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maitine.bergounioux@univ-orleans.fr

M. Haddou

Université d’Orléans, UFR Sciences, Math., Labo. MAPMO, UMR 6628,
Route de Chartres, BP 6759, 45067 Orléans cedex 2, France
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The method we present in this paper has been motivated by a restoration problem in a tomography
context. We are interested in blurred and noised binary images restoration. We consider the discrete
version of a minimization problem settled in the space of bounded variation functions. We give a gen-
eral abstract formulation of the (discrete) optimization problem with binary constraints and provide
approximate and penalized formulations. Convergence results are given and we present numerical
tests.
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1. Introduction

The method we present in this paper has been motivated by a restoration problem in
a tomography context. The physical experiment as well as the modelling process have
been precisely described in [1, 2]. We are interested here in a very specific application
of tomographic reconstruction in order to study the behavior of a material under shock.
During the deformation of the object, we obtain an X-ray radiography by high speed
image capture. The research parameters maintain that the object is radially symmetric,
so that one radiograph is enough to reconstruct the 3D object.

Physicists are looking for the shape of the interior at some fixed interest time. At
the established time, the interior may be composed of several holes which also may
be very irregular. We deal here with a synthetic object that contains all the standard
difficulties that may appear (see Fig. 1.1). These difficulties are characterized by:

• Several disconnected holes.

• A small hole located on the symmetry axis (which is the area where the details
are difficult to recover).
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• Smaller and smaller details on the boundary of the top hole in order to determine
a lower bound for details detection.

(a) Slice of a binary axial-
ly symmetric object by a
plane containing the symme-
try axis.

(b) Zoom on the interior of
the object of Figure 1.1(a);
the homogeneous material is
drawn in black and the holes
in white.

Figure 1.1: Working example

Our framework is completely different from the usual tomographic point of view and
the usual techniques (such as filtered back-projection) are not appropriate to our case.

Let us make explicit the projection operator involved in the tomography process. This
operator, denoted by Ho, is given, for every function f ∈ L∞(R+ × R) with compact
support, by

∀(u, v) ∈ R× R Hof(u, v) = 2

∫ +∞

|u|

f(r, v)
r√

r2 − u2
dr. (1)

For more details one can refer to [1, 2]. Similarly the adjoint operator H∗
o of Ho is

∀(r, z) ∈ R× R, H∗
og(r, z) = 2

∫ |r|

0

g(u, z)
|r|√
r2 − u2

du. (2)

The symmetry of the object characterizes operator Ho as the Radon Transform of
the object and so is invertible. However, the operator H−1

o is not continuous with
respect to the suitable topologies. Consequently, a small variation on the measure g
leads to significant errors in the reconstruction. As radiographs are strongly perturbed,
applying H−1

o to data leads to a poor reconstruction. Due to the experimental setup
there are two main perturbations:

• A blur, due to the detector response and the X-ray source spot size. We denote
by B the effect of blurs and consider the simplified case where B is supposed to be
linear.

• A noise which is supposed for simplicity to be an additive Gaussian white noise of
mean 0, denoted by τ .
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Consequently, the observed object ud will be ud = B(Hou)+τ. The comparison between
the theoretical projection Hou and the perturbed one is shown in Fig. 1.2 (b)–(c). The
reconstruction using the inverse operator H−1

o applied to ud is given by Fig. 1.2 (d).

(a) The real object u. (b) Theoretical pro-
jection Hou of the
real object

(c) Real projection
ud = BHou+ τ of the
same object with re-
alistic noise and blur.

(d) Reconstruction

H−1

o
ud computed

with H−1

o
applied to

the real projection.

Figure 1.2: Comparison of u, Hou, ud = BHou+ τ , H−1
o ud.

It is clear from Fig. 1.2 (d) that the use of the inverse operator is not suitable. In the
following examples we will call experimental data the image which corresponds to the
blurred projection of a fictive object of density 0 with some holes of known density
λ > 0 (we set λ = 1 in the sequel). Consequently, the space of admissible objects will
be the set of functions f that take values {0, 1}. Such functions are defined on R

2,
have compact support included in an open bounded subset of R2, for example Ω and
belong to the bounded variation functions space

BV (Ω) = {u ∈ L1(Ω) | ϕ(u) < +∞}

where ϕ(u) stands for the total variation of u (see [3] for example). Abraham and
al. [2] have investigated a variational model that can be applied to our situation. Let
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ud ∈ L2(Ω) be the projected image (observed data).





minF (u) :=
1

2
‖Hu− ud‖22 + αϕ(u),

u ∈ BV (Ω),

u(x) ∈ {0, 1} a.e. on Ω,

(3)

where ‖ · ‖2 stands for the L2(Ω) norm, α > 0 and H is a linear operator (projection
operator Ho composed with a linear blur operator or not). It is known from [2] that
the above minimization problem admits at least one solution.

