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1. Introduction

The aim of this paper is to prove existence results for differential inclusions with prox-
imal normal cones (which will be denoted N) and to extend them to sweeping process
with a moving set t → C(t) on a time-interval I := [0, T ]. Let B be a Banach space and
C : I ⇉ B be a set-valued map with nonempty closed values, and let F : I × B ⇉ B
be a set-valued map taking nonempty convex compact values. An associated sweeping
process u : I → B is a solution of the following differential inclusion:















du(t)

dt
+N(C(t), u(t))− F (t, u(t)) ∋ 0

u(t) ∈ C(t)

u(0) = u0 ,

(1)

with an initial data u0 ∈ C(0). This differential inclusion can be thought as following:
the point u(t), submitted to the field F (t, u(t)), has to live in the set C(t) and so follows
its time-evolution.

We first begin by detailing the story of the study for similar problems. The sweeping
processes have been introduced by J. J. Moreau in 70’s (see [23]). He considered the
following problem: a point u(t) has to be inside a moving convex set C(t) included in
a Hilbert space. When this point is catched-up by the boundary of C(t), it moves in
the opposite of the outward normal direction of the boundary, as if it was pushed by
the physical boundary in order to stay inside the convex set C(t). Then the position
u(t) of this point is described by the following differential inclusion

− �u(t) ∈ ∂IC(t)(u(t)). (2)

Here we write ∂IC for the subdifferential of the indicator function of a convex set C. In
this work, the sets C(t) are assumed to be convex and so ∂IC(t) is a maximal monotone
operator depending on time. To solve this problem, J. J. Moreau brings a new impor-
tant idea in proposing a catching-up algorithm. To prove the existence of solutions, he
builds discretized solutions in dividing the time interval I into sub-intervals where the
convex set C does not vary too much. Then by compactness arguments, he shows that
a limit mapping can be constructed (when the length of subintervals tends to 0) which
satisfies the desired differential inclusion.
Indeed with well-known convex analysis, as C(t) is convex, we have ∂IC(t)(x) =
N(C(t), x). So it is the first result concerning sweeping process (with no perturba-
tion F = 0).

Since then, important improvements have been developed by weakening the assump-
tions in order to obtain the most general result of existence for sweeping process. There
are several directions: one can want to add a perturbation F as written in (1), one may
require a weaker assumption than the convexity of the sets, one would like to obtain
results in Banach spaces (and not only in Hilbert spaces),...
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In [29], M. Valadier dealt with sweeping process by sets C(t) = R
n \ int(K(t)) where

K(t) are closed and convex sets. Then in [9], C. Castaing, T. X. Dúc Hā and M. Valadier
have studied the perturbed problem in finite dimension (B = R

n) with convex sets C(t)
(or complements of convex sets). In this framework, they proved existence of solutions
for (1) with a convex compact valued perturbation F and a Lipschitzean multifunction
C. Later in [10], C. Castaing and M. D. P. Monteiro Marques have considered similar
problems in assuming upper semicontinuity for F and a “linear compact growth�:

F (t, x) ⊂ β(t)(1 + |x|)B(0, 1), ∀(t, x) ∈ I × R
n. (3)

Moreover the set-valued map C was supposed to be Hausdorff continuous and satisfying
an “interior ball condition�:

∃r > 0, B(0, r) ⊂ C(t), ∀t ∈ I. (4)

Then the main concept, which appeared to get around the convexity of sets C(t), is
the notion of “uniform prox-regularity�. This property is very well-adapted to the
resolution of (1): a set C is said to be η-prox-regular if the projection on C is single
valued and continuous at any point whose the distance to C is smaller than η.
Numerous works have been devoted to applications of prox-regularity in the study of
sweeping process. The case without perturbation (F = 0) was firstly treated by G.
Colombo, V. V. Goncharov in [13], by H. Benabdellah in [1] and later by L. Thibault
in [28] and by G. Colombo, M. D. P. Monteiro Marques in [14]. In [28], the considered
problem is

{

−du ∈ N(C(t), u(t))

u(T0) = u0 ,
(5)

where du is the differential measure of u. The existence and uniqueness of solutions of
(5) are proved with similar assumptions as previously.
In infinite dimension and when B is a Hilbert space B = H, the perturbed problem is
studied by M. Bounkhel, J. F. Edmond and L. Thibault in [6, 28, 16, 17] (see Theorem
3.1). For example in [17], the authors show the well-posedness of

{

−du ∈ N(C(t), u(t)) + F (t, u(t))dt

u(0) = x0 ,
(6)

with a set-valued map C taking η-prox regular values (for some η > 0) such that

|dC(t)(y)− dC(s)(y)| ≤ µ(]s, t]), ∀y ∈ H, ∀s, t ∈ I, s ≤ t (7)

where µ is a nonnegative measure satisfying

sup
s∈I

µ({s}) < η

2
. (8)

The proof uses the algorithm developed by J. J. Moreau with additional arguments to
deal with the prox-regularity assumption.

Indeed the main difficulty of this problem is the weak smoothness of the proximal
normal cone. For a fixed closed subset C, the set-valued map x → N(C, x) is not
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upper semicontinuous, which is needed for the proof. The prox-regularity implies this
required smoothness. We finish by presenting the work of H. Benabdellah (see [2]).
He deals with sweeping process in an abstract Banach framework, in considering the
limiting normal cone, which satisfies this upper semicontinuity.

After this description of existing results, we come to our contribution in this article. We
are looking for results concerning differential inclusions with proximal normal cone. We
first precise some results (essentially already obtained in the previously cited papers)
about these ones in a Hilbert framework. Then in Section 4 we explain with an example
due to a model of crowd motion (detailed in [30, 19]) that the “uniform prox-regularity�
assumption could fail for some interesting cases. We define also in Subsection 5.1 a
weaker notion, which corresponds to a “directional prox-regularity� property. Moreover
we present new arguments for the proof of existence of sweeping process. It is still
based on the ideas of the catching-up algorithm of J. J. Moreau. This algorithm
gives us a sequence of functions (corresponding to discretized solutions), whose we can
extract a weak-convergent subsequence. The technical problem is to check that this
limit function is a solution of the differential inclusion. The well-known arguments
use the Hilbertian structure of the space, and the fact that the support function of
the proximal subdifferential of the distance function to a set is upper semicontinuous
(which is implied by the prox-regularity of this set). Here we propose a new approach
to describe this “weak continuity�. This allows us to present results in an abstract
Banach framework (under some assumptions on the Banach space, see Subsection 5.2)
and to deal only with a “directional prox-regularity�. We describe these new arguments
for a single-valued perturbation F , which will be denoted by f . Here are our two main
results (proved in Section 6):

Theorem 1.1. Let B be a separable, reflexive, uniformly smooth Banach space, which
is “I-smoothly weakly compact� for an exponent p ∈ [2,∞) (see Definition 5.15). Let
f : B → B be a continuous function admitting at most a linear growth and r > 0 be a
fixed real. Let C be a nonempty ball-compact (r, f) prox-regular subset of B. Then for
all u0 ∈ C, the system

{

�u(t) + N(C, u(t)) ∋ f(u(t))

u(0) = u0

has an absolutely continuous solution u and for all t ∈ I, u(t) ∈ C.

In the case of a Hilbert space B = H, we do not need to require the ball-compactness
of the set C and prove:

Theorem 1.2. Let B = H be a separable Hilbert space. Let f : B → B be a Lipschitz
function admitting at most a linear growth and r > 0 be a fixed real. Let C be a
nonempty closed (r, f) prox-regular subset of H. Then for all u0 ∈ C, the system

{

�u(t) + N(C, u(t)) ∋ f(u(t))

u(0) = u0

has one and only one absolutely continuous solution u and for all t ∈ I, u(t) ∈ C.

Moreover we give in the last subsections several extensions concerning sweeping process
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in a Banach and Hilbert framework (with a non constant set-valued map C).

2. Preliminaries

For an easy reference, we recall the main definitions and notations, used throughout
the paper. Let B be Banach space, equipped with its norm ‖ ‖. We write B(x, r) for
the open ball of center x and of radius r and B(x, r) for its closure. Let S1 and S2 be
two nonempty subsets of B, we denote their Hausdorff distance H(S1, S2) defined by

H(S1, S2) := max

(

sup
x∈S1

d(x, S2), sup
x∈S2

d(x, S1)

)

.

Definition 2.1. Let C be a closed subset of B. The set-valued projection operator PC

is defined by
∀x ∈ B, PC(x) := {y ∈ C, ‖x− y‖ = d(x,C)} .

Definition 2.2. Let C be a closed subset of B and x ∈ C, we denote by N(C, x) the
proximal normal cone of C at x, defined by:

N(C, x) := {v ∈ B, ∃s > 0, x ∈ PC(x+ sv)} .

We now come to the main notion of “prox-regularity�. It was initially introduced by
H. Federer (in [18]) in spaces of finite dimension under the name of “positively reached
sets�. Then it was extended in Hilbert spaces by A. Canino in [8] and A. S. Shapiro in
[27]. After, this notion was studied by F. H. Clarke, R. J. Stern and P. R. Wolenski in
[12] and by R. A. Poliquin, R. T. Rockafellar and L. Thibault in [26]. Few years later,
F. Bernard, L. Thibault and N. Zlateva have defined this notion in Banach spaces (see
[3], [4], [5]).

Definition 2.3. Let C be a closed subset of B and r > 0. The set C is said η-prox-
regular if for all x ∈ C and all v ∈ N(C, x) \ {0}

B

(

x+ η
v

‖v‖ , η
)

∩ C = ∅.

We refer the reader to [12, 11] for other equivalent definitions related to the limiting
normal cone. Moreover we can define this notion using the smoothness of the function
distance d(·, C), see [26]. This definition is very geometric, it describes the fact that
we can continuously roll an external ball of radius η on the whole boundary of the set
C. The main property is the following one: for an η-prox-regular set C, and for every
x satisfying d(x,C) < η, the projection of x onto C is well-defined and continuous.

