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We study the possible equivalence classes of the moduli of smoothness of finite-dimensional Banach
spaces. We show that these can be arbitrary subject to Figiel condition and, moreover, they can
be realised via Orlicz spaces. Some dimension dependencies are also studied. As an application we
answer in negative an open question concerning the modulus of squareness.
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1. Introduction

Recall one of the standard notions of equivalence of two functions f, g : R → R at zero:

f ≍ g ⇐⇒ cf(t) ≤ g(t) ≤ Cf(t)

for some constants c, C > 0 and all t in a neighbourhood of zero. A slightly weaker
relation

f t g ⇐⇒ cf(at) ≤ g(t) ≤ Cf(bt)

for some strictly positive constants and t in a neighbourhood of zero, appears in many
contexts, notable for us being [3, 6, Ch. 4]. The value of this notion is partially in the
fact that if f t g then f ∗

t g∗, where f ∗ is the Fenchel conjugate of f .

Therefore, thanks to Lindenstrauss duality formula [7, p. 61] (which essentially says
the modulus of smoothness ρX∗ of the dual X∗ is Fenchel conjugate to the modulus
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of convexity δX of the Banach space X) t equivalence proved useful in studying the
geometry of Banach spaces.

Of course, for functions like tp both notions coincide. More generally, we call the
function f pretty if

f(t) ≍ f(kt), ∀k > 0. (1)

It is immediately seen that if f is pretty then f ≍ g if and only if f t g in which case
g is also pretty. Note that an Orlicz function f is pretty if and only if it satisfies ∆2

condition at zero (that is, f(2t) ≤ cf(t) for all small enough t > 0), cf. [6, p. 138].

In [5] the functions which can be modulus of convexity of some two-dimensional normed
space are characterised up to t equivalence. The method used is direct geometrical
construction of the unit sphere. By duality, the main result of [5] implies characterisa-
tion of the functions which can be modulus of smoothness.

In the present work we elaborate on some analytical techniques from [8] in order to
obtain the characterisation of modulus of smoothness functions. We show that any
≍ equivalence class can be realised in arbitrary finite dimension by Orlicz space. The
presented analytical method provides more explicit (if compared to [5]) formula of the
norm for each modulus of smoothness function and each dimension.

As an application we show that the modulus of squareness, e.g. [1], of a uniformly con-
vex space needs not be integrable function. In this way we answer negatively a question
posed in [1]. It should be mentioned that we are not able to obtain this counterexample
directly from [5] because the known correspondence between the modulus of convexity
and the modulus of squareness is significantly less tight than that between the modulus
of smoothness and the modulus of squareness [1, Theorem 2.4.i]. It remains open if
the former can be tightened accordingly.

The paper is organised as follows. In Section 2 we recall the definitions and previous
results we use, and state our main results. Section 3 is devoted to the details of the
characterisation of the modulus of smoothness functions. In the final Section 4 we
present our counterexample concerning the modulus of squareness.

2. Preliminaries and main results

Recall that the modulus of convexity, resp. smoothness, of a Banach space X is defined
by

δX(ε) = inf
{

1−
∥

∥

∥

x+ y

2

∥

∥

∥
: ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}

, 0 ≤ ε ≤ 2,

resp.

ρX(τ) = sup

{

‖x+ τy‖+ ‖x− τy‖ − 2

2
: ‖x‖ = ‖y‖ = 1

}

, τ ≥ 0.

Lindenstrausss duality formula, e.g. [7, p. 261], reads

ρX∗(τ) = sup {τε/2− δX(ε) : 0 ≤ ε ≤ 2} .
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As Fenchel conjugate ρX∗ is convex function. This is true for general ρX , see [3]. It
is easy to see that ρX is Lipschitz, increasing and ρX(0) = 0 (indeed, ρX(τ) ≤ τ by
triangle inequality). That is to say, ρX is an Orlicz function. A much deeper property
of ρX is revealed by Nordlander Theorem [9]: ρX(τ) ≥ ρH(τ) ≍ τ 2, where H stands for
Hilbert space. It was shown by Figiel [3] that any modulus of smoothness satisfies (2).

