

(

pi(x),∇w
(j,k)
i

(

x− x
(j)
k

r
(j)
k

))

dx

+

∫

x
(j)
k +r

(j)
k B\Di

f(pi(x),∇u(x)) dx

]

= lim
j→∞

lim
i→∞

∑

k

(r
(j)
k )n

∫

Di

f(pi(x
(j)
k + r

(j)
k y),∇w

(j,k)
i (y)) dy

= lim
j→∞

∑

k

(r
(j)
k )n|B|

[

tf(p,∇u(x
(j)
k )− (1− t)c(∇u(x

(j)
k ))

→
n)

+(1− t)f(q,∇u(x
(j)
k ) + tc(∇u(x

(j)
k ))

→
n)
]

=

∫

Ωl

[

tf(A1,∇u(x)− (1− t)c(∇u(x))
→
n)

+(1− t)f(A2,∇u(x) + tc(∇u(x))
→
n)
]

dx

=

∫

Ωl

ψ(∇u(x)) dx.

In this way, for each l ∈ N, there exists a subsequence j(i) → ∞, as i→ ∞, such that

{u
(j(i))
i } ⊂W 1,∞(Ωl) satisfies

lim sup
i→∞

∫

Ωl

f(pi(x),∇u
(j(i))
i (x)) dx

≤ lim sup
i→∞

lim sup
j→∞

∫

Ωl

f(pi(x),∇u
(j)
i (x)) dx =

∫

Ωl

ψ(∇u(x)) dx.

By dominated convergence it follows that

lim
l→∞

∫

Ωl

ψ(∇u(x)) dx = lim
l→∞

∫

Ω

χΩl
(x)ψ(∇u(x)) dx =

∫

Ω

ψ(∇u(x)) dx <∞.
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Thus

lim sup
l→∞

lim sup
i→∞

∫

Ωl

f(pi(x),∇u
(j(i))
i (x)) dx ≤

∫

Ω

ψ(∇u(x)) dx.
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