3. Some details about sweeping process in Hilbert spaces

In this section, we consider a Hilbert space H (with its inner product 〈·, ·〉) and study
the following “sweeping process� on a time interval I = [0, T ] with a single-valued
perturbation f :

{

�u(t) + N(C(t), u(t)) ∋ f(t, u(t)), a.e. t ∈ I

u(0) = u0 .
(9)
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We recall the results of J. F. Edmond and L. Thibault (see Theorem 1 of [16]):

Theorem 3.1. Let H be a Hilbert space, η > 0, I be a bounded closed interval of R
and C : t ∈ I → C(t) be a map defined on I taking values in the set of closed η-prox-
regular subsets of H. Let us assume that C(·) varies in an absolutely continuous way,
that is to say, there exists an absolutely continuous function w : I → R such that, for
any y ∈ H and s, t ∈ I

|d(y, C(t))− d(y, C(s))| ≤ |w(t)− w(s)|. (A1 )

Let f : I ×H → H be a mapping which is measurable with respect to the first variable
and such that there exists a nonnegative function β ∈ L1(I,R) satisfying for all t ∈ I
and for all x ∈ ∪s∈IC(s),

‖f(t, x)‖ ≤ β(t) (1 + ‖x‖) . (A2 )

Moreover, we suppose that f satisfies a Lipschitz condition: for every M > 0 there
exists a nonnegative function kM(.) ∈ L1(I,R) such that for all t ∈ I and for any
(x, y) ∈ B(0,M)×B(0,M),

‖f(t, x)− f(t, y)‖ ≤ kM(t)‖x− y‖. (L)

Then for all u0 ∈ C(0), the differential inclusion (9) has one and only one absolutely
continuous solution.

Remark 3.2. In [17], the authors describe more general results of existence for sweep-
ing process with a multivalued perturbation: they deal with a perturbation F : I×H ⇉

H, which is assumed to be separately scalarly upper semicontinuous, admitting a com-
pact and linear growth, and such that for all x ∈ H the function F (·, x) has a measur-
able selection. We do not detail these assumptions as we will only consider the case of
a single-valued mapping f .

We want to use the “hypomonotonicity� property of the proximal normal cone N(C(t), ·)
to obtain information about the differential inclusion (9). First we describe a result
concerning a constant set C(t) ≡ C.

Proposition 3.3. Let H be a Hilbert space, C be a uniformly prox-regular subset and
f : I ×H → H be a mapping satisfying the assumptions of Theorem 3.1. Then for all
u0 ∈ C, the (unique) solution u of (9) satisfies the following differential equation: for
almost every t0 ∈ I,

du

dt
(t0) + PN(C,u(t0)) [f(t0, u(t0))] = f(t0, u(t0)). (10)

Proof. For convenience and to expose the main arguments, we assume that f is
bounded on I × H. In fact due to Assumption (A2 ), we know that this property
holds locally on time almost everywhere on I. As we are looking for local results, this
restriction is allowed.
We follow the ideas of H. Brezis (see [7]), who has already proved similar results, in
considering multivalued maximal monotone operators instead of the proximal normal
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cone N(C, u(t)). The proximal normal cone N(C, ·) is not monotone, fortunately it is
hypomonotone (a little weaker property) due to the uniform prox-regularity of the set
C. By the work of R. A. Poliquin, R. T. Rockafellar and L. Thibault (see [26]), N(C, ·)
satisfies: for all z1, z2 ∈ C, ζ1 ∈ N(C, z1) and ζ2 ∈ N(C, z2)

〈ζ1 − ζ2, z1 − z2〉 ≥ −‖ζ1‖+ ‖ζ2‖
2η

‖z1 − z2‖2 . (11)

From this property, we can obtain the desired result.
The function du

dt
belongs to L1([0, T ], H) so almost every point is a Lebesgue point of �u.

The same reasoning holds for t → f(t, u(t)), which is a bounded function. Let t0 ∈ I
be a Lebesgue point for �u and f(·, u(·)).
Let us consider the following mapping g, defined on H by

g(v) := PN(C,v) [f(t0, v)] .

For every point t ∈ I and v ∈ C, the projection onto N(C, v), due to its convexity, is
everywhere well-defined and so PN(C,v) [f(t0, v)] corresponds to a unique point.
The constant function ũ(t) := u(t0) satisfies the following differential inclusion

dũ

dt
+N(C, ũ) ∋ g(ũ). (12)

Let us first check that for all t0 < t, we have:

‖u(t)− ũ(t)‖

≤ ‖u(t0)− ũ(t0)‖+
∫ t

t0

[

‖f(σ, u(σ))− g(σ, ũ(σ))‖+ h(σ) ‖u(σ)− ũ(σ)‖
]

dσ, (13)

where h is given by

h :=
1

2η

(
∥

∥

∥

∥

du

dt
− f(·, u)

∥

∥

∥

∥

+

∥

∥

∥

∥

dũ

dt
− g(ũ)

∥

∥

∥

∥

)

∈ L1
loc(I).

Using both differential inclusions ((9) for u and (12) for ũ) and the hypomonotonicity
property of the proximal normal cone (11), we get:

1

2

d

dt
‖u(t)− ũ(t)‖2 =

〈

du

dt
(t)− dũ

dt
(t), u(t)− ũ(t)

〉

≤ 〈f(t, u(t))− g(ũ(t)), u(t)− ũ(t)〉+ h(t) ‖u(t)− ũ(t)‖2 . (14)

The integration of this inequality on [s, t] ⊂ I yields

1

2
‖u(t)− ũ(t)‖2 − 1

2
‖u(s)− ũ(s)‖2

≤
∫ t

s

[

‖f(σ, u(σ))− g(ũ(σ))‖+ h(σ) ‖u(σ)− ũ(σ)‖
]

‖u(σ)− ũ(σ)‖ dσ.
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Then we deduce (13) with the help of Lemma A.5 in [7].
Now we use that ũ is constant and equal to u(t0). For t = t0 + ǫ, we obtain

‖u(t0 + ǫ)− u(t0)‖

≤
∫ t0+ǫ

t0

[

∥

∥f(σ, u(σ))− PN(C,u(t0)) [f(t0, u(t0))]
∥

∥+ h(σ) ‖u(σ)− u(t0)‖
]

dσ.

Finally we have

lim sup
ǫ→0

‖u(t0 + ǫ)− u(t0)‖
ǫ

≤ lim sup
ǫ→0

1

ǫ

∫ t0+ǫ

t0

∥

∥f(σ, u(σ))− PN(C,u(t0)) [f(t0, u(t0))]
∥

∥ dσ

+ lim sup
ǫ→0

1

ǫ

∫ t0+ǫ

t0

h(σ) ‖u(σ)− u(t0)‖ dσ.

The second term of the right member is vanishing as t0 is a Lebesgue point of h and u
is continuous at t0. For the first term, we use that t0 is a Lebesgue point of f(·, u(·)).
It comes

lim sup
ǫ→0

1

ǫ

∫ t0+ǫ

t0

∥

∥f(σ, u(σ))− PN(C,u(t0)) [f(t0, u(t0))]
∥

∥ dσ

=
∥

∥f(t0, u(t0))− PN(C,u(t0)) [f(t0, u(t0))]
∥

∥ ,

and consequently

lim sup
ǫ→0

‖u(t0 + ǫ)− u(t0)‖
ǫ

≤
∥

∥f(t0, u(t0))− PN(C,u(t0)) [f(t0, u(t0))]
∥

∥

≤ d(f(t0, u(t0)),N(C, u(t0))). (15)

However we know that when u is differentiable at t, then

du(t)

dt
∈ f(t, u(t))− N(C, u(t)).

Equation (15) gives us the desired equality:

du

dt
(t0) + PN(C,u(t0)) [f(t0, u(t0))] = f(t0, u(t0)).

In this particular case of a constant prox-regular set C, we have obtained the equiv-
alence between the differential inclusion (9) and the differential equation (10). In a
general situation with a moving set C(t), such equivalence may not hold (it is easy to
build a counterexample with no perturbation f = 0).

Using a similar reasoning, we can describe a stability for the solutions of (9), already
proved in Proposition 2 of [16]. We recall its proof for an easy reference.
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Proposition 3.4. Under the assumptions of Theorem 3.1, for all t ∈ I and M , there
exists a constant a > 0 (depending on |I| and M) such that for the solution u (re-
spectively v) associated to initial data u0 (resp. v0) with ‖u0‖ ≤ M and ‖v0‖ ≤ M we
have:

‖u− v‖∞ ≤ a‖u0 − v0‖.

Proof. Let u0, v0 be two fixed data. Consider u (resp. v) the solution of (9) with initial
data u0 (resp. v0). Let M ′ be the bound of the solutions u(t) and v(t) on I given by
Theorem 1 of [16] (depending on M). By the same reasoning (as for (14)) using the
hypomonotonicity of the proximal normal cone, we get:

1

2

d

dt
‖u(t)− v(t)‖2 ≤ [kM ′(t) + h(t)] ‖u(t)− v(t)‖2 ,

where h is defined as

h(t) :=
1

2η

(
∥

∥

∥

∥

du

dt
(t)− f(t, u(t))

∥

∥

∥

∥

+

∥

∥

∥

∥

dv

dt
(t)− f(t, v(t))

∥

∥

∥

∥

)

∈ L1(I).

Applying Gronwall’s Lemma, we get

‖u(t)− v(t)‖ ≤ ‖u0 − v0‖ exp
(
∫ t

0

[kM ′(σ) + h(σ)] dσ

)

.

Theorem 1 of [16] shows that the function h satisfies:

h(t) ≤ 1

η
[(1 +M ′′)β(t) + | �w(t)|] ∈ L1(I,R),

with another constant M ′′. As kM ′ ∈ L1(I,R), we also deduce the result.

