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1. Introduction

In this paper X denotes a real reflexive Banach space with norm ‖·‖ and X∗ stands
for the (topological) dual of X. Let A : X → 2X

∗

be a monotone operator, that is, for
any x, y ∈ domA, we have

ξ ∈ Ax and η ∈ Ay =⇒ 〈ξ − η, x− y〉 ≥ 0.

(Recall that the set domA = {x ∈ X | Ax 6= ?} is called the effective domain of such
an operator A.) A monotone operator A is said to be maximal if the graph of A is not
a proper subset of the graph of any other monotone operator. The operator A is said
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to be demiclosed at x ∈ domA if for any sequence {(xn, ξn)}n∈N in X ×X∗,

xn ⇀ x
ξn ∈ Axn, n ∈ N

ξn → ξ







=⇒ ξ ∈ Ax.

Let f : X → (−∞,+∞] be a proper, lower semicontinuous and convex function, and
let f ∗ : X∗ → (−∞,+∞] be the Fenchel conjugate of f .

A problem of practical interest with which we are concerned in this paper is that of
strong convergence of the resolvents ResfλA(x) of monotone operators A relative to
convex functions f . More precisely, given a monotone operator A : X → 2X

∗

and
a Legendre function f : X → (−∞,+∞], the question is whether and under which
conditions limλ→+∞ResfλA(x) exists and is a zero of the operator A (see Section 2
for the definitions of all relevant concepts). The fact that this indeed happens in
certain circumstances has been known for quite a long time. See [8] for the case of
a maximal monotone operator A in Hilbert space ([24] and [26] for the case of m-
accretive operators in Banach spaces) and, subsequently, [20] for the case of a maximal
monotone operator A in smooth and uniformly convex Banach spaces. In these papers
it is shown that if f = 1

2
‖·‖2, then ResfλA(x) converges strongly to a point in A−1 (0∗)

as λ → +∞, provided such a point exists. More recently, in [21] it is claimed that for a

maximal monotone operator A and a well-chosen function f (which is not necessarily

1
2
‖·‖2), the strong limit limλ→+∞ResfλA(x) exists and is a point in A−1 (0∗). We show

below (see Theorem 3.1) that limλ→+∞ResfλA(x) exists and is exactly the Bregman
projection of x relative to f onto A−1 (0∗) for those monotone operators A which
are not necessarily maximal monotone, but instead satisfy a certain range condition
which is compatible with the Legendre function f . Theorem 5.1 extends this result
to the case where A is approximated in some sense by more regular operators. Our
results regarding strong convergence of resolvents of monotone operators show ways
of strongly approximating zeroes of monotone operators in Banach spaces. Finding,
even by approximation, zeroes of monotone operators is of interest in many fields.
For instance, the minimization of lower semicontinuous convex functions reduces to
finding zeroes of their subgradients which are monotone operators. More generally,
as Kimura has already pointed out in [21], finding strong approximations of zeroes of
monotone operators can be used in the process of solving variational inequalities. The
literature contains several other methods for finding zeroes of monotone operators. See
for example [1, 5, 6, 9, 11, 12, 13, 14, 18, 22, 30, 31] and the references therein. Many
of them are fixed point methods which calculate fixed points of ResfA. Obviously, each
fixed point of ResfA is, necessarily, a zero ofA. An example of such a method is presented
in [28]. Typically, the successful application of these fixed point methods is guaranteed
under conditions on f and A which are not required when one approximates zeroes of
A by ResfλA(x) with large λ. Our paper is organized as follows. The next section is
devoted to several preliminary definitions and results. Our main result (Theorem 3.1)
is formulated and proved in Section 3. The fourth section contains three corollaries of
our main result. In the fifth and last section we present an extension of Theorem 3.1
(Theorem 5.1) and two related propositions.
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2. Preliminaries

2.1. Some facts about Legendre functions.

Legendre functions mapping a general Banach space X into (−∞,+∞] are defined in
[3]. According to [3, Theorems 5.4 and 5.6], since X is reflexive, the function f is
Legendre if and only if it satisfies the following conditions:

(L1) The interior of the domain of f , int dom f , is nonempty, f is Gateaux differentiable
on int dom f and

dom∇f = int dom f ; (1)

(L2) The interior of the domain of f ∗, int dom f ∗, is nonempty, f ∗ is Gateaux differen-
tiable on int dom f ∗ and

dom∇f ∗ = int dom f ∗. (2)

Since X is reflexive, we always have (∂f)−1 = ∂f ∗ (see [7, p. 83]). This fact, when
combined with conditions (L1) and (L2), implies the following equalities which we are
going to use in the sequel:

∇f = (∇f ∗)−1, (3)

ran∇f = dom ∇f ∗ = int dom f ∗, (4)

ran∇f ∗ = dom ∇f = int dom f. (5)

Also, conditions (L1) and (L2) in conjunction with [3, Theorem 5.4] imply that the
functions f and f ∗ are strictly convex on the interior of their respective domains.