We will show that – up to ≍ equivalence – the latter, to which we refer as Figiel

condition, is also sufficient.

Definition 2.1. An Orlicz function N will be called a modulus of smoothness function

provided it satisfies the inequality

N(s)

s2
≤ C

N(t)

t2
, ∀ 0 < t ≤ s, (2)

for some C ≥ 1. We denote the smallest such constant by CN ; and the set of all
modulus of smoothness functions by S.

It is immediate that all functions in S are pretty. Also, if N ∈ S and N1(t) =
t2 sups≥tN(s)/s2 then N ≍ N1 and CN1 = 1.

Given an Orlicz function N , the n-dimensional Orlicz space l
(n)
N is Rn with unit sphere

S
l
(n)
N

= {x : ϕ(x) = 1}, where

ϕ(x) =
n

∑

i=1

N (|xi|) , x = (xi)
n
i=1, xi ∈ R. (3)

We refer e.g. to [6, p. 137] for a definition of Orlicz sequence space lN .

We introduce an analogue of Maleev-Troyanski function GN [8, p. 133].

Definition 2.2. Let N ∈ S and n ∈ N. The function GN,n : [0, 1] → R is defined by

GN,n(τ) = τ 2 sup

{

n
∑

i=1

N(uivi)

u2
i

: (vi)
n
i=1 ∈ S

l
(n)
N

, vi ≥ 0, ui ∈ [τ, 1]

}

. (4)

Lemma 3.2 shows in particular that N ≍ GN,n.

The following regularisation of an Orlicz function N is frequently used, e.g. [7, Ch. 4]:

M(t) =

∫ t

0

N(s)

s
ds. (5)

For the properties of this regularisation, see Lemma 3.1. For now it is important that
M ≍ N and CM ≤ CN .

We are ready to present the characterisation of modulus of smoothness.

Theorem 2.3. Let N ∈ S and M be given by (5). There exist constants k > 0 and

K > 0 such that for all n ∈ N and all τ ∈ [0, 1]

k

nM−1(1/n)
GM,n(τ) ≤ ρ

l
(n)
M

(τ) ≤ KGM,n(τ).
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In particular R
n can be renormed in such a way that its modulus of smoothness is ≍

equivalent to N .

Using that δX∗ t ρ∗X , see [3], the above characterisation can be dualised to modulus of
convexity.

In Example 3.3 we show that there exists a function N ∈ S such that 1
nM−1(1/n)

→ 0 as
n → ∞, and GM 6≍ N . Therefore, our result is not implied by the infinite-dimensional
results found in [8, 3].

As an application of the above Theorem, we get the following result which, roughly
speaking, says that the modulus of smoothness can be arbitrarily worsened through
renorming.

Corollary 2.4. Let (X, ‖ · ‖) be a Banach space of dimension at least 2. Let N ∈ S
be arbitrary. There exists equivalent norm | · | such that

cN(τ) ≤ ρ(X,|·|)(τ) ≤ Cmax{N(τ), ρ(X,‖·‖)(τ)}

for some c, C > 0.

Recall the definition of modulus of squareness ξX : [0, 1) → [1,∞) from [10], see also
[1], of a normed space X:

ξX(β) = sup{ω(x, y) : ‖y‖ ≤ β < 1 < ‖x‖},

where

ω(x, y) =
‖x− z(x, y)‖

‖x‖ − 1
,

and z(x, y) is the intersection of the segment [x, y] and the unit sphere SX .

It is remarkable that the modulus of squareness characterises both uniform convex-
ity and uniform smoothness. Recently a localisation of this modulus was defined in
[4]. (Localisation in this context means a notion which characterises Fréchet (resp.
Gateaux) smoothness and local uniform (resp. strict) convexity and which, when uni-
formity is imposed, gives rise to modulus of squareness.) This notion answers [1,
Problem 4.8].

We summarise in Proposition 4.1 the known properties of the modulus of squareness
that we use. For some other important properties of this modulus we refer to Theo-
rem O from [1].

Problem 4.5 in [1] asks if ξX is integrable for any uniformly convex X. The following
Theorem answers this question.