Proposition 3.3 gives an interesting result: for a non-moving set C, the important quan-
tity seems to be PN(C,u(t)) [f(t, u(t))], which is a particular point of the set N(C, u(t)).
So we guess that we have not to require information for the whole cone N(C, u(t))
(obtained by the assumption of the uniform prox-regularity), but only on this specific
point. This observation is the starting-point for the definition of “directional prox-
regularity� (see Subsection 5.1).

4. A particular example for a lack of “uniform prox-regularity�

The aim of this section is to describe with an example (due to the modelling of crowd
motion in emergency evacuation) that the uniform “prox-regularity� of an interesting
set may not be satisfied or may be difficult to be checked. We refer the reader to
[30, 20, 19] for a complete and detailed description of this model.

We quickly recall the model. It handles contacts, in order to deal with local interactions
between people and to describe the whole dynamics of the pedestrian traffic. This
microscopic model for crowd motion (where people are identified to rigid disks) rests
on two principles. On the one hand, each individual has a spontaneous velocity that
he would like to have in the absence of other people. On the other hand, the actual
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velocity must take into account congestion. Those two principles lead to define the
actual velocity field as the Euclidean projection of the spontaneous velocity over the
set of admissible velocities (regarding the non-overlapping constraints between disks).

We consider N persons identified to rigid disks. For convenience, the disks are supposed
here to have the same radius r. The center of the i-th disk is denoted by qi ∈ R

2. Since
overlapping is forbidden, the vector of positions q = (q1, .., qN) ∈ R

2N has to belong
to the “set of feasible configurations�, defined by

Q :=
{

q ∈ R
2N , Dij(q) ≥ 0 ∀ i 6= j

}

, (16)

where Dij(q) = |qi − qj| − 2r is the signed distance between disks i and j.

We denote byU(q) = (U1(q1), .., UN(qN)) ∈ R
2N the global spontaneous velocity of the

crowd. To get the actual velocity, we introduce the “set of feasible velocities� defined
by:

Cq =
{

v ∈ R
2N , ∀i < j Dij(q) = 0 ⇒ Gij(q) · v ≥ 0

}

,

with

Gij(q) = ∇Dij(q) = (0, . . . , 0,−eij(q), 0, . . . , 0, eij(q), 0, . . . , 0) ∈ R
2N

and eij(q) =
qj−qi
|qj−qi|

. The actual velocity field is defined as the feasible field which is

the closest to U in the least square sense, which writes

dq

dt
= PCq [U(q)] , (17)

where PCq denotes the Euclidean projection onto the closed convex cone Cq. Then using
the Hilbertian structure of R2N and convex analysis, we have the following results:

Proposition 4.1. The negative polar cone Nq of Cq, i.e.,

Nq := C◦
q
:=
{

w ∈ R
2N , w · v ≤ 0 ∀v ∈ Cq

}

,

is equal to the proximal normal cone N(Q,q) and

Nq = N(Q,q) =
{

−
∑

λijGij(q), λij ≥ 0, Dij(q) > 0 =⇒ λij = 0
}

.

Using the classical orthogonal decomposition with two mutually polar cones (see [22]),
the main equation (17) becomes

dq

dt
+ PN(Q,q) [U(q)] = U(q). (18)

The uniform prox-regularity of Q is proved in [30, 20]:

Theorem 4.2. The set Q ⊂ R
2N , defined by (16) is η-prox-regular with a constant

η = η(N, r) > 0.
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Then, as proved in Section 3, we know that for a Lipschitz bounded map U, this
differential equation (17) is equivalent to the following differential inclusion:

dq

dt
+N(Q,q) ∋ U(q). (19)

Moreover, the uniform prox-regularity of the set Q guarantees the existence and the
uniqueness of solution for such a differential inclusion.

We emphasize that this property was already quite difficult (to be proven) and use
specific geometric properties, mainly precise estimates about the angles between the
different vectors Gij(q).

Now we are interested in extending this result with a model taking into account obtacles
in the room. More precisely, we add new constraints in the set Q in forbidding disks
to cross the obstacles. We do not write details and hope to deal in a more precise way
with this particular problem in a forthcoming work. We just want to explain with the
following example how the assumption of “uniform prox-regularity� could fail.

We consider a small parameter ǫ > 0 and two additional obstacles represented by the
lines x = 0 and x = 4r − 2ǫ in the physical plane and we consider two disks (N = 2).
The set of feasible configurations Q is now defined by

Q :=
{

q = (q1x, q1y, q2x, q2y) ∈ R
4, D12(q) ≥ 0, r ≤ q1x, q2x ≤ 3r − 2ǫ

}

. (20)

We claim that if the set Q is uniformly prox-regular then its constant has to be lower
than

√
ǫ. Indeed we can consider the specific configuration (represented in Figure 4.1)

q0 = (r − ǫ, 0, 3r − ǫ, 0).

x = 0

r − ǫ 3r − ǫ

x = 4r − 2ǫ

Figure 4.1: Specific configuration

The point q0 does not belong to Q however d(q0, Q) .
√
ǫ and in invoking symmetry,

it is obvious that this configuration does not admit a unique projection on Q. So if Q
is uniformly prox-regular then its constant of prox-regularity must be lower than

√
ǫ.

Furthermore similar configurations seem to produce some difficulties also in the nu-
merical analysis. Indeed the Kuhn-Tucker multipliers (appearing in the discretization
of the differential inclusion) could be unbounded in considering obstacles. This fact
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does not allow us to use compacity arguments as in the case without obstacles. We
refer the reader to Remark 4.23 of [30] for more details.

In conclusion, when we consider obstacles in the model of crowd motion, the even-
tual uniform prox-regularity of Q will depend on the geometry of the obstacles, more
precisely on their relative positions. This dependence is probably very difficult to be
estimated. Fortunately, as we are going to explain, it is not necessary to study the
prox-regularity for all directions. Based on the proof of the existence of solutions and
as we explain in the next sections, we only have to measure the prox-regularity in the
direction given by U(q).

Let us treat a special choice of U. For q ∈ R
2, we define U(q) as the unit vector

directed by the shortest path avoiding obstacles from the point q to the nearest exit
(of the considered room) and then define

U(q) = (U(q1), .., U(qN)).

In Figure 4.2 we consider a room containing obstacles with an exit (represented by the
bold segment on the left). We draw the level curves of the distance function to the
exit (obtained by a Fast Marching Method, see [30, 19]) and we represent the velocity
field (corresponding to the gradient of this geodesic distance).

Figure 4.2: Level curves of the distance function and vector field of the velocity.

We can also see that a person moving with velocity U avoids the different obstacles.
Indeed, with an elementary (infinitesimal) displacement in the direction given by this
velocity field, we guess that the persons will not interact with the obstacles, as the
velocity field get smoothly around the obstacles. The information about obstacles are
now hidden in the vector fieldU. So we foresee that in the new configuration q+hU(q)
(with a small enough parameter h), overlaps between disks (representing people) can
appear but none with obstacles. Consequently the configuration illustrated by Figure
4.1 will never be realized by the crowd motion.

We do not give more details for this example, as it is not the aim of this paper. We
would just like to emphasize that in this application, the uniform prox-regularity will



F. Bernicot, J. Venel / Differential Inclusions with Proximal Normal Cones in ... 463

not be easily checked but a kind of “directional prox-regularity� (along the pertur-
bation U(q)) would be more easily estimated. This is why, we propose in the next
Section a rigourous definition of “directional prox-regularity� (motivated by this ex-
ample) and then study differential inclusions with proximal normal cones under this
new assumption.

5. About our assumptions

We devote this section to the definitions of some new concepts needed in our assump-
tions. We want first to weaken the uniform “prox-regularity� assumption about the
set C, in only requiring a “directional prox-regularity�. Then we define a new prop-
erty for the Banach space B (which generalizes a property of the Hilbertian structure)
permitting us to prove existence for differential inclusions with proximal normal cones.

5.1. Concept of “directional prox-regularity�

Due to Proposition 3.3, we guess that it is not necessary to require the whole (in all
the directions) property of uniform “prox-regularity� for the set C(t). Indeed, during
the construction of the solution (see the proof of Theorem 3.1 in [16] and our proof of
Theorem 6.5), we understand that we just consider terms like

PC(t) [u(t)− hf(t, u(t))]

for a small enough parameter h. This term is obviously well-defined for a uniformly
prox-regular set C(t).

According to this observation, we define a new assumption, which only corresponds to
a “directional prox-regularity�, which will be sufficient to obtain an existence result of
the differential inclusion.

For more convenience, we will deal only with a simple case to introduce our concepts:
we suppose that the set-valued map C(·) is constant. The case of a non constant set C
seems to be more technical as we need to know how the set C is moving to only require
a directional prox-regularity (see the comments after Theorem 6.9 and Theorem 6.11).
Let C be a fixed closed subset of a Banach space B.
Definition 5.1. For every point x ∈ C and r > 0, we define Γr(C, x) as the set of
“good directions v to project at the scale r� from x+ rv to x:

Γr(C, x) := {v ∈ B, x ∈ PC(x+ rv)} .
Remark 5.2. For all x ∈ C, we obviously have by definition of the proximal normal
cone

N(C, x) =
⋃

r>0

Γr(C, x).

Definition 5.3. Let f : B → B be a mapping. We say that the set C is “(r, f)
prox-regular� or “r-prox-regular in the direction f� if for all x ∈ C and s ∈ (0, r)

a) the following projection is well-defined:

z := PC

(

x+ s
f(x)

‖f(x)‖

)
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b) and it satisfies

x+ s f(x)
‖f(x)‖

− z
∥

∥

∥
x+ s f(x)

‖f(x)‖
− z
∥

∥

∥

∈ Γr(C, z).

If v = 0, we set v
‖v‖

:= 0 by convention.

Remark 5.4. If the set C is r-prox-regular then for all mappings f , it is (r, f)-prox-
regular.