Several interesting examples of Legendre functions are presented in [2] and [3]. Among
them are the functions 1

s
‖·‖s with s ∈ (1,∞), where the Banach space X is smooth

and strictly convex and, in particular, a Hilbert space. From now on we assume that
the convex function f : X → (−∞,+∞] is Legendre.

2.2. Some facts about totally convex functions.

For any x ∈ int dom f and z ∈ X we denote by f ◦(x, z) the right-hand derivative of f
at x in the direction z, that is,

f ◦(x, z) := lim
tց0

f(x+ tz)− f(x)

t
.

The function Df : dom f × int dom f → [0,+∞), defined by

Df (y, x) := f(y)− f(x)− f ◦(x, y − x),

is called the Bregman distance with respect to f (cf. [16]). If f is a Gateaux differentiable
function, then the Bregman distance has the following important property, called the
three point identity : for any x ∈ dom f and y, z ∈ int dom f ,

Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉 . (6)
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Recall that, according to [10, Section 1.2, p. 17], the function f is called totally convex
at a point x ∈ int dom f if its modulus of total convexity at x, that is, the function
υf : int dom f × [0,+∞) → [0,+∞] defined by

υf (x, t) := inf {Df (y, x) | y ∈ dom f, ‖y − x‖ = t} , (7)

is positive whenever t > 0. The function f is called totally convex when it is totally
convex at every point x ∈ int dom f . The following proposition summarizes some
properties of the modulus of total convexity.

Proposition 2.1 (cf. [10, Propostion 1.2.2, p. 18]). Let f be a proper, convex and
lower semicontinuous function. If x ∈ int dom f , then

(i) The domain of υf (x, ·) is an interval of the form [0, τf (x)) or [0, τf (x)] with
τf (x) ∈ (0,+∞].

(ii) If c ∈ [1,+∞) and t ≥ 0, then υf (x, ct) ≥ cυf (x, t).

(iii) The function υf (x, ·) is superadditive, that is, for any s, t ∈ [0,+∞), we have
υf (x, s+ t) ≥ υf (x, s) + υf (x, t).

(iv) The function υf (x, ·) is increasing; it is strictly increasing if and only if f is
totally convex at x.

Another proposition which is very useful in the proof of our main result is the following
one.

Proposition 2.2 (cf. [29, Proposition 2.2, p. 3]). Let f : X → (−∞,+∞] be a
convex function and take x ∈ int dom f . Then f is totally convex at x if and only if
limn→∞Df (yn, x) = 0 implies that limn→∞ ‖yn − x‖ = 0 for every sequence {yn}n∈N ⊂
dom f .

2.3. The Resolvent of A relative to f .

Let A : X → 2X
∗

be an operator such that

(int dom f)
⋂

(domA) 6= ?. (8)

The operator
PrtfA := (∇f + A)−1 : X∗ → 2X

is called the protoresolvent of A, or, more precisely, the protoresolvent of A relative to
f . This allows us to define the resolvent of A, or, more precisely, the resolvent of A
relative to f , introduced and studied in [4], as the operator ResfA : X → 2X given by

ResfA := PrtfA ◦∇f.

This operator is single-valued when A is monotone and f is strictly convex on int dom f .
If A = ∂ϕ, where ϕ is a proper, lower semicontinuous and convex function, then we
denote

proxfϕ := Prtf∂ϕ and proxfϕ := Resf∂ϕ .

If C is a nonempty, closed and convex subset of X, then the indicator function ιC of
C, that is, the function

ιC (x) :=

{

0 if x ∈ C

+∞ if x /∈ C,
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is proper, convex and lower semicontinuous, and therefore ∂ιC exists and is a maxi-
mal monotone operator with domain C. The operator proxfιC is called the Bregman

projection onto C with respect to f (cf. [15]) and we denote it by projf
C
.

We denote the closure of a subset K of X by cl(K). For each x and u in int dom f , set

H (x, u) = {y ∈ cl(domA) | 〈∇f (x)−∇f (u) , y − u〉 ≤ 0}

and let
H =

⋂

u∈ResfA(x)

H (x, u) .

Proposition 2.3. Let A : X → 2X
∗

be a monotone mapping which satisfies the range
condition

∇f(cl(domA)) ⊂ ran(∇f + A). (9)

Then
FixResfA = H

⋂

(int dom f) .

If, in addition, cl(domA) is convex, then FixResfA is convex too.