To solve (3), many numerical experiments are proposed in the litterature. Usually,
people use the back-filtered projection method (see Fig. 1.3 below). In this case,
results are of bad quality, as explained in [2].
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(a) Median line of the object
(i = 128).

(b) Largest slice of the bi-
nary axially symmetric ob-
ject by a plane orthogonal to
the symmetry axis.

(c) Result using the cropped
Ram-Lak filter.

(d) Result using the Ram-
Lak filter with a Hamming
window.

Figure 1.3: Back-filtered projection results
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In [1], the problem is studied via a shape optimization method. The object is viewed
as a domain which optimal shape turns to be a solution. A derivative of the functional
with respect to the domain is performed and a the level-set method [10] is used. With
this method, an Hamilton-Jacobi equation involving non local terms has to be solved.
The use of classical finite difference schemes gives acceptable results (see Fig. 1.4) but
the method is time-consuming and highly unstable.

(a) Synthetic object (b) Computed solution

Figure 1.4: Level-set method results

An alternative method has been tested in [2]. The original problem (3) is penalized
and its solution is computed with an indirect method : a first order optimality system
is exhibited and a solution is computed. The results are good (see Fig. 1.5) but the
process of parameters tuning is quite delicate. In addition, though the computation
time is much shorter than the methods mentioned before, it remains quite long.

(a) Synthetic object (b) Computed solution

Figure 1.5: Penalization indirect method

In this paper we are mainly interested in the numerical computation of a solution and
we consider a discrete version of problem (3) in order to use a direct method.
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The next section is devoted to the discretization process of the problem described
above. Here we give a general abstract formulation of the (discrete) optimization
problem with binary constraints. In Sections 3 and 4 we give approximation (Section
3) and penalization (Section 4) formulations. The method is described and we provide
convergence results. Section 5 is devoted to the numerical realization: here we detail
the implementation and the results.

2. The finite dimensional problem

From now on because there is no ambiguity between the two, we will use the same
notation for a function u living in a infinite dimensional framework as we do for the
result of the discretization process which is a finite dimensional real vector.

2.1. The discrete problem

The discretization process is standard (see [4] for example). We give details in the
last section devoted to numerical implementation. Once the discretization has been
performed the original problem is approximated by the following discrete one




min

1

2
‖Hu− ud‖2N + λΦ(u),

u ∈ R
N , ui ∈ {0, 1} for every i = 1, · · · , N.

(4)

Here

• u (resp. ud) is a R
N vector representing the re-arranged N1 × N2 image

(ui,j)1≤i≤N1,1≤,j≤N2 with N = N1N2,

• H is the real N ×N matrix representing the blurred projection operator BHo

• Φ(u) is an approximation of the total variation. It is a convex, non differentiable
function from R

N to R
+. (Details are given in Section 5)

• ‖·‖N is the euclidian R
N norm and (·, ·)N stands for the classical inner RN product.

The difficulties that appeared in the infinite dimensional framework still remain that:

• the objective function is non differentiable because of Φ

• the binarity constraint u ∈ {0, 1} is difficult to resolve.

The first difficulty can be easily overcome using a smooth approximation of Φ. Indeed
we have the generic result

Theorem 2.1. Consider a function Ψ from R
N to R, a nonempty finite subset K of

R
N and any sequence of functions Ψε such that

lim
ε→0

‖Ψε −Ψ‖∞ = 0, (5)

( ‖ · ‖∞ is the RN − ℓ∞ norm). For ε small enough, we have

i) the optimal solution set Sε of the optimization problem: min{Ψε(x) | x ∈ K} is a
subset of the optimal solution set S of the optimization problem: min{Ψ(x) | x ∈
K}
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ii) If in addition, if

∀(x, y) ∈ K ×K Ψ(x) = Ψ(y) ⇒ Ψε(x) = Ψε(y) (6)

then Sε = S.

Proof. i) Let v∗ be the optimal value of the optimization problem (P ) and define
δ > 0 by

δ := min
x∈K\S

ψ(x)− v∗.

∀x ∈ S and ∀y /∈ S and ε small enough we have

Ψε(x) ≤ v∗ +
δ

2
and Ψε(y) > v∗ +

δ

2
.

We can then conclude that Sε ⊂ S, since outside of S we have Ψε > v∗ + δ
2
.

ii) It remains to prove S ⊂ Sε. Let x be in S. For any ε > 0,Ψ(x) ≤ Ψ(xε). For ε
small enough xε ∈ S (with point i)). So Ψ(x) ≤ Ψ(xε) ≤ Ψ(x). Assumption (6) gives
Ψε(x) = Ψε(xε). This means that x ∈ Sε.