We can describe this definition as follows with Figure 5.1.

C

x
z

y

w

f(x)

Figure 5.1: Illustration of the “directional prox-regularity�.

Let x ∈ C be a point inside or on the boundary of the set C and let y = x + s f(x)
‖f(x)‖

(for s ∈ (0, r)) corresponding to a small perturbation of x in the direction f(x). We
do not know if the point y belongs to the set C or not but we require that it stays in a
good neighbourhood of set C. Referring to Condition a), we ask that the projection of
y onto C is well-defined, z := PC(y). Consequently all points belonging to the segment
[y, z] project themselves on z. We have to be careful, as r (equals to the length of [x, y])
could be larger than d(y, C) we require with Condition b) that all points belonging to
segment [w, z] (the segment of length r extending the previous one) satisfy the same
property.

We refer the reader to the work [26] of R. A. Poliquin, R. T. Rockafellar and L.
Thibault. They define another concept of directional prox-regularity. Their notion is
not comparable to our one as they only consider proximal normal directions. We just
describe an interesting example: in R

2, let us consider the set C defined by

C :=
{

(x, y) ∈ R
2, x ≤ 0 or y ≤ 0

}

.

It is well-known that the point 0 ∈ C is not regular and have no non-zero proximal
directions. So at this point, the set C is not prox-regular in any direction in the sense
of [26]. However the set C is r-prox-regular in the direction f for some mappings f .
For example, it is easy to see that the set C is ∞-prox-regular in the direction f with
f(x, y) := (−1,−1) for all (x, y) ∈ R

2.
This example shows how this new concept of directional prox-regularity can be far
weaker than the uniform prox-regularity.
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Now we have to define a new concept for Banach space which will ensure the existence
of solutions for differential inclusions with proximal normal cones. This is the goal of
the next subsection.

5.2. Geometry of Banach spaces

First we recall some useful definitions, due to the geometric theory of Banach spaces
(we refer the reader to [15] for these concepts and more details). We denote E∗〈·, ·〉E
the “duality-bracket� in the Banach space E.

Definition 5.5. Let E be a Banach space, equipped with its norm ‖ ‖E.
• The space E is said to be uniformly convex if for all ǫ > 0, there is some δ > 0

so that for any two vectors x, y ∈ E with ‖x‖E ≤ 1 and ‖y‖E ≤ 1 we have

‖x+ y‖E > 2− δ =⇒ ‖x− y‖E ≤ ǫ.

• The space E is said to be uniformly smooth if the norm is uniformly Fréchet
differentiable away of 0, it means that for any two unit vectors x0, h ∈ E, the
limit

lim
t→0

‖x0 + th‖E − ‖x0‖E
t

exists uniformly with respect to h, x0 ∈ S(0, 1).

We write S(0, 1) := {x ∈ E, ‖x‖E = 1} for the unit sphere.

We refer to [4] (Lemma 2.1) for the following geometric lemma:

Lemma 5.6. Let B be a Banach space and C be a closed subset of B. Then for x ∈ C
and v ∈ Γr(C, x), we have λv ∈ Γr(C, x) for all λ ∈ (0, 1). Therefore if we assume that
B is uniformly convex then for all λ ∈ (0, 1), we have x = PC(x+ λrv).

The first part is well-known (see for example Property 2.19 of [30]), the second part is
quite more complicated.

We recall a famous result (proved by D. Milman and B. J. Pettis [21, 25]):

Theorem 5.7. If a Banach space E is uniformly convex then it is reflexive: E∗∗ = E.

The following well-known results (see e.g. [15]) will be also needed:

Theorem 5.8. If E∗ is uniformly convex then E is uniformly smooth and E is reflex-
ive. If E∗ is separable then E is separable.

Now we consider some results concerning the smoothness of the norm.

Remark 5.9. If E is uniformly smooth, then x → ‖x‖E is C1 on E \ {0}.

Proposition 5.10. If E is uniformly smooth, then for all x ∈ E \ {0}, we have

E∗〈(∇‖.‖E)(x), x〉E = ‖x‖E.

By triangle inequality, ‖(∇‖.‖E)(x)‖E∗ = 1.
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Now as we know that the norm could be non-differentiable at the origin 0, we study
the function x → ‖x‖pE for an exponent p > 1.

Proposition 5.11. Let E be a uniformly smooth Banach space and p ∈ (1,∞) be an
exponent. The function x → ‖x‖pE is C1 over the whole space E.

For an easy reference, we explain the proof:

Proof. As the norm is C1 on E \ {0}, we have just to check the claim at the point

0. As for every h ∈ E,
‖th‖pE

t
tends to 0 when t → 0, we deduce that φ := ‖.‖pE is

differentiable at 0 and its gradient is null at this point. We have now to verify that ∇φ
is continuous at this point. For any nonzero vector x, using Proposition 5.10, we get:

‖∇φ(x)‖E∗ ≤ p‖x‖p−1
E

x→0−−→ 0.

So we have proved that ∇φ is continuous at 0, which concludes the proof.

Definition 5.12. For E a uniformly smooth Banach space and p ∈ (1,∞), we denote

Jp(x) :=
1

p
(∇‖.‖pE) (x) ∈ E∗.

Remark 5.13. These mappings were already appeared to study the prox-regularity of
a set (for example) in the work of F. Bernard, L. Thibault and N. Zlateva (see [4, 5]).
We refer the reader to the work [31] of Z. B. Xu and G. F. Roach for more details
about these mappings in an abstract framework.

Proposition 5.14. Let E be a uniformly smooth Banach space and p ∈ [2,∞) be an
exponent. Then Jp is locally uniformly continuous: for all ǫ > 0, there exists δ > 0
such that for all x, y ∈ E

‖x‖E ≤ 1

‖y‖E ≤ 1

‖x− y‖E ≤ δ











=⇒ ‖Jp(x)− Jp(y)‖E∗ ≤ ǫ. (21)

Proof. Just for convenience, we deal only with p = 2.
Since the space is uniformly smooth, we know that J1(x) is uniformly continuous near
S(0, 1) (see [15]). So let ǫ be fixed, we recall J2(x) := ‖x‖EJ1(x) and take η such that
if ‖z − z′‖E ≤ η then ‖J1(z) − J1(z

′)‖E∗ ≤ ǫ/3 for z, z′ ∈ B(0, 2) \ B(0, 1/2). We set
δ = min{ǫ/17, η}.
Take two points x, y satisfying the assumption of (21). If ‖x‖E ≤ 4δ then ‖y‖E ≤ 5δ
and so as J1 is bounded

‖J2(x)− J2(y)‖E∗ ≤ 9δ + 8δ ≤ ǫ.

Assume now that ‖x‖E ≥ 4δ then with λ = ‖x‖−1
E ≥ 1, we have J2(λx) = λJ2(x) so

‖J2(x)− J2(y)‖E∗ ≤
1

λ
‖J2(λx)− J2(λy)‖E∗ ≤ ‖x‖E ‖J2(λx)− J2(λy)‖E∗ .
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Now the whole segment [λx, λy] is included in B(0, 5/4) \B(0, 3/4) and we have

‖λx− λy‖E ≤ λ‖x− y‖E ≤ λδ.

We can also divide [λx, λy] by ⌊λ⌋ + 1 intervals of length δ (all of them included in a
neighbourhood of the corona). Using the uniform continuity of J1 around the sphere
and λ ≥ 1, we deduce

‖J2(λx)− J2(λy)‖E∗ ≤ (λ+ 1)
ǫ

3
+ λδ ≤

(

2

3
+

1

17

)

ǫ

‖x‖E
≤ ǫ

‖x‖E
,

which permits us to obtain the desired inequality.

Now we can describe the useful assumption:

Definition 5.15. Let I be an interval of R. A separable reflexive uniformly smooth
Banach space E is said to be “I-smoothly weakly compact� for an exponent p ∈ (1,∞)
if for all bounded sequence (xn)n≥0 of L

∞(I, E), we can extract a subsequence (yn)n≥0

weakly converging to a point y ∈ L∞(I, E) such that for all z ∈ L∞(I, E) and φ ∈
L1(I,R),

lim
n→∞

∫

I
E∗〈Jp(z(t) + yn(t))− Jp(yn(t)), yn(t)〉E φ(t)dt

=

∫

I
E∗〈Jp(z(t) + y(t))− Jp(y(t)), y(t)〉E φ(t)dt. (22)

Remark 5.16. It is easy to check that the notion of “I-smoothly weak compactness�
does not depend on the time-interval I.

Remark 5.17. As E is reflexive and separable, L∞(I, E) = [L1(I, E∗)]
∗
and by the

Banach-Alaoglu-Bourbaki Theorem, we know that we can extract a weak convergent
subsequence (yn)n from the initial bounded sequence (xn)n. However this weak con-
vergence is not sufficient to insure (22) in general.

First we give several examples to illustrate this definition and to show that it has a
“non trivial� sense.

Proposition 5.18. All separable Hilbert space H are I-smoothly weakly compact for
p = 2.

Proof. It is well-known that for a Hilbert space, J2 is given by J2(x) = x. So (22)
corresponds to

lim
n→∞

∫

I

φ(t)〈z(t), yn(t)〉dt =
∫

I

φ(t)〈z(t), y(t)〉dt. (23)

As L∞(I,H) = [L1(I,H)]
∗
, we know that we can find a subsequence (yn)n which weakly

converges to a point y ∈ L∞(I,H). In considering φ(·)z(·) ∈ L1(I,H), we conclude
the proof.

We can not prove that the whole Lebesgue spaces or the whole Sobolev spaces are
I-smoothly weakly compact for an exponent. However under an extra constraint over
the sequence (yn)n, the desired conclusion holds:
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Proposition 5.19. Let U be an open subset of Rn or a Riemannian manifold. For
all even integer p ∈ [2,∞) and s ≥ 0, the Sobolev space E = W s,p(U,R) is I-smoothly
weakly compact for p under an extra assumption: from any bounded sequence (xn)n of
L∞(I, E), which is also bounded in L∞(I,W s+1,p(U)), then there exists a subsequence
(yn)n satisfying (22).