Proof. If y ∈ FixResfA, then y = ResfA(y) and therefore 0∗ ∈ A (y), since

y = ResfA(y) ⇔ y = (∇f + A)−1∇f (y) ⇔ ∇f (y) ∈ ∇f (y) + A (y) ⇐⇒ 0∗ ∈ A (y) .

Hence y ∈ cl(domA). Take (x, u) ∈ GraphResfA. Then u ∈ (∇f + A)−1∇f (x) and
therefore ∇f (x) − ∇f (u) ∈ A (u). Denote ∇f (x) − ∇f (u) by ξ ∈ A (u). The
monotonicity of A implies that

〈∇f (x)−∇f (u) , y − u〉 = 〈ξ − 0∗, y − u〉 ≤ 0.

Thus y ∈ H (x, u) for every (x, u) ∈ GraphResfA. This means that y ∈ H. Conversely,
take y ∈ H ∩ (int dom f). Then y ∈ cl(domA) ⊂ domResfA and y ∈ ∩u∈ResfA(y)H (y, u).

Hence
〈∇f (y)−∇f (u) , y − u〉 ≤ 0 for u ∈ ResfA(y).

The operator ∇f is strictly monotone on int dom f because f is strictly convex on
int dom f and therefore u = y. That is y = ResfA(y) and y ∈ FixResfA.

If, in addition, cl(domA) is a convex set, then the convexity of FixResfA follows from
the fact that FixResfA = H ∩ (int dom f) because H (x, u) is convex for any (x, u) ∈
GraphResfA.

Our new range condition (9) is analogous to and weaker than other range conditions
which appear in the literature. This is illustrated by the following examples.

If the Banach space X is a Hilbert space H and the function f is (1/2) ‖·‖2, then our
range condition (9) becomes the range condition

cl(domA)) ⊂ ran(I + A),

which is well known in semigroup theory (see, for example, [25, 27]).
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In [4, Prop. 3.8(iv)(c), p. 604] Bauschke, Borwein and Combettes use the range condi-
tion

ran(∇f) ⊂ ran(∇f + A), (10)

which is a stronger than our range condition (9).

If A is a maximal monotone operator, domA ⊂ int dom f and A−1 (0∗) 6= ?, then
domResfA = X (see [4, Proposition 3.14(ii), p. 606]). Hence ran(∇f) ⊂ ran(∇f + A).
This means that (10) holds and therefore (9) holds too.

If A is a maximal monotone operator, and ∇f is bounded on bounded subsets of X
and coercive, then ∇f +A is surjective, that is, ran(∇f +A) = X∗ (see [17, Theorem
3.4, p. 163]). Thus our range condition (9) certainly holds in this case.

2.4. A special set of functions.

By Ff we denote the set of proper, lower semicontinuous and convex functions ϕ :
X → (−∞,+∞] which satisfy the following two conditions:

domϕ
⋂

int dom f 6= ?

and
ϕf := inf {ϕ(x) : x ∈ domϕ ∩ dom f} > −∞.

With any Legendre function f we associate the function W f : X∗ × X → [0,+∞]
defined by

W f (ξ, x) = f(x)− 〈ξ, x〉+ f ∗(ξ).

Proposition 2.4 (cf. [12, Lemma 2.1, p. 2101]). Suppose that ϕ ∈ Ff . Then for
any ξ ∈ int dom f ∗, there exists a unique global minimizer of the function ϕ(·)+W f (ξ, ·)
which is exactly Proxfϕ(ξ). The vector proxfϕ(ξ) belongs to dom ∂ϕ ∩ int dom f and we
have

proxfϕ(ξ) = (∂ϕ+∇f)−1(ξ) = [∂ (ϕ+ f)]−1 (ξ).

3. A Strong Convergence Theorem for the Resolvent

In this section we give sufficient conditions for strong convergence of resolvents which
require neither the maximal monotonicity of A nor any smoothness properties of the
space X.

Theorem 3.1. Let A : X → 2X
∗

be a demiclosed monotone operator with nonempty
zero set A−1 (0∗). Assume that cl (domA), the closure of domA, is convex. If f : X →
R is a totally convex and lower semicontinuous Legendre function, which is bounded on
bounded subsets of X, and satisfies the range condition

∇f(cl (domA)) ⊂ ran(∇f + λA), ∀λ > 0, (11)

then, for each x ∈ cl (domA), the Bregman projection projfA−1(0∗)(x) exists, the net

xλ = ResfλA(x), λ > 0, (12)

is well defined, and converges strongly to projfA−1(0∗)(x) as λ → +∞.
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Proof. First we note that the net {xλ}λ>0 given by (12) is well defined for any x ∈
cl (domA) because

x ∈ cl (domA) =⇒ ∇f(x) ∈ ∇f(cl (domA))

=⇒ ∇f(x) ∈ ran(∇f + λA)

=⇒ x ∈ domResfλA .