In our case the feasible domain

K := C = {u ∈ R
N | ui ∈ {0, 1}, i = 1, · · · , N},

is finite. Let Φε be a smooth approximation of Φ satisfying assumptions (5) and (6).
This leads to 



min

1

2
‖Hu− ud‖2N + λΦε(u),

u ∈ C.
(7)

Problems (4) and (7) fit the assumptions of Theorem 2.1 with Ψ(u) = ‖Hu− ud‖2N +
λΦ(u) and Ψε(u) = ‖Hu − ud‖2N + λΦε(u) so that we may conclude that for ε small
enough problem (4) and (7) have the same solutions. In the sequel we need a C2

approximation Φε of Φ to derive optimality conditions. A generic formulation of Φ is

Φ(u) =
N∑

i=1

|(Du)i|

where Du is a linear operator. We may choose for example

Φε(u) =
N∑

i=1

√
|(Du)i|2 + ε2

to approximate Φ. In this case (5) and (6) are satisfied and results (i, ii) of Theorem
2.1 hold.
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2.2. An abstract formulation

From now on, we consider problem (4)




minF (u) :=

1

2
‖Hu− ud‖2 + λΦ(u),

u ∈ R
N , u ∈ {0, 1}

Recall that
u ∈ {0, 1} ⇐⇒ ui ∈ {0, 1} ∀i = 1, · · · , N,

where u = (ui)1≤i≤N .

The result of Theorem 2.1 allows us to assume that Φ is C2. Problem (4) obviously has
a solution since F is continuous on a compact set. In the next propsoition, we give an
equivalent formulation of (4):

Proposition 2.2. Problem (4) is equivalent to

min{F (u) | (u, v) ∈ D, (u, v)N = 0}

where

F (u) =
1

2
‖Hu− ud‖2 + λΦ(u), (8)

and
D = {(u, v) ∈ R

N × R
N | u+ v = 1, u ≥ 0, v ≥ 0}.

Proof. Assume u ∈ {0, 1} and set v = 1− u, then (u, v) ∈ D. In addition

∀i ui = 1 ⇐⇒ vi = 0 and ui = 0 ⇐⇒ vi = 1,

so that (u,w)N = 0.
Conversely, let (u, v) ∈ D. Then, as u, v ≥ 0 we get

(u, v)N = 0 =⇒ ∀i = 1, · · · , N uivi = ui(1− ui) = 0.

This implies that u ∈ {0, 1}. Both feasible domains (and objective functions) are the
same, thus the problems are equivalent.

Note that D is a closed, convex subset of [0, 1]N × [0, 1]N . In the sequel we consider
the abstract problem

(P) min{F (u) | (u, v) ∈ D, (u, v)N = 0}

where F is C1 and

D = {(u, v) ∈ R
N × R

N | u+ v = 1, u ≥ 0, v ≥ 0}. (9)

Remark 2.3. It is sufficient to assume that F is continuous to get existence and con-
vergence results for approximating/penalizing processes (order 0). However, keeping
in mind the first order optimality conditions, we state that F is of class C1.
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3. An approximate formulation

3.1. A relaxed problem

In order to relax the complementarity constraint “(u, v)N = 0� we introduce a C1

function θr : R+ → [0, 1[, with r > 0 such that the following properties are satisfied
([8]):

θr is nondecreasing, and θr(1) < 1, (10a)

∀r > 0 θr(0) = 0, (10b)

∀x > 0 lim
r→0

θr(x) = 1. (10c)

Example 3.1. The functions below satisfy assumption (10) (see [8]):

θ1r(x) =
x

x+ r
,

θWk
r (x) = 1− e−(x

r
)k ,

θlogr (x) =
log(1 + x)

log(1 + x+ r)
.

Functions θr are built to approximate the complementarity constraint in the following
sense:

∀(x, y) ∈ R× R xy = 0 ⇐⇒ θr(x) + θr(y) ≃ 1 for r small enough.

More precisely, we have the following proposition.

Proposition 3.2. Let (u, v) ∈ D and θr satisfying (10). Then

(u, v)N = 0 =⇒ ∀i = 1, · · · , N θr(ui) + θr(vi) = θr(1) ≤ 1.

Proof. Let (u, v) be in D. As uivi ≥ 0 for every i then

(u, v)N = 0 =⇒ ∀i = 1, · · · , N uivi = 0.

Without loss of generality, let us assume that ui = 0. Then vi = 1 and

θr(ui) + θr(vi) = θr(0) + θr(1) = θr(1).

The converse implication if not true of course but almost true. More precisely, let us
define, for any r > 0

(Pr)





minF (u)

(u, v) ∈ D,
0 ≤ θr(ui) + θr(vi) ≤ 1, ∀i = 1, · · · , N

We claim that (Pr) is a good approximation of (P) in the following sense:
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Theorem 3.3. Assume that θr satisfies assumptions (10). Then, for every r > 0,
problem (Pr) has (at least) a solution (ur, vr = 1− ur). Moreover

lim
r→0

ur = ū,

where ū is a solution to (P).

In the sequel r and rε are nonnegative real numbers.