Proof. Just for convenience we deal with s = 1 (else we have to use properties of the
singular operator (1−∆)−s/2). In this case, we consider a bounded sequence (xn)n of
L∞(I,W 1,p(U)). We leave to the reader the computation of the gradient Jp and we
claim that for f ∈ W 1,p(U)

W−1,p′ 〈Jp(f), h〉W 1,p =Lp′ 〈 fp−1, h〉Lp +
n
∑

i=1

Lp′

〈

(

∂f

∂xi

)p−1

,
∂h

∂xi

〉

Lp

.

So to check (22), it suffices to prove that there exists a subsequence (yn)n weakly con-
verging to y ∈ L∞(I,W 1,p(U)) such that for all g ∈ L∞(I,W 1,p(U)) and φ ∈ L1(I,R),

lim
n→∞

∫

I×U

[

(g(t, x) + yn(t, x))
p−1 − (yn(t, x))

p−1
]

yn(t, x)φ(t)dtdx

=

∫

I×U

[

(g(t, x) + y(t, x))p−1 − (y(t, x))p−1
]

y(t, x)φ(t)dtdx (24)

and for i ∈ {1, .., n}

lim
n→∞

∫

I×U

[

(∂xi
g(t, x) + ∂xi

yn(t, x))
p−1 − (∂xi

yn(t, x))
p−1
]

∂xi
yn(t, x)φ(t)dtdx

=

∫

I×U

[

(∂xi
g(t, x) + ∂xi

y(t, x))p−1 − (∂xi
y(t, x))p−1

]

∂xi
y(t, x)φ(t)dtdx. (25)

As p is an integer, using the “binomial formula�, we get:

yn
[

(g + yn)
p−1 − (yn)

p−1
]

=

p−2
∑

k=0

(

p− 1
k

)

yn
k+1gp−1−k.

Which is interesting is that g(t, .) ∈ Lp′ implies g(t, .)p−1−k ∈ L(p/(k+1))′ and yn(t, .) ∈ Lp

implies yn(t, .)
k+1 ∈ Lp/(k+1). So from the initial bounded sequence (xn)n≥0, we know

that we can extract a subsequence (yn)n which weakly and almost everywhere converges
to a function y ∈ L∞(I,W 1,p(U)). This well-known property of Sobolev spaces was
already studied, see [24] for example. Moreover, for all k ∈ {0, .., p − 2}, (yk+1

n )n is
bounded in L∞(I,W 1,p/(k+1)(U)). Similarly there exists yk+1 ∈ L∞(I,W 1,p/(k+1)(U))
such that (yk+1

n )n weakly and almost everywhere converges to yk+1, up to a subsequence.
Then we deduce that almost everywhere yk+1 = yk+1. Since we have a finite sum of
limits, we obtain (24).
In the same way, as the sequence (yn)n is assumed to be bounded in L∞(I,W 2,p(U)),
we can produce a similar reasoning and prove the limit (25), which concludes the
proof.
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Proposition 5.20. For all even integer p ∈ [2,∞), the Lebesgue space lp(Z) is I-
smoothly weakly compact for p.

We leave the proof to the reader, it is easier than the previous one. Here the important
fact is that we are working on Z which is a discrete space. So a weakly convergent
sequence converges pointwisely everywhere.

6. Study of differential inclusions in an abstract framework

Sweeping process have been studied in numerous papers in the case of the Euclidean
space first and then in a Hilbert space. The main technical difficulty is to obtain a kind
of “weak continuity� of the projection operator PC . This problem is solved because the
support function of proximal subdifferential of the distance function d(., C) is upper
semicontinuous, when C is a uniformly prox-regular set.

We propose here new arguments to get around this difficulty. These ones permit us to
understand the useful assumptions on the Banach space which are required to obtain
a result of existence.

The following proposition describes this useful property: a kind of “weak continuity of
the map x → Γr(C, x)�. We recall that I corresponds to the bounded time-interval.

Proposition 6.1. Let (B, ‖ ‖) be a separable, reflexive and uniformly smooth Banach
space. Let C ⊂ B be a closed subset. We assume that for an exponent p ∈ [2,∞) and a
bounded sequence (vn)n≥0 of L∞(I,B), we can extract a subsequence (vk(n))n≥0 weakly
converging to a point v ∈ L∞(I,B) such that for all z ∈ L∞(I,B) and φ ∈ L1(I,R),

lim sup
n→∞

∫

I
B∗〈Jp(z(t) + vk(n)(t))− Jp(vk(n)(t)), vk(n)(t)〉B φ(t)dt

≤
∫

I
B∗〈Jp(z(t) + v(t))− Jp(v(t)), v(t)〉B φ(t)dt. (26)

Then the projection PC is weakly continuous in L∞(I,B) (relatively to the directions
given by the sequence (vn)n) in the following sense: for all r > 0 and for any bounded
sequence (un)n of L∞(I, C) satisfying

{

un −→ u in L∞(I,B)
un(t) ∈ PC(un(t) + rvn(t)) a.e. t ∈ I,

one has for almost every t ∈ I

u(t) ∈ PC(u(t) + rv(t)).

The above assumption is satisfied if the Banach space B is supposed to be “I-smoothly
weakly compact� for an exponent p ∈ [2,∞). We can rewrite the conclusion as follows
if for all t ∈ I, vn(t) ∈ Γr(C, un(t)), then at the limit it holds that v(t) ∈ Γr(C, u(t)),
for almost every t ∈ I.

Remark 6.2. We emphasize that this proposition has no link with the prox-regularity
of the set C. This property is purely topological and only depends on the considered
Banach space B.
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Proof. With the homogeneity of Jp (Jp(sx) = sp−1Jp(x)), in replacing sz(t) with z(t)
in (26), we have for all s ∈ (0, r)

lim sup
n→∞

∫

I
B∗〈Jp(z(t) + svk(n)(t))− Jp(svk(n)(t)), vk(n)(t)〉B φ(t)dt

≤
∫

I
B∗〈Jp(z(t) + sv(t))− Jp(sv(t)), v(t)〉B φ(t)dt. (27)

It remains to prove that for almost every t ∈ I, v(t) ∈ Γr(C, u(t)). Fixing any ξ ∈ C,
for all integer n and almost every t ∈ I, as uk(n)(t) ∈ PC(uk(n)(t) + rvk(n)(t)), we have

∥

∥uk(n)(t) + rvk(n)(t)− ξ
∥

∥

p −
∥

∥rvk(n)(t)
∥

∥

p ≥ 0.

Using Proposition 5.11, this inequality can be written

∫ r

0

d

ds

[

∥

∥uk(n)(t) + svk(n)(t)− ξ
∥

∥

p −
∥

∥svk(n)(t)
∥

∥

p
]

ds ≥ −
∥

∥uk(n)(t)− ξ
∥

∥

p

and so

∫ r

0
B∗

〈

Jp(uk(n)(t) + svk(n)(t)− ξ)− Jp(svk(n)(t)), vk(n)(t)
〉

B
ds ≥ −1

p

∥

∥uk(n)(t)− ξ
∥

∥

p
.

Then for all nonnegative function φ ∈ L1(I,R), we have

∫ r

0

∫

I

φ(t)B∗

〈

Jp(uk(n)(t) + svk(n)(t)− ξ)− Jp(svk(n)(t)), vk(n)(t)
〉

B
dtds

≥ − 1

p

(
∫

I

φ(t)
∥

∥uk(n)(t)− ξ
∥

∥

p
dt

)

. (28)

We are now looking for passing to the limit in this inequality in order to get

∫ r

0

∫

I

φ(t)B∗ 〈Jp(u(t) + sv(t)− ξ)− Jp(sv(t)), v(t)〉B dtds

≥ − 1

p

(
∫

I

φ(t) ‖u(t)− ξ‖p dt
)

. (29)

As (un)n is bounded in L∞(I,B) and strongly converges to u in L∞(I,B), it is obvious
that

lim
n→∞

(
∫

I

φ(t)
∥

∥uk(n)(t)− ξ
∥

∥

p
dt

)

=

(
∫

I

φ(t) ‖u(t)− ξ‖p dt
)

.

Now consider the left-side of (28). We know that Jp is always locally bounded in B∗

and is locally uniformly continuous as B is uniformly smooth (see Proposition 5.14).
For almost every t ∈ I and all s ∈ [0, r], we have

lim
n→∞

B∗

〈

Jp(uk(n)(t) + svk(n)(t)− ξ)− Jp(u(t) + svk(n)(t)− ξ), vk(n)(t)
〉

B
= 0
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and this convergence is uniform with respect to t ∈ I and s ∈ (0, r). So the limit and
the integrals can be inverted (according to Lebesgue’s Theorem) and then

lim
n→∞

∣

∣

∣

∣

∫ r

0

∫

I

φ(t)B∗

〈

Jp(uk(n)(t) + svk(n)(t)− ξ)− Jp(svk(n)(t)), vk(n)(t)
〉

B
dtds

−
∫ r

0

∫

I

φ(t)B∗

〈

Jp(u(t) + svk(n)(t)− ξ)− Jp(svk(n)(t)), vk(n)(t)
〉

B
dtds

∣

∣

∣

∣

= 0. (30)

From (27) with z(t) = u(t)− ξ and by Fatou’s Lemma1, we obtain

lim sup
n→∞

∫ r

0

∫

I

φ(t)B∗

〈

Jp(u(t) + svk(n)(t)− ξ)− Jp(svk(n)(t)), vk(n)(t)
〉

B
dtds

≤
∫ r

0

∫

I

φ(t)B∗ 〈Jp(u(t) + sv(t)− ξ)− Jp(sv(t)), v(t)〉B dtds. (31)

With (28), (30) and (31), we can conclude the proof of (29).
Now we produce the inverse reasoning in integrating the gradient Jp, obtaining from
(29) that

∫

I

φ(t)
[

‖u(t) + rv(t)− ξ‖p − ‖rv(t)‖p
]

dt ≥ 0. (32)

That holds for every nonnegative function φ ∈ L1(I,R), so we deduce that there exists
a measurable set Aξ ⊂ I satisfying |Aξ| = 0 and such that for all t ∈ I \ Aξ

‖u(t) + rv(t)− ξ‖ ≥ ‖rv(t)‖ .