Next, by Proposition 2.3 and the fact that FixResfA = A−1 (0∗)∩(int dom f) = A−1 (0∗)
(since in our case int dom f = X), the zero set A−1 (0∗) of A is convex. Since the oper-
ator A is demiclosed, the set A−1 (0∗) is also closed, because, if {un}n∈N is a sequence
in A−1 (0∗) with u0 = limn→+∞ un, then (un, 0

∗) ∈ graphA for all n ∈ N and, therefore,
since u0 is also the weak limit of {un}n∈N, it follows that it belongs to A

−1 (0∗). Finally,

since A−1 (0∗) is nonempty, closed and convex, the Bregman projection projfA−1(0∗)(x)
exists. We are now going to establish our theorem by successively proving the following
four claims.

Claim 1: The net {xλ}λ>0 is bounded. In order to prove this claim, observe that, by
(12), for each positive number λ, ∇f(x) ∈ ∇f(xλ) + λA(xλ). Hence, for each λ > 0,
there exists ξλ ∈ Axλ such that

∇f(x) = ∇f(xλ) + λξλ. (13)

From the three point identity (6), for any y ∈ X, we have

Df (xλ, x) = Df (y, x)−Df (y, xλ) + 〈∇f(x)−∇f(xλ), y − xλ〉 .

Since A is a monotone operator, for every y ∈ A−1 (0∗), it follows from (13) that

Df (xλ, x) ≤ Df (y, x) + 〈λξλ, y − xλ〉 (14)

= Df (y, x)− λ 〈0∗ − ξλ, y − xλ〉

≤ Df (y, x).

Hence the net {Df (xλ, x)}λ>0 is bounded by Df (y, x) for any y ∈ A−1 (0∗). Therefore
the net {νf (x, ‖xλ − x‖)}λ>0 is bounded by Df (y, x), since from the definition of the
modulus of total convexity (see (6)) and from (14) we get

νf (x, ‖xλ − x‖) ≤ Df (xλ, x) ≤ Df (y, x). (15)

Since the function f is totally convex, the function νf (x, ·) is strictly increasing and
positive on (0,∞) (cf. Proposition 2.1(iv)). It is not difficult to see that this implies
that the net {xλ}λ>0 is indeed bounded, as claimed.

Observe that, since X is reflexive and {xλ}λ>0 is bounded, it follows that the net
{xλ}λ>0 has weak sequential limit points. Observe also that∇f is bounded on bounded
subsets of X (see [10, Proposition 1.1.11, p. 16]).

Claim 2: Every weak sequential limit point of {xλ}λ>0 as λ → +∞ belongs to A−1 (0∗).
Let x0 be a weak sequential limit point of {xλ}λ>0 as λ → +∞. Then there is a sequence
{xλn

}n∈N ⊂ {xλ}λ>0 such that λn → +∞ and xλn
⇀ x0. From (13) we have that

ξλ =
∇f(x)−∇f(xλ)

λ
, ∀λ > 0.
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The net {∇f(xλ)}λ>0 is bounded because ∇f is bounded on bounded subsets of X
and {xλ}λ>0 is bounded by Claim 1. Therefore ξλ → 0∗ as λ → +∞. Hence, from
the demiclosededness of A we have that x0 ∈ A−1 (0∗) because (xλn

, ξλn
) ∈ graphA for

each n ∈ N, xλn
⇀ x0 and ξλn

→ 0∗. This proves Claim 2.

Now we are going to use this fact in order to establish our next claim.

Claim 3: The net {xλ}λ>0 has a weak limit which is exactly projfA−1(0∗)(x) as λ → +∞.

Let {xλn
}n∈N converge weakly to x0, where λn → +∞. In order to prove this claim,

we use the weak lower semicontinuity of the function Df (·, x) which follows from the
weak lower semicontinuity of f . This and (14) imply that

Df (x0, x) ≤ lim inf
n→+∞

Df (xλn
, x) ≤ Df (y, x), ∀y ∈ A−1 (0∗) .

Since y is an arbitrary element of A−1 (0∗), this shows that x0 is the minimizer of
Df (·, x) on the closed and convex set A−1 (0∗). Note that

Df (y, x) + ιA−1(0∗)(y) = W f (∇f(x), y) + ιA−1(0∗)(y),

and by Proposition 2.4 we know that the minimum of W f (∇f(x), y) + ιA−1(0∗)(y) is

exactly projfA−1(0∗)(x). Hence, any weak sequential limit point x0 of {xλ}λ>0 coincides

with projfA−1(0∗)(x). This implies that {xλ}λ>0 itself converges weakly to projfA−1(0∗)(x)
as λ → +∞, as claimed.

Finally, we are going to establish strong convergence of the net {xλ}λ>0.