3.2. Proof of Theorem 3.3

The feasible domain of (Pr) is compact and the function F is continuous, so the exis-
tence of a solution is ensured.
The proof of convergence is not straightforward and we have to introduce another
approximated problem (Pε) such that (Pr) is between (P) and (Pε). To do this we
approximate the complementarity constraint xy = 0 by 0 ≤ xy ≤ ε where ε > 0. We
need the following lemma:

Lemma 3.4. For every ε > 0 there exists rε > 0 such that

∀r ≤ rε, ∀x, y ∈ [0, 1]× [0, 1] θr(x) + θr(y) ≤ 1 =⇒ xy ≤ ε.

Proof. Let ε > 0 and assume that ∀r > 0, ∃ r̃ such that 0 < r̃ ≤ r and

∃ x̃r, ỹr ∈ [0, 1]× [0, 1] such that θr̃(x̃r) + θr̃(ỹr) ≤ 1 and x̃rỹr > ε.

Let us choose r = 1
n
and denote r̃ = rn → 0, xn := x̃rn , yn := ỹrn and θn := θrn so that

xnyn > ε, xn ∈ [0, 1], yn ∈ [0, 1] and θn(xn) + θn(yn) ≤ 1.

As (xn)n∈N and (yn)n∈N are bounded one can extract subsequences still denoted simi-
larly such that xn → x and yn → y with x ∈ [0, 1], y ∈ [0, 1] and xy ≥ ε. Therefore x
and y are nonzero and one can find no ∈ N such that

∀n ≥ no xn > ρ > 0 and yn > ρ > 0,

where ρ = min{ ε
2y
, ε
2x
}. Here we use that θn is nondecreasing (10a). This yields that

∀n ≥ no θn(xn) + θn(yn) ≥ 2θn(ρ).

As θn(ρ) → 1 with (10c), this gives the contradiction.

We can summarize as follows: ∀ε > 0, ∃rε > 0, such that

∀r ≤ rε, ∀(u, v) ∈ D (u, v)N = 0 =⇒ ∀i θr(ui) + θr(vi) ≤ 1 =⇒ (u, v)N ≤ Nε. (11)

Now we introduce another approximated problem (Pε), for every ε > 0:

(Pε)





minF (u)

(u, v) ∈ D,
0 ≤ uivi ≤ ε, ∀i = 1, · · · , N

Once again (Pε) obviously has at least one solution (uε, vε). We first compare (Pε)
and (P) with the next lemma.
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Lemma 3.5. Let ε tends to 0. Then uε (respectively vε) converges to ū (resp. 1− ū)
(up to a subsequence) where ū is a solution to (P).

Proof. For every ε > 0 the pair (uε, vε) is bounded (since D is bounded) and one can
extract a subsequence such that (uεn , vεn) converges to (ũ, ṽ). As 0 ≤ (uεn , vεn)N ≤ Nεn
for every n it is clear that (ũ, ṽ)N = 0 and that (ũ, ṽ) is feasible for (P). Therefore
min(P) ≤ F (ũ).
Let ū be a solution to (P). As (ū, v̄ := 1 − ū) is also feasible for (Pε), for every ε we
get

∀ε F (uε) ≤ F (ū).

Passing to the limit gives F (ũ) ≤ F (ū) = min(P). So F (ũ) = min(P) and (ũ, ṽ) is a
solution to (P).

Now we may end the proof of Theorem 3.3: let ε > 0 be fixed and r ≤ rε where rε is
given by Lemma 3.4. So, any (Pr) feasible pair (u, v := 1 − u) is feasible for (Pε) as
well. Therefore

∀r ≤ rε F (uε) ≤ F (ur),

with the previous notations. As (ur, vr) is bounded one can extract a subsequence
(denoted similarly) that converges to (u∗, v∗) ∈ D. From Lemma 3.4 we get

∀r ≤ rε,∀i = 1, · · · , N ur,ivr,i ≤ ε.

The passage to the limit as r → 0 gives

∀i = 1, · · · , N u∗i v
∗
i ≤ ε.

Let i be in {1, · · · , N} and assume u∗i 6= 0. One can find ri > 0 and ρi > 0 such that

∀r ≤ ri ur,i > ρi > 0.

As a result of (10a) we get

∀r ≤ ri θr(ur,i) ≥ θr(ρi),

and with (10c)
lim
r→0

θr(ur,i) = 1.

Assume that v∗i 6= 0: the same technique also gives limr→0 θr(vr,i) = 1. As 0 ≤ θr(ur,i)+
θr(ur,i) ≤ 1 this results in a contradiction. So we get either u∗i = 0 or v∗i = 0, that is
u∗i v

∗
i = 0. Finally, we obtain (u∗, v∗)N = 0.

So (u∗, v∗) is feasible for (P). In addition, F (ur) ≤ F (ū) for every r where ū is a
solution to (P). This yields that F (u∗) ≤ F (ū).