Now we use that B is separable and so C is too. By taking a dense sequence (ξi)i≥0 of
C, we define A := ∪i≥0Aξi . Then |A| = 0 and for all t ∈ I \ A and all i ≥ 0, we have

‖u(t) + rv(t)− ξi‖ ≥ ‖rv(t)‖ .

This last inequality is continuous with respect to ξi and so by density, holds for all
ξ ∈ C. That proves

u(t) ∈ PC(u(t) + rv(t))

and concludes the proof.

Remark 6.3. For the proof, we have used a constant point ξ ∈ C. We emphasize that
the different arguments hold with a bounded time-measurable map ξ(·) defined on I
taking values in C and permit to obtain (32). Then we have to use the separability of
the space L∞(I,B) for the L1(I,B)-norm in order to complete the proof.

Now we are going to use this preliminary and technical result to study existence and
uniqueness of sweeping process. We first describe a result of existence in some I-
smoothly weakly compact Banach spaces. Then we give a more precise result in a
Hilbert space and obtain uniqueness of the solution.

1Although the quantities are not necessary nonnegative, Fatou’s Lemma can be applied. This is due
to the fact that the integrated quantity is bounded by a constant (only depending on ‖φ‖L1 , ‖ξ‖ and
the two bounded sequences), which is obviously integrable on I × [0, r].
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6.1. Differential inclusions in Banach spaces with the proximal normal

cone to a constant set C

In the case of general Banach spaces, an extra assumption about the set C will be
required. We introduce this one:

Definition 6.4. A subset C ⊂ B is said to be ball-compact if for all closed ball B =
B(x,R), the set B ∩ C is compact.

Obviously a ball-compact subset C is closed.

We now come to our main result in a Banach space B.
Theorem 6.5. Let I = [0, T ] be a bounded time-interval and B be a separable, re-
flexive, uniformly smooth Banach space, which is “I-smoothly weakly compact� for an
exponent p ∈ [2,∞). Let f : B → B be a bounded and continuous function, r > 0 and
C ⊂ B a nonempty, ball-compact and (r, f)-prox-regular set. Then for all u0 ∈ C, the
system

{

�u(t) + N(C, u(t)) ∋ f(u(t))

u(0) = u0

(33)

has an absolutely continuous solution u, which takes values in C. Moreover we have
for almost every t ∈ I

‖ �u− f(u)‖L∞(I) ≤ ‖f‖L∞(B). (34)

Indeed we are going to solve the following stronger system:

{

�u(t) + Γr/‖f‖∞(C, u(t)) ∋ f(u(t))

u(0) = u0 ,
(35)

with ‖f‖∞ = ‖f‖L∞(B).

The proof is a mixture of the classical one (see the papers cited in the introduction)
based on the construction of discretized solutions and of Proposition 6.1 which permits
us to study the limit function.

Proof. We follow the ideas of the well-known proof using a uniform prox-regular set C
(see [6]). For an easy reference, we recall it and we will emphasize why our assumption
is sufficient.

First step: Construction of “discretized solutions�. We fix a small enough scale h =
T/n such that

h‖f‖∞ ≤ r/2. (36)

Consider a partition of the time-interval I = [0, T ] defined by tin = ih for i ∈ {0, .., n}.
We build (ui

n)0≤i≤n as follows:

{

u0
n = u0

ui+1
n = PC [ui

n + hf(ui
n)] .

(37)
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This operation is allowed as ‖hf(ui
n)‖ ≤ r/2 and the set C is assumed to be r-prox-

regular in the direction f (see Definition 5.3). Now we use the points (ui
n)0≤i≤n to obtain

two piecewise maps un and fn on I (taking values in B) in defining their restriction to
each interval Ii := [ih, (i+ 1)h[ by setting for every t ∈ Ii:

fn(t) := f(ui
n)

and

un(t) := ui
n +

t− ih

h

[

ui+1
n − ui

n − hf(ui
n)
]

+ [t− ih] f(ui
n)

= ui
n +

(

t

h
− i

)

[

ui+1
n − ui

n

]

.

The function un is continuous on [0, T ].

Second step: Differential inclusion for the “discretized solution�. We look for a differ-
ential inclusion satisfied by the function un. For almost every t ∈ Ii, we have

dun(t)

dt
=

1

h

[

ui+1
n − ui

n − hf(ui
n)
]

+ fn(t).

We define ∆n(t) as follows

∆n(t) :=
dun(t)

dt
− fn(t) =

1

h

[

ui+1
n − ui

n − hf(ui
n)
]

.

We claim that −∆n(t) ∈ Γr/‖f‖∞(C, ui+1
n ) ∩ B(0, ‖f‖∞), which is equivalent to

‖∆n(t)‖ ≤ ‖f‖∞ and PC

[

ui+1
n − r

‖f‖∞
∆n(t)

]

∋ ui+1
n . (38)

First we check that ∆n(t) is a bounded vector. Using the construction of the point
ui+1
n and the fact that ui

n ∈ C, we have

‖∆n(t)‖ =
1

h

∥

∥PC

[

ui
n + hf(ui

n)
]

−
[

ui
n + hf(ui

n)
]
∥

∥

≤ 1

h

∥

∥ui
n −

[

ui
n + hf(ui

n)
]
∥

∥ (39)

≤
∥

∥f(ui
n)
∥

∥ ≤ ‖f‖∞. (40)

Then considering the vector v := ui
n + hf(ui

n), we have

ui+1
n − r

‖f‖∞
∆n(t) = ui+1

n − r

h‖f‖∞
[

ui+1
n − ui

n − hf(ui
n)
]

= PC(v)−
r

h‖f‖∞
[PC(v)− v] .

Since C is r-prox-regular in the direction f , we know that

PC

(

PC(v)−
r

‖PC(v)− v‖ [PC(v)− v]

)

∋ PC(v) = ui+1
n .
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From (40), we deduce that ‖PC(v) − v‖ ≤ h‖f‖∞ and so with the geometric Lemma
5.6, we get

PC

(

PC(v)−
r

h‖f‖∞
[PC(v)− v]

)

∋ PC(v) = ui+1
n ,

which concludes the proof of (38). For the discretized solution un, we have proved for
every integer i ∈ {0, .., n− 1}:

dun(t)

dt
+ Γr/‖f‖∞(C, ui+1

n ) ∋ fn(t) a.e. t ∈ Ii
∥

∥

∥

∥

dun(t)

dt
− fn(t)

∥

∥

∥

∥

≤ ‖f‖∞.
(41)

Third step: Existence of a limit function. Let n0 be an integer such that Property
(36) holds. First from (41), we deduce that �un is uniformly bounded by 2‖f‖∞. So
(un)n≥n0 is a bounded sequence of C([0, T ],B) which is uniformly Lipschitz and so it
is equicontinuous. Now for each i and for every t ∈ Ii, by definition we have

d(un(t), C) ≤ ‖un(t)− ui
n‖ ≤

∥

∥ui+1
n − ui

n

∥

∥ ≤ h‖f‖∞ =
T

n
‖f‖∞. (42)

As the set C is assumed to be ball-compact and un is bounded, we deduce that for
every fixed t, the set {un(t), n ≥ n0} is relatively compact. Let us detail this point.
From (42), we can chose vectors en ∈ B with ‖en‖ ≤ T

n
‖f‖∞ and un(t)− en ∈ C. Since

(un)n is bounded in L∞(I,B), we have

∀n ≥ n0, un(t) ∈ C ∩B(0,M) + ({0} ∪ {ek, k ≥ n0})

for some M > 0. Since each set in the latter sum is compact (due to ek → 0 and
the ball-compactness of C), we have also proved the relative compactness of the set
{un(t), n ≥ n0}.
Then we can apply Arzela-Ascoli’s Theorem to the sequence (un)n: there exists a
subsequence, still denoted un, which converges uniformly on [0, T ] to a continuous
function u. Obviously u(0) = u0. Moreover as C is a closed subset, (42) implies that u
takes values in C. Similarly u is a Lipschitz function and so it is absolutely continuous.

Fourth step: The limit function u is a solution of the continuous problem (33). By the
continuity of f , we get a pointwise convergence in L∞(I,B):

∀t ∈ I, fn(t) −→ f(u(t)),

which induces the weak convergence fn ⇀ f(u) in L∞(I,B). We are going to check
that

du(t)

dt
+ Γr/‖f‖∞(C, u(t)) ∋ f(u(t)) a.e. t ∈ [0, T ], (43)

which will also imply (33).
We have seen that the sequence ( �un)n is bounded in L∞(I,B). We now use our as-
sumption about the Banach space B with the sequence (r′∆n)n≥0 with ∆n := �un − fn
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and r′ = r/‖f‖∞. As B is assumed to be “I-smoothly weakly compact�, up to a sub-
sequence, we may suppose without loss of generality that ( �un)n weakly converges in
L∞(I,B) to a function ω such that for all z ∈ L∞(I,B) and φ ∈ L1(I,R),

lim
n→∞

∫

I
B∗〈Jp(z(t)− r′∆n(t))− Jp(−r′∆n(t)),∆n(t)〉B φ(t)dt

=

∫

I
B∗〈Jp(z(t)− r′∆(t))− Jp(−r∆(t)),∆(t)〉B φ(t)dt, (44)

where ∆ = ω − f(u). Also ∆n weakly converges to ∆.
Moreover it is well-known that the weak convergence ( �un ⇀ ω) implies

ω(t) =
du(t)

dt
a.e. t ∈ I.