Claim 4: The net {xλ}λ>0 converges strongly to projfA−1(0∗)(x) as λ → +∞. In order

to prove this claim, we take y = projfA−1(0∗)(x) in (14). In view of Claim 3 and the

weak lower semicontinuity of Df (·, x), we obtain

Df (proj
f
A−1(0∗)(x), x) ≤ lim inf

λ→+∞
Df (xλ, x)

≤ lim sup
λ→+∞

Df (xλ, x) ≤ Df (proj
f
A−1(0∗)(x), x).

Hence
lim

λ→+∞
Df (xλ, x) = Df (proj

f
A−1(0∗)(x), x). (16)

By using again the three point identity (6), we deduce that

Df (xλ, proj
f
A−1(0∗)(x))

=
[

Df (xλ, x)−Df (proj
f
A−1(0∗)(x), x)

]

+
〈

∇f(x)−∇f(projfA−1(0∗)(x)), xλ − projfA−1(0∗)(x)
〉

.

Observe that the quantity between square brackets converges to zero as λ → +∞ by
(16). Also, the inner product on the right-hand side of this equality converges to zero
by Claim 3. This implies that the net

{

Df (xλ, proj
f
A−1(0∗)(x))

}

λ>0
converges to zero as

λ → +∞. Since f is a totally convex function, this fact and Proposition 2.2 show that
the net {xλ}λ>0 converges strongly to projfA−1(0∗)(x) as λ → +∞. This proves Claim 4
and completes the proof of the theorem itself.
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4. Consequences of the Strong Convergence Theorem

An interesting particular instance of Theorem 3.1 occurs when A is a maximal mono-
tone operator. In this case λA is also maximal monotone for any λ > 0 and, conse-
quently domResfλA = X (see [4, Proposition 3.14(ii), p. 606]). Therefore it follows that
ran(∇f) ⊂ ran(∇f + λA) for any λ > 0. This means that (11) holds. Also, from the
maximal monotonicity of A it follows that cl (domA) is convex (see [19, Proposition
2.3.1, p. 327]). Therefore Theorem 3.1 yields the following corollary.

Corollary 4.1. Let A : X → 2X
∗

be a maximal monotone operator such that A−1 (0∗)
6= ?. If f : X → R is a totally convex and lower semicontinuous Legendre function
which is bounded on bounded subsets of X, then, for any x ∈ X, the Bregman projection
projfA−1(0∗)(x) exists, the net

xλ = ResfλA(x), λ > 0,

is well defined, and converges strongly to projfA−1(0∗)(x) as λ → +∞.

Two other interesting corollaries of Theorem 3.1 occur when the space X is smooth
and has the Kadec-Klee property, that is,

(xn ⇀ x and ‖xn‖ → ‖x‖) =⇒ xn → x. (17)

In this case the function f(x) = (1/2) ‖x‖2 is Legendre (cf. [3, Lemma 6.2, p. 24])
and ∇f is exactly the duality mapping JX of the space X. If A is also a maximal
monotone mapping, then λA is maximal monotone for any λ > 0 and, consequently,
the mapping ∇f + λA is surjective (cf. [17, Theorem 3.11, p. 166]). Thus the range
condition (11) holds. Also, as in Corollary 4.1, cl (domA) is a convex set. According
to ([13, Proposition 3.2, p. 17]), since X is reflexive, f is totally convex whenever X
has the Kadec-Klee property or, equivalently, X is an E-space. (Recall that a Banach
space X is called an E-space if it is reflexive, strictly convex and has the Kadec-Klee
property.) Therefore Theorem 3.1 applies in this context and leads us to the following
two results which, in some sense, complement Theorem 1 in [26] (see also [20]).

Corollary 4.2. Let X be a smooth Banach space with the Kadec-Klee property (or
equivalently, a smooth E-space) and let A : X → 2X

∗

be a maximal monotone operator
such that A−1 (0∗) 6= ?. Then, for any x ∈ X, the net

xλ = Res
(1/2)‖·‖2

λA (x), λ > 0,

is well defined, the Bregman projection proj
(1/2)‖·‖2

A−1(0∗) (x) exists, and {xλ}λ>0 converges

strongly to proj
(1/2)‖·‖2

A−1(0∗) (x) as λ → +∞.

Corollary 4.3. Let X be a smooth Banach space with the Kadec-Klee property (or
equivalently, a smooth E-space) and let A : X → 2X

∗

be a maximal monotone operator
such that A−1 (0∗) 6= ?. Then, for any η ∈ X∗, the net

xλ = Prt
(1/2)‖·‖2

λA (η), λ > 0,
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is well defined, the Bregman projection proj
(1/2)‖·‖2

A−1(0∗) (JX∗(η)) exists, and {xλ}λ>0 con-

verges strongly to proj
(1/2)‖·‖2

A−1(0∗) (JX∗(η)) as λ → +∞.