3.3. A relaxed optimality system

Now we consider problem (Pr) for r > 0 and derive optimality conditions. The problem
can also be formulated as:

min{F (u) | Gr(u) ≤ 0, u ∈ R
N}
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where Gr(v) =




−u
u− 1

Ψr(u)− 1


 , and

Ψr(u) = Θr(u) + Θr(1− u) with Θr(u) =



θr(u1)

...
θr(uN)


 . (12)

Let us call ū a solution to (Pr). We use the classical Mangasarian-Fromowitz (MF)
qualification condition at ū to get Lagrange multipliers. More precisely, following [7]
p. 235, we are going to find w ∈ R

N such that

(∇Gr
k(ū), w)N < 0 if Gr

k(ū) = 0, k = 1, · · · , N + 2.

In our case the above condition reads:

wi < 0 if ūi = 1
wi > 0 if ūi = 0

[θ′r(ūi)− θ′r(1− ūi)]wi < 0 if θr(ūi) + θr(1− ūi) = 1.

From this point on, we assume in addition that

θr is strictly concave and C2, (13)

so that the function ψr : [0, 1] → [θr(1), 2], defined by ψr(x) := θr(x) + θr(1 − x) for
every x ∈ [0, 1] is strictly concave and C2 as well. Note that functions of Example 3.1
are strictly concave and C∞.

2θr(0.5)

θr(1)

r = 0.1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 0.2 0.4 0.6 0.8 1.0
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0 0.2 0.4 0.6 0.8 1.0
x

Figure 3.1: Function ψr : x 7→ θ1r(x)+θ
1
r(1−x) for different values of r and θr(x) = x

x+r

Let i be in {1, · · · , N} and consider ūi ∈ [0, 1];

• If ūi = 1 then θr(ūi) + θr(1 − ūi) = θr(1) < 1 and we may choose wi = −1 for
example.

• Similarly, if ūi = 0 one can choose wi = 1.

• It remains the case where 0 < ūi < 1 and ψr(vi) = θr(ūi) + θr(1− ūi) = 1.
As ψr : [0, 1] → [θr(1), 2] is continuous, strictly concave, and symmetric with
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respect to v = 1
2
, its maximum is attained at x = 1

2
.

Moreover we get for r small enough

ψr

(
1

2

)
= 2θr

(
1

2

)
> 1 = ψr(ūi) > θr(1).

Therefore, with Rolle’s Theorem we claim that ψ′
r(ūi) 6= 0. So, there exists wi =

−ψ′
r(ūi) such that ψ′

r(ūi)wi < 0.

We conclude that Lagrange multipliers exist:

Theorem 3.6. Assume that F is C1, that (10) and (13) hold, and let (ur, vr = 1−ur)be
a solution to (Pr). Then, for r small enough, there exists (β1

r , β
2
r , µr) ∈ R

N ×R
N ×R

N

such that:
DF (ur) + β1

r − β2
r + µr ·DΨr(ur) = 0, (14a)

β1
r ≥ 0, β2

r ≥ 0, µr ≥ 0, (14b)

0 ≤ ur ≤ 1, Ψr(ur) = Θ(ur) + Θ(1− ur) ≤ 1, (14c)

(β1
r , ur)N = (β2

r , 1− ur)N = (µr,Ψr(ur)− 1)N = 0. (14d)

where

µr ·DΘr(ur) :=




µr,1θ
′
r(ur,1)
...

µr,Nθ
′
r(ur,N)]


 .

Proof. It is straightforward since the (MF) qualification condition is satisfied at ur
(see [7])

4. A penalized formulation

In this section, we propose a penalization scheme to solve (P). We consider the fol-
lowing sequence of penalized problems

(P̃r)




minF (u) + α(r)

N∑

i=1

[θr(ui) + θr(1− ui)]

u ∈ R
N , 0 ≤ ui ≤ 1, i = 1, · · · , N

where r > 0 and α is a nonnegative real function satisfying

(H1) lim
r→0

α(r) = +∞

Remark 4.1. Any feasible point (u, v := 1− u) for the initial problem (P) satisfies

N∑

i=1

[θr(ui) + θr(1− ui)] = Nθr(1) = min
(u,v)∈D

N∑

i=1

[θr(ui) + θr(1− ui)].

Lemma 4.2. For every r > 0, problem (P̃r) has at least one solution (ur, vr := 1−ur)
and the corresponding value F (ur) is a lower bound for val(P).
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Proof. The existence of an optimal solution is obvious since D is bounded and the
objective function of (P̃r) is continuous.
Moreover, the second property is a direct consequence of Remark 4.1.

Theorem 4.3. Assume that θr satisfies assumptions (10) and α satisfies (H1). Thus

any limit point of the sequence of optimal solutions of (P̃r) is an optimal solution of
(P).

Proof. For r > 0, let (ur, vr) denote an optimal solution to (P̃r). The sequence
{(ur, vr)} is obviously bounded and we can extract a subsequence that converges to
(ũ, ṽ) in D. Due to Lemma 4.2, we need to prove the feasibility (for (P)) of this limit
point.
Let (ū, v̄ := 1 − ū) be a solution to (P). As (ū, v̄) is also feasible for (P̃r), for every
r > 0 we get for every r ≥ 0

F (ur) + α(r)
N∑

i=1

[θr(u
r
i ) + θr(v

r
i )] ≤ F (ū) + α(r)

N∑

i=1

[θr(ūi) + θr(v̄i)]

≤ F (ū) + α(r)Nθr(1).