From (41), we deduce that for almost every t ∈ I

‖ �u(t)− f(u(t))‖∞ ≤ ‖f‖∞. (45)

Write
ũn(t) = ui+1

n (46)

for t ∈ Ii and each integer n. The sequence (ũn)n strongly converges to u in L∞(I, C).
In addition for all integer n and almost every t ∈ I,

ũn(t) ∈ PC(ũn(t)− r′∆n(t)).

Since Proposition 6.1, we deduce that this property holds for the limit functions:

u(t) ∈ PC(u(t)− r′∆(t)), a.e. t ∈ I.

This property implies the desired one (43) and also (33) which concludes the proof of
the theorem.

6.2. Differential inclusions in Hilbert spaces with the proximal normal cone

to a constant set C

Here we consider a Hilbert space, denoted by B = H, which is a particular case of I-
smoothly weakly compact space (see Proposition 5.18). Before stating and proving our
result, we would like to show how this assumption of a Hilbertian structure is useful.
More precisely, we are going to explain how the general inequality (29) implies the
“hypomonotonicity� property of the proximal normal cone, described by (11). Just for
convenience, let us assume for this explanation that ‖f‖∞ = 1. For u0, u0 two initial
data, we write u and u associated solutions (given by the previous theorem). Then (29)
with a non constant map ξ(t) := u(t) (according to Remark 6.3) and v(t) := −∆(t) =
− �u(t) + f(u(t)) yields

∫ r

0

∫

I

φ(t) 〈Jp(u(t)− u(t)− s∆(t))− Jp(−s∆(t)),∆(t)〉 dtds

≤ 1

p

(
∫

I

φ(t) ‖u(t)− u(t)‖p dt
)

. (47)
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In the case of a Hilbert space, J2(x) = x is linear (see Proposition 5.18) and so with
p = 2 we regain that

∫

I

φ(t) 〈u(t)− u(t),∆(t)〉 dt ≤ 1

2r

(
∫

I

φ(t) ‖u(t)− u(t)‖2 dt
)

. (48)

As a consequence for almost every t ∈ I,

〈u(t)− u(t),∆(t)〉 ≤ 1

2r
‖u(t)− u(t)‖2 ,

which exactly corresponds to (11) with

z1 = u(t), z2 = u(t), ζ1 = −∆(t), ζ2 = 0 and η = r.

Indeed, we recall that ‖∆(t)‖ ≤ ‖f‖∞ = 1 by (45). So we use

J2(u(t)− u(t)− s∆(t))− J2(−s∆(t)) = J2(u(t)− u(t)).

We know that the linearity of J2 is equivalent to a Hilbertian structure of the Banach
space B (see [15]).

We now come to our main result.

Theorem 6.6. Let I = [0, T ] be a bounded time-interval and B = H be a separable
Hilbert space. Let f : H → H be a bounded and Lipschitz function, r > 0 and C ⊂ H
be a nonempty (r, f)-prox-regular set. Then for all u0 ∈ C, the system

{

�u(t) + N(C, u(t)) ∋ f(u(t))

u(0) = u0

(49)

has one and only one absolutely continuous solution u, which takes values in C. More-
over we have for almost every t ∈ I

‖ �u− f(u)‖L∞(I) ≤ ‖f‖L∞(H).

Proof. First we deal with the existence of solutions.
We will use similar arguments as for Theorem 6.5. Its proof is divided in four steps.
The first, second and fourth ones did not use the ball-compactness of the set C and so
still hold in this case. It also remains us to develop new arguments for the third step
(to prove the existence of a limit function) without requiring the ball-compactness of
C.
So we refer the reader to the proof of Theorem 6.5 for its steps one and two and do
not recall the different notations.

New third step: Existence of limit functions to (un)n and (fn)n. We cannot use Arzela-
Ascoli’s Theorem, as we do not know the relative compactness of the sets {un(t), n ≥
n0}. However we are going to use classical arguments (see the works cited in the
introduction) to prove that (un)n is a Cauchy sequence in the space L∞(I,H). We recall
them in order to emphasize that these arguments, used with uniformly prox-regular
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sets (see [17, 16] for example), still hold in the case of directional prox-regularity.
So for two indices m ≥ n ≥ n0 let us consider the following function

ǫn,m(t) := ‖un(t)− um(t)‖2 .
To get an estimate of this quantity, we use Gronwall’s Lemma. For all s < t ∈ I, we
have

∫ t

s

dǫn,m(σ)

dσ
dσ = 2

∫ t

s

〈 �un(σ)− �um(σ), un(σ)− um(σ)〉 dσ.

We write un(t) = ui
n for t ∈ [tin, t

i+1
n [ and um(t) = ui

m for t ∈ [tim, t
i+1
m [. Using the

differential equation (41) satisfied by the discretized solutions un and um, we have

�un = ∆n + f(un) and �um = ∆m + f(um).

So we obtain
∫ t

s

dǫn,m(σ)

dσ
dσ = 2

∫ t

s

〈∆n(σ)−∆m(σ), un(σ)− um(σ)〉 dσ

+ 2

∫ t

s

〈f(un(σ))− f(um(σ)), un(σ)− um(σ)〉 dσ. (50)

Using the Lipschitz regularity of f (we denote by Lf its Lipschitz constant), we can
estimate the second term of the right-side of (50) as follows:

∫ t

s

〈f(un(σ))− f(um(σ)), un(σ)− um(σ)〉 dσ

≤ Lf

∫ t

s

‖un(σ)− um(σ)‖ ‖un(σ)− um(σ)‖ dσ,

where we have used Cauchy-Schwartz inequality. Moreover by (42), it can be shown
that ‖un−un‖∞ ≤ T‖f‖∞/n and similarly ‖um−um‖∞ ≤ T‖f‖∞/m. In using m ≥ n,
we deduce that for all σ ∈ I

‖un(σ)− um(σ)‖ ≤
√

ǫn,m(σ) + 2
T

n
‖f‖∞. (51)

Consequently, we get
∫ t

s

〈f(un(σ))− f(um(σ)), un(σ)− um(σ)〉 dσ

≤ Lf

∫ t

s

[

√

ǫn,m(σ) + 2
T

n
‖f‖∞

]

‖un(σ)− um(σ)‖ dσ

≤ Lf

∫ t

s

(

ǫn,m(σ) + 2
T

n
‖f‖∞

√

ǫn,m(σ)

)

dσ.

Now let us consider the first term of the right-side of (50). As ũn and ũm take their
values in C (see (46)), we can apply (48) with −∆n ∈ Γr/‖f‖∞(C, ũn) and φ = 1[s,t],
which gives

∫ t

s

〈ũn(σ)− ũm(σ),∆n(σ)〉 dσ ≤ 1

2r

(
∫ t

s

‖ũn(σ)− ũm(σ)‖2 dσ
)

.
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As previously, it can be shown that

‖ũn(σ)− ũm(σ)‖ ≤
√

ǫn,m(σ) + 2
T

n
‖f‖∞.

So we deduce that

∫ t

s

〈un(σ)− um(σ),∆n(σ)〉 dσ ≤ 1

2r

(

∫ t

s

[

√

ǫn,m(σ) + 2
T

n
‖f‖∞

]2

dσ

)

+
κ1

n
,

with some constant κ1 > 0. Similarly by symmetry, we have

∫ t

s

〈um(σ)− un(σ),∆m(σ)〉 dσ ≤ 1

2r

(

∫ t

s

[

√

ǫn,m(σ) + 2
T

n
‖f‖∞

]2

dσ

)

+
κ1

n
,

which concludes the estimate of (50). With the boundedness of the different sequences
and of the time-interval I, we finally have proved that

∫ t

s

dǫn,m(σ)

dσ
dσ ≤ 2

(

Lf +
1

r

)
∫ t

s

ǫn,m(σ)dσ +
κ2

n
,

with some constant κ2 > 0. That holds for every s < t in I. As ǫn,m(0) = 0, Gronwall’s
Lemma implies that

‖un − um‖L∞(I) = ‖ǫn,m‖L∞(I) ≤
κ

n
,

(with another constant κ), which proves that the sequence (un)n is a Cauchy sequence
in L∞(I,H) and so strongly converges to a function u in L∞(I,H). This completes
the “new� third step of the proof and we finish to show the existence of solutions in
the same way as for Theorem 6.5 (see the fourth part of its proof).

Fifth step: Uniqueness of the solutions. We have seen in the explanation before the
statement of the theorem, that even in the case of directional prox-regularity, the main
hypomonotonicity property of Γr(C, ·) holds (see (48)). So as previously, classical
arguments and Gronwall’s Lemma can be applied and permit to obtain the uniqueness
of the solutions.

Corollary 6.7. In the case of a Hilbert space, according to the hypomonotonicity prop-
erty of Γr(C, x), all the results of Section 3 about the equivalence to a differential equa-
tion (Proposition 3.3) and stability of solutions for (33) (Proposition 3.4), still hold
with only the directional prox-regularity assumption.

6.3. Extension of previous results to sweeping process

In the two previous subsections, we have described two results concerning differential
inclusions with a constant subset C under a directional prox-regularity assumption.
This subsection is devoted to extend these results to sweeping process (with a time-
dependent subset C(·)). Firstly, we give a generalization of Proposition 6.1 about
moving sets:
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Proposition 6.8. Let (B, ‖ ‖) be a separable, reflexive and uniformly smooth Banach
space. Let Cn and C : I ⇉ B be set-valued maps taking nonempty closed values,
satisfying

sup
t∈I

H(Cn(t), C(t)) −−−→
n→∞

0. (52)

We assume that for an exponent p ∈ [2,∞) and a bounded sequence (vn)n≥0 of L
∞(I,B),

we can extract a subsequence (vk(n))n≥0 weakly converging to a point v ∈ L∞(I,B) such
that for all z ∈ L∞(I,B) and φ ∈ L1(I,R),

lim sup
n→∞

∫

I
B∗〈Jp(z(t) + vk(n)(t))− Jp(vk(n)(t)), vk(n)(t)〉B φ(t)dt

≤
∫

I
B∗〈Jp(z(t) + v(t))− Jp(v(t)), v(t)〉B φ(t)dt. (53)

Then the projection PC(·) is weakly continuous in L∞(I,B) (relatively to the directions
given by the sequence (vn)n) in the following sense: for all r > 0 and for any bounded
sequence (un)n of L∞(I,B) satisfying

{

un −→ u in L∞(I,B)
un(t) ∈ PCn(t)(un(t) + rvn(t)) a.e. t ∈ I,

one has for almost every t ∈ I

u(t) ∈ PC(t)(u(t) + rv(t)).