Proof. The operator JX is surjective because X is reflexive. Therefore for any η ∈ X∗,
there exists x ∈ X such that JX(x) = η. It follows from Corollary 4.2 that the net
{xλ}λ>0 is well defined and converges strongly as λ → +∞ to

proj
(1/2)‖·‖2

A−1(0∗) (x) = proj
(1/2)‖·‖2

A−1(0∗) (JX∗(η)).

5. An Extension of the Strong Convergence Theorem

The next result extends Theorem 3.1 to the case where A is approximated in some
sense by more regular operators {An}n∈N. More precisely, we say that a sequence
{An}n∈N of operators from X into 2X

∗

approximates A regularly at 0∗ if the following
two conditions hold:

(S1 ) If {(xk, ξk)}k∈N is a sequence in X ×X∗, then

xk ⇀ x
ξk ∈ Akxk, k ∈ N

ξk → 0∗







=⇒ 0∗ ∈ Ax.

(S2 ) For any y in A−1 (0∗), there exists a sequence {yn}n∈N with yn ∈ A−1
n (0∗) for

each n ∈ N, such that limn→+∞ yn = y.

The notion of regular approximation at 0∗ is related to the well-known notion of graph
convergence. In fact, in [1, Prop. 3.59, p. 361] Attouch proves that if A and {An}n∈N
are maximal monotone operators and the sequence {An}n∈N is graph convergent to A,
then condition (S1 ) holds. In addition, it is clear that condition (S2 ) is equivalent
to the inclusion A−1 (0∗) ⊂ LinA

−1
n (0∗), where y ∈ LinCn if there exists a sequence

{yn}n∈N in X such that limn→+∞ yn = y and yn ∈ Cn for all n ∈ N.

Theorem 5.1. Let A,An : X → 2X
∗

, n ∈ N, be monotone operators such that the
sequence {An}n∈N approximates A regularly at 0∗. Let f : X → R be a totally convex
and Legendre function which is bounded on bounded subsets of X. Assume that (11)
holds and the following conditions are satisfied:

(A) {λn}n∈N is a sequence of positive real numbers with limn→+∞ λn = +∞ such that

∇f(cl(domAn)) ⊂ ran(∇f + λnAn), n ∈ N. (18)

(B ) The sets A−1 (0∗) and A−1
n (0∗) are nonempty, A−1 (0∗) is closed, cl (domA) is

convex, and clx(domA) ⊂ ∩n∈N cl(domAn).

Then, for any x ∈ cl (domA), the Bregman projection projfA−1(0∗)(x) exists, the se-
quence

xn = ResfλnAn
(x), n ∈ N, (19)

is well defined and converges strongly to projfA−1(0∗)(x) as n → +∞.
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Proof. The sequence {xn}n∈N given by (19) is well defined for any x ∈ cl(domA) ⊂
∩n∈N cl(domAn) because

x ∈ ∩n∈N cl(domAn) ⇒ x ∈ cl(domAn)

=⇒ ∇f(x) ∈ ∇f(cl(domAn))

=⇒ ∇f(x) ∈ ran(∇f + λnAn) =⇒ x ∈ domResfλnAn
.

The set A−1 (0∗) is closed and nonempty, and in view of Proposition 2.3 and the fact
that FixResfA = A−1 (0∗) ∩ (int dom f) = A−1 (0∗) (since in our case int dom f = X),
the zero set A−1 (0∗) of A is convex. Therefore the Bregman projection projfA−1(0∗)(x)
exists.

Claim 1: The sequence {xn}n∈N is bounded. In order to prove this claim, observe that,
by (19), for each positive integer n, ∇f(x) ∈ ∇f(xn)+λnA(xn). Hence, for each n ∈ N,
there exists ξn ∈ Anxn such that

∇f(x) = ∇f(xn) + λnξn. (20)

By Condition (S2 ), given any y ∈ A−1 (0∗), there exists a sequence {yn}n∈N such that
yn ∈ A−1

n (0∗) for each n ∈ N and limn→+∞ yn = y. Therefore, from the three point
identity (6), it follows that for each n ∈ N, we have

Df (xn, x) = Df (yn, x)−Df (yn, xn) + 〈∇f(x)−∇f(xn), yn − xn〉 . (21)

Since An is a monotone operator, taking into account (20) and (21) for any n ∈ N, we
obtain

Df (xn, x) = Df (yn, x)−Df (yn, xn) + 〈∇f(x)−∇f(xn), yn − xn〉 (22)

≤ Df (yn, x) + 〈λnξn, yn − xn〉

= Df (yn, x)− λn 〈0
∗ − ξn, yn − xn〉

≤ Df (yn, x).