Since F takes only positive values and θr(u
r
i ) + θr(v

r
i ) ≥ θr(1) for every i, we obtain

0 ≤
N∑

i=1

[θr(u
r
i ) + θr(v

r
i )]−Nθr(1) ≤

F (ū)

α(r)
.

∀i lim
r→0

θr(u
r
i ) + θr(v

r
i ) = 1.

Suppose that (ũ, ṽ) is not feasible for (P) so that, for some i ∈ {1, ..., N}

∃δ > 0, such that min(ũi, ṽi) > δ.

We have

∃r0 > 0 such that ∀r < r0, min(uri , v
r
i ) >

δ

2

and, then for r < r0

θr(u
r
i ) + θr(v

r
i ) > 2θr(

δ

2
).

Passing to the limit, we obtain the following contradiction

lim
r→0

θr(u
r
i ) + θr(v

r
i ) ≥ 2

that completes the proof.
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4.1. An exact penalization property

Under an additional assumption on functions θ and α, we can prove some exact penal-
ization property and avoid the problem of parameter tuning.
Indeed, all penalized problems (P̃r) have the same feasible set, which is a simple
bounded convex polytope. Thus, we need concavity property on the objective func-
tions.
From now on, we suppose that functions θ are twice continuously differentiable and
satisfy

(H2) lim
r→0

α(r)

(
max
0≤x≤1

θ′′r (x) + θ′′r (1− x)

)
= −∞.

Remark 4.4. Assumption (H2) is not very restrictive since it is satisfied (for example)
by functions θ1 and θWk of Example 3.1, if α satisfies respectively α ≥ 1

r
and α ≥ 1

r2
.

Lemma 4.5. Under (H2) and for every r > 0 small enough the objective function of

(P̃r) is concave.

Proof. Let r be sufficiently small. The first part of the objective function (F ) is C2

and the second one (α(r)
∑N

i=1[θr(ui)+θr(1−ui)]) is strongly concave with a sufficiently
high modulus, thus the entire objective function is necessarily concave.

Using a well known convex analysis result, we can establish the following lemma:

Lemma 4.6. Under (H2) and for every r > 0 small enough, all optimal solutions of

(P̃r) are extremal points of D (and then are feasible for (P)).

Proof. Since the feasible domain D is a bounded convex polytope and the objective
function is concave, this result is a direct application of [9] Corollary 32.3.3.

Theorem 4.7. Assume that θr and α meet assumptions (10), (H1) and (H2). Then

for sufficiently small r, problems (P̃r) and (P) are equivalent and have the same optimal
solutions.

Proof. Let r > 0 be sufficiently small to apply Lemma 4.6 and let (ur, vr) be an

optimal solution to (P̃r). By using Lemma 4.6 and Lemma 4.2, we know that (ur, vr)
is a feasible point for (P) and that F (ur) ≤ val(P). We can then conclude that

S(P̃r) ⊂ S(P) and F (ur) = inf(P). (Here, S(P) denotes the set of solutions of P.)
Conversely, let (ū, v̄ := 1 − ū) be an optimal solution to (P). This point is obviously

feasible for (P̃r) and satisfies F (ū) = inf(P) ≤ F (ur). Moreover, Remark 4.1 yields

α(r)
N∑

i=1

[θr(ūi) + θr(1− ūi)] ≤ α(r)
N∑

i=1

[θr(u
r
i ) + θr(1− uri )].

So that (ū, v̄) ∈ S(P̃r).
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5. Numerical realization

5.1. Introduction

We have used the previous formalism to compute solutions to problem (4) (which fits
the original model) with F defined by (8). Then we used the numerical implementation
(that we detail thereafter) to give an equivalent formulation of (4) that allows us to
deal with an objective function that is no longer C1. More precisely we have tested a
cost functional defined by

Fp(u) =
1

2
‖Hu− ud‖2N + λΦ(u), (15)

where λ ≥ 0. The choice λ = 0 corresponds to a model that does not involve the total
variation of u.
We have performed numerical experiments for both

(Pr)





minF (u)

(u, v) ∈ D,
0 ≤ θr(ui) + θr(vi) ≤ 1, ∀i = 1, · · · , N

and

(P̃r)




minF (u) + α(r)

N∑

i=1

[θr(ui) + θr(1− ui)]

u ∈ R
N , 0 ≤ ui ≤ 1, i = 1, · · · , N

where r > 0 and α is a nonnegative real function satisfying limr→0 α(r) = +∞.