Proof. Let ξ ∈ L∞(I,B) be any map verifying ξ(t) ∈ C(t) for all t ∈ I. Let ξn(t) ∈
PCn(t)(ξ(t)) for all t ∈ I. From (52), (ξn)n converges to ξ in L∞(I,B) and so is bounded.
The arguments of Proposition 6.1 still hold with this non-constant map ξ and permit
to show that for all φ ∈ L1(I,R),

∫

I

φ(t)
[

‖u(t) + rv(t)− ξ(t)‖p − ‖rv(t)‖p
]

dt ≥ 0.

Then we conclude as in Remark 6.3.

The following result only requires a directional prox-regularity, but the displacement
of the prox-regular set C(·) is supposed to be a translation.

Theorem 6.9. Let B be a separable, reflexive, uniformly smooth Banach space which
is “I-smoothly weakly compact� for an exponent p ∈ [2,∞). Let r > 0 be a fixed real
and f : B → B be a continuous function admitting at most a linear growth: there exists
a constant L > 0 such that

∀x ∈ B, ‖f(x)‖ ≤ L (1 + ‖x‖) .
Let a ∈ B and C0 be a nonempty “ball-compact� and (r, f(·+ta)−a) prox-regular subset
of B for all t ∈ I. We consider the set-valued map C(·) defined by ∀ t ∈ I, C(t) =
C0 + ta. Then for all u0 ∈ C0, the system

{

�u(t) + N(C(t), u(t)) ∋ f(u(t))

u(0) = u0

(54)

has an absolutely continuous solution u and for all t ∈ I = [0, T ], u(t) ∈ C(t).
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Sketch of the proof. The proof is essentially the same as for Theorem 6.5 when f is
assumed to be bounded. The first step consists in defining ui+1

n = PC(ti+1
n ) [u

i
n + hf(ui

n)]
instead of (37), with a small enough time-step h satisfying h‖f − a‖L∞(B) ≤ r/2. As
C(ti+1

n ) = C0 + ti+1
n a, that is equivalent to

ui+1
n − ti+1

n a = PC0

[

ui
n − tina+ h

(

f(ui
n)− a

)]

.

As

∆n(t) :=
1

h

[

ui+1
n − ui

n − hf(ui
n)
]

,

we have ‖∆n‖L∞(I) ≤ ‖f − a‖L∞(B). Then the prox-regularity of C0 in the direction
f(·+ tina)− a yields

ui+1
n − ti+1

n a ∈ PC0

[

ui+1
n − ti+1

n a− r

‖f − a‖∞
∆n(t)

]

.

So we get

ui+1
n ∈ PC(ti+1

n )

[

ui+1
n − r

‖f − a‖∞
∆n(t)

]

.

That is the key-point of the second step. For each i and t ∈ Ii, we set Cn(t) := C(ti+1
n ).

Moreover, as for each i and all t ∈ Ii, C(t) = C0 + ta and Cn(t) = C0 + (i + 1)ha, it
comes:

∀t ∈ I, H(Cn(t), C(t)) ≤ h‖a‖ =
T

n
‖a‖. (55)

Thus, the third step of the proof still holds with the following estimate:

d(un(t), C(t)) ≤ 2T

n

[

‖f‖∞ + ‖a‖
]

.

The fourth step is based on Proposition 6.8 which can be applied because:

sup
t∈I

H(Cn(t), C(t)) −−−→
n→∞

0, (56)

according to (55). So we obtain the existence of a solution u for (54) satisfying for
almost every t ∈ I

‖ �u− f(u)‖L∞(I) ≤ ‖f − a‖L∞(B). (57)

Now we explain the modifications to deal with the weaker assumption of “linear growth�
for the perturbation f . The idea (developed in [16]) is to build a sequence of maps (un)n
which (up to a subsequence) converges uniformly to a solution of (54). Without loss of
generality, we suppose that 4LT ≤ 1. For every n, we consider a uniform subdivision
(tin)i of I with a time-step T/n. On [0, t1n], we define un as a solution of

{

�x(t) + N(C(t), x(t)) ∋ f(u0)

x(0) = u0.

By iterating the procedure, we define un on [tin, t
i+1
n ] as a solution of

{

�x(t) + N(C(t), x(t)) ∋ f(un(t
i
n))

x(tin) = un(t
i
n).
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Then using the proof of Theorem 1 in [16], it can be shown that

sup
n

max
0≤i<n

‖un(t
i
n)‖ ≤ M,

for some constant M > 0 depending on u0. From (57), we have for almost every t ∈ Ii

‖ �un(t)‖ ≤
∥

∥f(un(t
i
n))− a

∥

∥+ ‖f(un(t
i
n))‖ ≤ 2‖f(un(t

i
n))‖+ ‖a‖.

The linear growth property for f implies

‖ �un‖L∞(I) ≤ 2L(1 +M) + ‖a‖.

Thus un satisfies the following differential inclusion:

�un(t) + Γ
r

L(1+M)+‖a‖ (C(t), un(t)) ∋ fn(t),

with fn(t) = f(un(t
i
n)) for t ∈ Ii. Similarly to the third and fourth steps of Theorem

6.5, we can define a limit function u, which will be a solution of

�u(t) + Γ
r

L(1+M)+‖a‖ (C(t), u(t)) ∋ f(u(t)),

according to Proposition 6.8 (with Cn(t) = C(t)).

We have the same extension for Theorem 6.6, in using a similar reasoning:

Theorem 6.10. Let B = H be a separable Hilbert space. Let r > 0 be a fixed real and
f : H → H be a Lipschitz function admitting at most a linear growth: there exists a
constant L > 0 with

∀x ∈ H, ‖f(x)‖ ≤ L (1 + ‖x‖) .
Let a ∈ H, r > 0 and C0 be a nonempty closed (r, f(·+ta)−a) prox-regular subset of H
for all t ∈ I. We consider the set-valued map C(·) defined by ∀ t ∈ I, C(t) = C0 + ta.
Then for all u0 ∈ C0, the system

{

�u(t) + N(C(t), u(t)) ∋ f(u(t))

u(0) = u0

(58)

has one and only one absolutely continuous solution u and for all t ∈ I, u(t) ∈ C(t).

Without specific assumptions about the displacement of the set C, we have to require
a uniform prox-regularity over all the directions and not only a directional one. In the
framework of Banach spaces, we state the following result:

Theorem 6.11. Let B be a separable, reflexive, uniformly smooth Banach space, which
is “I-smoothly weakly compact� for an exponent p ∈ [2,∞). Let f : B → B be a
continuous function admitting at most a linear growth and r > 0 be a fixed real. Let
C : t ∈ I → C(t) be a set-valued map taking nonempty ball-compact and r-prox-regular
values. We assume that C(·) moves in a Lipschitz way: there exists a constant k > 0
such that for all s, t ∈ I

H(C(t), C(s)) ≤ k|t− s|.
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Then for all u0 ∈ C(0), the system

{

�u(t) + N(C(t), u(t)) ∋ f(u(t))

u(0) = u0

(59)

has an absolutely continuous solution u and for all t ∈ I, u(t) ∈ C(t).

Sketch of the proof. The proof is similar to the one of Theorem 6.9. We only
deal with the case of a bounded perturbation f and use the same notations as in the
second step of the proof for Theorem 6.6. The time-step h is taken in order that
h(‖f‖∞ + k) ≤ r/2. We build the same sequence (un)n, which satisfies: for almost
every t ∈ Ii

�un(t) + Γ
r

‖f‖∞+k (C(ti+1
n ), ui+1

n ) ∋ fn(t). (60)

As we do not know the direction for an elementary displacement of C(·), a directional
prox-regularity is not sufficient to prove this differential inlcusion: we now define

ui+1
n = PC(ti+1

n )(v), v = ui
n + hf(ui

n).

The prox-regularity of C(ti+1
n ) in the direction of f would be useful to get (60) only

if the starting point ui
n belongs to this set, which may not be true. That is why we

require a uniform prox-regularity (in all directions). Indeed, this property permits us
to get around this problem with the help of the Lipschitz regularity of the map C in
order to prove (60).
Then we finish the proof as previously, in applying Proposition 6.8: Property (52) is
satisfied due to the Lipschitz regularity of the map C.

We finish this article by asking the following open question: How can we get the
uniqueness of sweeping process without using specific properties of a Hilbert space
and how can we get around the assumption of “ball-compactness� of the set? The
arguments (used in Section 3 and Subsection 6.2) are based on Gronwall’s Lemma
and are specific to the Hilbert case. Mainly, the linearity of J2 permits to get a very
well-adapted description of the hypomonotonicity property (see (48)). In a Banach
framework, this property (called “J-hypomonotonicity�) of a prox-regular set is studied
by F. Bernard, L. Thibault and N. Zlateva (see [4, 5]). However their characterizations
do not allow to use Gronwall’s Lemma. To obtain the uniqueness of the solutions
in some Banach spaces (even in specific examples as Lebesgue spaces) seems to be a
difficult problem. We also probably need a new approach of this question.
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[30] J. Venel: Modélisation Mathématique et Numérique de Mouvements de Foule, PhD
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