The function Df (·, x) is continuous on X because it is lower semicontinuous and convex
with domain X. Thus the sequence {Df (yn, x)}n∈N converges to Df (y, x). Hence
the sequence {Df (xn, x)}n∈N is also bounded (see (22)). It follows that the sequence
{νf (x, ‖xn − x‖)}n∈N is bounded too. Indeed, using the definition of the modulus of
total convexity (see (7)) and (22), we obtain that

νf (x, ‖xn − x‖) ≤ Df (xn, x) ≤ Df (yn, x), ∀n ∈ N. (23)

The function f is totally convex and therefore the function νf (x, ·) is strictly increasing
and positive on (0,∞) (cf. Proposition 2.1(iv)). As in the case of Claim 1 in the proof
of Theorem 3.1, it is not difficult to see that this implies that the sequence {xn}n∈N is
indeed bounded, as claimed.

Observe that, since X is reflexive and {xn}n∈N is bounded, the sequence {xn}n∈N has
weak subsequential limit points. Recall also that ∇f is bounded on bounded subsets
of X (see [10, Proposition 1.1.11, p. 16]).
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Claim 2: Every weak subsequential limit point of {xn}n∈N belongs to A−1 (0∗). In order
to prove this claim, we take a subsequence {xnk

}k∈N of {xn}n∈N which converges weakly
to some x̄ ∈ X. From (20) it follows that

ξn =
∇f(x)−∇f(xn)

λn

.

The sequence {∇f(xn)}n∈N is bounded because ∇f is bounded on bounded subsets
of X and {xn}n∈N is bounded by Claim 1. Therefore, ξn → 0∗. Since ξnk

∈ Ank
xnk

and xnk
⇀ x̄, an application of Condition (S1 ) implies that x̄ ∈ A−1 (0∗). This proves

Claim 2.

Claim 3: The sequence {xn}n∈N has a weak limit which is exactly projfA−1(0∗)(x) as

n → +∞. Let {xnk
}k∈N be a subsequence of {xn}n∈N which converges weakly to x̄.

In order to prove this claim, we invoke the weak lower semicontinuity of the function
Df (·, x) which is a consequence of the weak lower semicontinuity of f . This and (22)
imply that

Df (x̄, x) ≤ lim inf
k→+∞

Df (xnk
, x) ≤ lim inf

k→+∞
Df (ynk

, x) = Df (y, x), y ∈ A−1 (0∗) .

Since y is an arbitrary element of A−1 (0∗), this shows that x̄ is the minimizer ofDf (·, x)
on the closed and convex set A−1 (0∗). Note that

Df (y, x) + ιA−1(0∗)(y) = W f (∇f(x), y) + ιA−1(0∗)(y),

and by Proposition 2.3 we know that the minimum of W f (∇f(x), ·) + ιA−1(0∗)(·) is ex-

actly projfA−1(0∗)(x). Hence, any weak subsequential limit point x̄ of {xn}n∈N coincides

with projfA−1(0∗)(x). This implies that the sequence {xn}n∈N itself converges weakly to

projfA−1(0∗)(x) as n → +∞, as claimed.

Claim 4: The sequence {xn}n∈N converges strongly to projfA−1(0∗)(x) as n → +∞. In

order to prove this claim, take {yn}n∈N to be a sequence with yn ∈ A−1
n (0∗) for each

n ∈ N such that limn→+∞ yn = projfA−1(0∗)(x). Such a sequence exists by Condition

(S2 ). From Claim 3, (22) and the weak lower semicontinuity of Df (·, x), we get

Df (proj
f
A−1(0∗)(x), x) ≤ lim inf

n→+∞
Df (xn, x)

≤ lim sup
n→+∞

Df (xn, x) ≤ lim sup
n→+∞

Df (yn, x)

= Df (proj
f
A−1(0∗)(x), x).

Hence
lim

n→+∞
Df (xn, x) = Df (proj

f
A−1(0∗)(x), x). (24)

Using again the three point identity (6), we infer that

Df (xn, proj
f
A−1(0∗)(x))

=
[

Df (xn, x)−Df (proj
f
A−1(0∗)(x), x)

]

+
〈

∇f(x)−∇f(projfA−1(0∗)(x)), xn − projfA−1(0∗)(x)
〉

.
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Observe that the quantity between square brackets converges to zero by (24). Also,
the inner product on the right-hand side of this equality converges to zero by Claim 3.
This implies that the sequence

{

Df (xn, proj
f
A−1(0∗)(x))

}

n∈N
also converges to zero as

n → +∞. Since f is totally convex, an application of Proposition 2.2 shows that the
sequence {xn}n∈N itself converges strongly to projfA−1(0∗)(x) as n → +∞. This proves
Claim 4 and completes the proof of the theorem itself.