We first computed solutions to (P̃r) using classical methods described below. However,
the problem we consider lies in a very specific physical context: we know that during
the tomographic process, the global mass of the object is conserved. This means that,
at least theoretically, the mass

∑
i ui remains constant. Because of the noise, this is

not the case: so following [5] we add a physical constraint to problem (Pr), namely

mσ ≤
N∑

i=1

ui ≤Mσ, (16)

where mσ = (1− 2σ)
∑N

i=1 vi, Mσ = (1 + 2σ)
∑N

i=1 vi, v = H−1ud and σ is the gaus-
sian noise standard deviation. Practically, this constraint speeds up the convergence
and provides more accuracy.
As we have noticed that the computation of (P̃r) solutions is more efficient, we shall
report briefly on (Pr).

5.2. Discretization process

The discretized image is squared and represented by a 2M × 2M array identified with
a 4M2 vector. Due to the symmetry, it is sufficient to adress half an image (of size
M×2M). In the sequel we set N = 2M2, X = R

M×2M and Y = X×X, endowed with
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the usual scalar product (u, v)X =
∑M

i=1

∑2M
j=1 uijvij. The discretization step is h = 1,

as usual in discrete image processing. For g = (g1, g2) ∈ Y , denote

|gi,j| =
√
(g1i,j)

2 + (g2i,j)
2.

The image is represented by the intensity function u. It is assumed to be piecewise
constant. We denote by

uj = u(i, j), i = 1,M, j = 1, 2M and u = (uj)1≤j≤2M .

The Radon measure Du is approximated as follows. For u ∈ X, Du is identified with
a vector of Y of coordinates (Du)i,j = ((Du)1i,j, (Du)

2
i,j) defined by

(Du)1i,j =

{
ui+1,j − ui,j if i < M

0 if i =M
(Du)2i,j =

{
u1,j+1 − ui,j if j < 2M

0 if j =M.

The total variation is then approximated by Φ(u) =
∑M

i=1

∑2M
j=1 |(Du)i,j|. Function Φ

from X to R
+ is convex, nonnegative and nondifferentiable.

In order to compute the discretized projection operator we apply the principle that
that if u ∈ L∞(R+ × R) with compact support in Ω, then

(Hou)(y, z) = 2

∫ +∞

|y|

u(r, z)
r√

r2 − y2
dr, (17)

a.e. y, z ∈ R. Furthermore, the matrixHo of the discretized projection operator related
to Ho is a 2M2 × 2M2 matrix

Ho =




A 0 · · · 0
0 A 0 · · ·
...

. . . A
. . .

· · · · · · 0 A


 and U =




U1

...
U2M




where A stands for the projection matrix M ×M with respect to a line uj := u(:, j).
A direct computation with formula (17) gives: A = ((ai,j)1≤i,j≤M) with

ai,j = 2

{
0 if j < i√

(j + 1)2 − i2 −
√
j2 − i2 if i ≤ j ≤M − 1.

Tests have been performed with the synthetic object we described in Section 1. The
original image has been perturbed with two additional perturbations due to the exper-
imental setup as in [1, 2]:

• A blur, due to the detector response and the X-ray source spot size. To simplify,
it is assumed that the effect B of the blur is linear, and can be written

Bv = K ∗ v (18)

where ∗ is the usual convolution operation, v is the projected image, and K is a
positive symmetric kernel with compact support and such that

∫
Kdµ = 1.
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• A noise, assumed to be an additive Gaussian white noise, denoted τ , of zero mean
and of standard deviation σ.

Other perturbations, such as scattered field or motion blur, are not taken into account
in our study. With these assumptions, the projection of an object u is

ud = BHou+ τ.

A comparison between the theoretical projectionHou and the perturbed one is provided
on Fig. 1.2 (b) and (c). All numerical experiments have been done with MATLAB c©

software.

5.3. Numerical results

In all of our numerical experiments, we used the same function θr = θW1
r (this function

was slightly more efficient than θr = θ1r) and fixed step-sizes for the gradient and muti-
plier displacements. We used a stopping criterion depending on the relative variation
of the cost functional ∣∣∣∣

F (un+1)− F (un)

F (un)

∣∣∣∣ ≤ tol

where tol was set to 1e − 3 with a maximal number of iterations itmax = 500. The
image size is M = 256 so that N = 2 ∗ 2562 = 131 072. As in [1, 2] the initial guess is
H−1(ud).

We first present some numerical results for the relaxation and penalization approaches
where the binarity approximation parameter is fixed to r = 1e−5 (we shall justify this
choice later).

Note that the lack of convexity does not allow to assert that a solution is a global
minimum. Only local minima can be reached a priori. Furthermore, even if a solution
happens to be a glocal minimum we cannot ensure uniqueness.

5.3.1. Relaxation approach

The following table and figure report our results for different values of the regularization
parameter λ when adding the mass conservation constraint (16):

λ # iterations F (un) ‖un+1−un‖∞
‖un‖∞

‖un−u‖fro
4N2 CPU time (s)

0.1 325 0.0200 7.11e-03 8.892e-4 102.64
1 180 0.0475 3.92e-03 8.797e-4 55.62
2 185 0.0528 3.86e-03 6.254e-4 57.48
5 170 0.0656 4.17e-03 5.075e-4 52.76
10 155 0.1024 3.75e-03 4.683e-4 48.63
15 149 0.1412 3.90e-03 4.767e-4 46.35
20 321 0.1802 4.15e-03 4.782e-4 101.05

Table 5.1: Relaxation approach with the mass conservation constraint

Here
‖un−u‖fro

4N2 is the normalized Frobenius norm of the difference of un and the original
image u.
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(a) The real
object u.