Theorem 2.5. Let

µ(t) =

{

t
1−log t

, t ∈ [0, 1],

t2, t ≥ 1,
(6)

and M(t) =
∫ t

0
µ(s)/s ds. Then for X = l

(n)
M

ξX∗(β) ≍
1

(β − 1) log(1− β)
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as β → 1. In particular, X∗ is uniformly convex but ξX∗ is not integrable.

Note that l∗M could not serve as counterexample, because by Theorem 4.a.9 from [6, p.
143] l1 ⊂ lM and thus the latter is not reflexive.

3. Modulus of smoothness functions

We start with the following well-known

Lemma 3.1. Let N ∈ S and M be given by (5). Then M ≍ N , CM ≤ CN and for all

u ∈ (0, 1] and v such that |v| < u

M(|u+ v|) +M(|u− v|)− 2M(|u|) ≤ B
M(|u|)

u2
v2, (7)

where B is some positive constant.

Proof. Lemma 20 from [3] contains all but the estimate CM ≤ CN . For the latter take

0<t<s and computeM(t)=
∫ t

0
N(u)/u du=

∫ 1

0
N(tu)/u du≤CN (t2/s2)

∫ 1

0
N(su)/u du

= CN t
2M(s)/s2, that is, CM ≤ CN .

We now turn to the equivalence between M ∈ S and GM,n, see Definition 2.2.

Lemma 3.2. Let N ∈ S and N(1) = 1. Then for all n ∈ N and τ ∈ [0, 1]

N(τ) ≤ GN,n(τ) ≤ CNnN
−1(1/n)N(τ). (8)

Proof. Left hand side inequality is trivial: take v = (1, 0, . . .) and u = (τ, τ, . . .) in
(4).

Now, we proceed with the proof of the other inequality. It will be useful to break GN,n

into more simple terms. Let

hc(t) = max
s∈[t,1]

N(cs)

s2
; h(t) = h1(t). (9)

In other words, h(t) is a decreasing function to which N(t)/t2 is equivalent on (0, 1].
Indeed N(t) ≤ t2h(t) ≤ CNN(t). It is also obvious that

hc(t) ≤ c2h(ct).

Since the variables separate,

GN,n(τ) = τ 2 sup

{

n
∑

i=1

hvi(τ) : (vi)
n
1 ∈ S

l
(n)
N

, vi ≥ 0

}

. (10)

But hvi(τ) ≤ v2i h(τvi) ≤ CMN(τvi)/τ
2. Since vi ∈ [0, 1] (recall that N(1) = 1) and

N is convex, N(0) = 0, we have N(τvi) ≤ viN(τ). Therefore, hvi(τ) ≤ CNviN(τ)/τ 2.
Substituting in (10) we get

GN,n(τ) ≤ CNN(τ) sup

{

n
∑

i=1

vi : (vi)
n
1 ∈ S

l
(n)
N

, vi ≥ 0

}

.
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Since the inverse function N−1 is concave, N−1(1/n) = N−1 (n−1
∑n

1 N(vi)) ≥
n−1

∑n
1 N

−1 (N(vi)) = n−1
∑n

1 vi. That is, the above supremum is less than nN−1(1/n).

Note that the value CNnN
−1(1/n) is optimal, as explained in Example 3.3.

Proof of Theorem 2.3. Multiplying N by a constant changes nothing, so we assume
that M(1) = 1.

We show first that for fixed u, v, such that |u| ≤ 1 and |v| ≤ τ ,

M(|u+ v|) +M(|u− v|)− 2M(|u|) ≤ kτ 2h |v|
τ

(τ), (11)

see (9). Indeed, we may assume that u, v ≥ 0. There are two possibilities.

If u ≤ v then M(v ± u) ≤ M(2v) ≤ k1M(v) ≤ k1τ
2h v

τ
(τ).

If v < u then by (7) the left hand side of (11) is estimated by BM(u)v2/u2 ≤
BCMM(v) ≤ BCMτ 2h v

τ
(τ).