The following two propositions show that Conditions (S1 ) and (S2 ) are in some sense
necessary (if f is Fréchet differentiable) for the conclusions of Theorem 5.1 to hold (cf.
[21]).

Proposition 5.2. Let A,An : X → 2X
∗

, n ∈ N, be monotone operators. Let f : X →
R be a Fréchet differentiable and totally convex Legendre function which is bounded
on bounded subsets of X. Assume that (11) holds and the following two conditions are
satisfied:

(A) For each λ > 0 and n ∈ N,

ran(∇f) ⊂ ran(∇f + λAn).

(B) The sets A−1 (0∗) and A−1
n (0∗) are nonempty, A−1 (0∗) is closed and cl (domA)

is convex.

Suppose that, for any x ∈ X and any sequence {λn}n∈N with limn→+∞ λn = +∞, the

sequence
{

ResfλnAn
(x)

}

n∈N
converges strongly to projfA−1(0∗)(x) as n → +∞. Then

Condition (S1 ) holds.

Proof. Note first that projfA−1(0∗)(x) is well defined for any x ∈ X because A−1 (0∗) is

convex by Proposition 2.3. Suppose that {ξk}k∈N is a sequence in X∗ which converges
strongly to 0∗ and {xk}k∈N is a sequence in X which converges weakly to some x such
that ξk ∈ Akxk for all k ∈ N. Let {λk}k∈N be a sequence of positive real numbers
such that λk → +∞ as k → +∞ and {λkξk}k∈N converges strongly to 0∗. Set yk =

ResfλkAk
(x) for k ∈ N. Since

∇f(x)−∇f(yk)

λk

∈ Akyk

for each k ∈ N, it follows from the monotonicity of Ak that

〈

∇f(x)−∇f(yk)

λk

− ξk, yk − xk

〉

≥ 0, k ∈ N,

which is equivalent to

〈∇f(x)−∇f(yk)− λkξk, yk − xk〉 ≥ 0, k ∈ N.

Letting k → +∞, we obtain that

〈

∇f(x)−∇f(projfA−1(0∗)(x)), proj
f
A−1(0∗)(x)− x

〉

≥ 0
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because ∇f is norn-to-norm continuous by [23, Propostion 2.8, p. 19]. Using the strict
monotonicity of∇f , we see that x = projfA−1(0∗)(x) and hence x ∈ A−1 (0∗). This shows

that Condition (S1 ) holds, as asserted.

Proposition 5.3. Let A,An : X → 2X
∗

, n ∈ N, be monotone operators. Let f : X →
R be a totally convex Legendre function which is bounded on bounded subsets of X.
Assume that (11) holds and the following two conditions are satisfied:

(A) For each λ > 0 and n ∈ N,

∇f(cl(domAn)) ⊂ ran(∇f + λAn).

(B) The sets A−1 (0∗) and A−1
n (0∗) are nonempty and closed, cl (domA) is convex,

and cl(domA) ⊂ ∩n∈N cl(domAn).

Suppose that, for any x ∈ cl(domA) and any sequence {λn}n∈N with limn→+∞ λn =

+∞, the sequence
{

ResfλnAn
(x)

}

n∈N
converges strongly to projfA−1(0∗)(x) as n → +∞.

Then Condition (S2 ) holds.

Proof. Note first that projfA−1(0∗)(x) and projf
A−1

n (0∗)
(x) are well defined for any x ∈ X

and n ∈ N because A−1 (0∗) and A−1
n (0∗) are convex by Proposition 2.3. Let y ∈

A−1 (0∗) and n ∈ N. By Theorem 3.1, there exists kn ∈ N such that λkn > n and

∥

∥

∥
ResfλknAn

(y)− projf
A−1

n (0∗)
(y)

∥

∥

∥
<

1

n
.

Let zn = ResfλknAn
(y) for each n ∈ N. Since

d
(

zn, A
−1
n (0∗)

)

≤
∥

∥

∥
zn − projf

A−1
n (0∗)

(y)
∥

∥

∥
<

1

n
,

it follows that the sequence {d (zn, A
−1
n (0∗))}n∈N converges to 0 as n → +∞. On the

other hand, from the assumption of the proposition, {zn}n∈N converges strongly to

projfA−1(0∗)(y) = y. Therefore we have

lim
n→+∞

d
(

y, A−1
n (0∗)

)

≤ lim
n→+∞

‖y − zn‖+ lim
n→+∞

d
(

zn, A
−1
n (0∗)

)

= 0.

So for each n ∈ N, there exist yn ∈ A−1
n (0∗) such that the sequence {yn}n∈N converges

strongly to y. Hence Condition (S2 ) holds, as asserted.
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