(b) λ = 0.1 (c) λ = 1 (d) λ = 2

(e) λ = 5 (f) λ = 10 (g) λ = 15 (h) λ = 20

Figure 5.1: Relaxation approach with the mass conservation constraint for different
values of λ

For the same parameters, we obtained the following results for the relaxed problem
without the additional mass conservation constraint.

λ # iterations F (un) ‖un+1−un‖∞
‖un‖∞

‖un−u‖fro
4N2 CPU time (s)

0.1 325 0.0199 5.62e-03 8.760e-4 101.73
1 275 0.0485 3.64e-03 8.667e-4 86.70
2 185 0.0528 3.90e-03 6.236e-4 57.31
5 164 0.0654 3.86e-03 5.033e-4 53.66
10 152 0.1022 3.81e-03 4.693e-4 50.32
15 169 0.1408 3.93e-03 4.747e-4 53.33
20 324 0.1799 4.18e-03 4.786e-4 44.61

Table 5.2: Relaxation approach without the mass conservation constraint

We remark that the additional constraint when considering the relaxation approach
does not significantly change the results and that λ ∈ {5, 10, 15} seem to be good
choices for the regularization parameter.

5.3.2. Penalization approach

For the penalized problem, the mass conservation constraint significantly improves the
numerical results. We only present the numerical results in this case.
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(a) The real
object u.

(b) λ = 0.1 (c) λ = 1 (d) λ = 2

(e) λ = 5 (f) λ = 10 (g) λ = 15 (h) λ = 20

Figure 5.2: Penalization approach with the mass conservation constraint for different
values of λ

Once again λ ∈ {5, 10, 15} seem to be good choices for the regularization parameter.
The CPU times and the fourth column of Table 5.3 show that the iterates convergence is
very fast, but the overall results as shown in the fifth column reveal that this technique
performs less when compared to the relaxation approach results.

λ # iterations F (un) ‖un+1−un‖∞
‖un‖∞

‖un−u‖fro
4N2 CPU time (s)

0.1 140 0.0219 2.31e-5 1.039e-3 67.22
1 324 0.0496 1.74e-5 1.074e-3 157.02
2 54 0.0519 2.12e-5 6.220e-4 26.40
5 56 0.0647 2.64e-5 5.142e-4 26.98
10 90 0.1065 1.60e-5 5.518e-4 43.68
15 46 0.1557 5.58e-5 5.183e-4 21.50
20 325 0.4201 5.23e-4 1.187e-3 156.46

Table 5.3: Penalization approach with the mass conservation constraint

5.3.3. Results for differents binarity approximation parameters r

To measure the effect of the binarity approximation parameter, we did a number of
numerical experiments when varying r. We consider the relaxation approach with the
additional mass conservation constraint for a fixed value of the regularization parameter
(λ = 10). The following table and figures present the results:
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r # iterations F (un) ‖un+1−un‖∞
‖un‖∞

CPU time (s)

1.e-2 325 0.10962 2.64e-2 109.80
1.e-3 218 0.10341 5.874e-3 72.71
1.e-4 155 0.10252 3.72e-3 49.86
1.e-5 155 0.10245 3.75e-3 48.65
1.e-6 150 0.10238 3.90e-3 49.75

Table 5.4: Results for differents binarity approximation parameters

(a) The real
object u.

(b) r = 1.e− 2 (c) r = 1.e− 3

(d) r = 1.e− 4 (e) r = 1.e− 5 (f) r = 1.e− 6

Figure 5.3: Relaxation approach with the mass conservation constraint for different
values of r

These results prove that we do not need to perform a complicated strategy to move
the binarity approximation parameter through 0. Fixing r small enough is sufficient
to obtain ecellent results.

5.3.4. Cost behaviour and iterates evolution

For fixed values of the regularization parameter λ = 10 and the binarity approximation
parameter r = 1e− 5, the two following figures present the behaviour of the cost and
iterates.

These figures correspond to the first approach (relaxation with mass constraints) but
we observe almost the same results when applying the other approaches. It should be
noted that our methods are not descent methods and that the significant improvements
are made in the first iterations. Indeed, a simple rounding after a few iterates (65) gives
the following result:
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(a) cost evolution.
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Figure 5.4: Relaxation approach with the mass conservation constraint when r = 1e−5
and λ = 10

(a) The real object u. (b) Solution after 65
iterations

(c) Round solution
after 65 iterations
round(u65).

Figure 5.5: Round solution after 65 iterations when r = 1e− 5 and α = 10
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