Take now x, y ∈ l
(n)
M such that ‖x‖ = 1 and ‖y‖ = τ . Then |xi| ≤ 1 and |yi| ≤ τ and

we may sum (11) coordinate-wise to obtain

ϕ(x+ y) + ϕ(x− y)− 2 ≤ kτ 2
n

∑

i=1

h |vi|

τ

(τ) ≤ kGM,n(τ)

by (10). (ϕ was defined by (3))

Suppose that ‖x+ y‖ ≥ 1 and ‖x− y‖ ≥ 1. By convexity we have ϕ(x± y) ≥ ‖x± y‖
and the above estimate implies ‖x + y‖ + ‖x − y‖ − 2 ≤ kGM,n(τ). Thus, using [3,
Lemma 12], we get ρX(τ) ≤ 16kGM,n(τ).

Since l
(2)
M embeds isometrically in l

(n)
M , we have that ρ

l
(n)
M

≥ ρ
l
(2)
M

and it is enough to

prove the left hand side inequality for the latter. Let x = (1, 0), y = (0, 1) ∈ S
l
(2)
M

and

define n(t) = ‖x + ty‖. It is obvious that ρ
l
(2)
M

(τ) ≥ n(τ) − 1. It is intuitively clear

that n(t) − 1 is alike M(t) as t → 0. In order to prove this, we need to compute the
derivative of n(t). Since the latter satisfies (by the definition of Orlicz norm)

M(1/n(t)) +M(t/n(t)) = 1,

after differentiation and rearrangement we get

n′(t)

n(t)
= m(t) :=

M ′(t/n(t))

M ′(1/n(t)) + tM ′(1/n(t))
.

Therefore,

lim inf
t→0

n(t)− 1

M(t)
= lim inf

t→0

n′(t)

M ′(t)
= lim inf

t→0

n(t)m(t)

M ′(t)
.

Replacing the multipliers which tend to non-zero limit by the latter we get

lim inf
t→0

n(t)− 1

M(t)
=

1

M ′(1)
lim inf
t→0

M ′(t/n(t))

M ′(t)
.
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By definition M ′(t) = N(t)/t and so

lim inf
t→0

n(t)− 1

M(t)
=

1

N(1)
lim inf
t→0

N(t/n(t))

N(t)
≥

1

N(1)
.
1

CN

,

because N(t) ≤ CNn
2(t)N(t/n(t)), as n(t) ≥ 1; and n(t) → 1. We see that there is a

constant K ′ > 0 such that n(t)−1 ≥ K ′M(t) for t ∈ (0, 1]. We apply (8) and complete
the proof.

Proof of Corollary 2.4. Let Y be a two-dimensional subspace of X and let P be a
bounded projection of X onto Y . By Theorem 2.3 there is equivalent norm ‖ · ‖1 on Y
such that ρ(Y,‖·‖1) ≍ N . Then by [3, Proposition 19] the equivalent norm | · |, defined
by the formula

|x|2 = ‖Px‖21 + ‖x− Px‖2

satisfies the claim.

Example 3.3. For the function µ defined by (6) we have Cµ = 1 and

lim
τ→0

Gµ,n(τ)

µ(τ)
= nµ−1(1/n), (12)

meaning that the estimate (8) is optimal.

As µ′(t) = 1
(1−log t)2

+ 1
1−log t

on [0, 1] and the latter is increasing function, µ is Orlicz.

It is obvious that µ(t)/t2 is decreasing. So, µ ∈ S and Cµ = 1.

Note first of all that the inverse of µ can be expressed through Lambert function W ,
that is the inverse of t → tet on [0,∞), e.g. [2, p. 27]:

µ−1(t) = tW (et/t).

By differentiating W (t)eW (t) = t, we get tW ′(t) = W (t)/ (1 +W (t)). Since
W (t)/ (1 +W (t)) → 1 as t → ∞, W ′(t) ≍ 1/t and thus W (t) ≍ log t as t → ∞.
This implies

µ−1(t) ≍ −t log t, t → 0, (13)

so (12) goes to infinity like logn.

Next, we calculate explicitly Gµ,n. Since t → µ(tvi)/t
2 is decreasing, (4) reduces to

Gµ,n(τ) = max

{

n
∑

i=1

µ(τvi) : (vi) ∈ S
l
(n)
µ
, vi ≥ 0

}

.

Considering Lagrange function L(v, λ) =
∑n

1 µ(τvi)− λ (
∑n

1 µ(vi)− 1) we would find
that the extremal points are either where some of the vi’s is zero (but that case reduces
to lower dimension), or at the unit vector collinear to (1, 1, . . . , 1), because the function
f(x) = µ(τx)/µ(x) is strictly decreasing on [0, 1].
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Of course, the latter needs some explanation. It is enough to show that f ′(x) < 0 for
x ∈ (0, 1). That is, τµ′(τx)µ(x)− µ(τx)µ′(x) < 0, or

τ
µ′(τx)

µ(τx)
<

µ′(x)

µ(x)
⇐⇒ τg′(τx) < g′(x),

where g(x) = logµ(x) = logx − log (1− logx) for x ∈ (0, 1) by (6). So, g′(x) =

1
x

(

1 + 1
1−logx

)

and the above reduces to log τx < logx.

If then the maximum is attained at vector of equal co-ordinates, the former will be
equal to µ−1(1/n). Therefore,

Gµ,n(τ) = nµ
(

τµ−1(1/n)
)

. (14)

Since limτ→0 µ(cτ)/µ(τ) = c, we have (12).

From (14) and (13) we can deduce also that for fixed τ ∈ (0, 1) the value of Gµ,n(τ) goes
to infinity. Therefore, the equivalence in Theorem 2.3 can not be uniform on n ∈ N if
N is equal µ. Also, in this case Maleev-Troyanski function GM(τ) (see [8]) is equal τ
and thus not equivalent to M ≍ µ ≍ GM,n.

4. A counterexample concerning modulus of squareness

First, we recall the known properties of the modulus of squareness which we will use.

Proposition 4.1 ([1]). Let X be a normed space. Then X is uniformly convex if and

only if limβ→1(1− β)ξX(β) = 0. Also,

ξX∗(β) =
1

ξ−1(1/β)
; (15)

and

ρX(β) ≤ ξX(β)− 1 ≤
2ρX(β)

1− β
, β ∈ (0, 1/2), (16)

that is, ρX(β) ≍ ξ(β)− 1.

Proof. These are the statements of Theorem O(f,h) and Theorem 2.4(i) from [1].

Proof of Theorem 2.5. As µ ∈ S, see Example 3.3, Theorem 2.3 applies with N = µ
and M . Also, M ≍ µ by Lemma 3.1.

Since ρX ≍ µ by Theorem 2.3, and ρX ≍ ξX − 1 by (16), we have µ ≍ ξX − 1. That is,

1 + cµ(t) ≤ ξX(t) ≤ 1 + Cµ(t)

for some c, C > 0 and t in a neighbourhood of zero. Let

ξX(t) =
1

β
. (17)
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We have that β = β(t) → 1 as t → 0 and, of course, β < 1. Obviously, 1 − c1µ(t) ≤
β(t) ≤ 1 − c2µ(t) for some strictly positive ci and t small enough. Obviously, for
increasing f and g

f ≥ g ⇐⇒ f−1 ≤ g−1.

Therefore,
µ−1(c1µ(t)) ≤ µ−1(1− β(t)) ≤ µ−1(c2µ(t)).

It is easily checked that the function t → −t log t is pretty. Thus (13) implies that µ−1

is also pretty. So, the above inequalities reduce to

µ−1 (1− β(t)) ≍ t.

From (17) it follows that

µ−1(1− β) ≍ ξ−1
X

(

1

β

)

, β → 1.

From (13) we know that µ−1(1− β) ≍ (β − 1) log(1− β) as β → 1, so (15) implies

ξX∗(β) = 1/ξ−1
X

(

1

β

)

≍
1

(β − 1) log(1− β)
.

Acknowledgements. We would like to thank Prof. S. Troyanski from Murcia University

and Prof. R. Deville from University Bordeaux I for helpful and stimulating discussions.

References
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