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CNRS, Université de Nice, Dép. de Mathématiques,
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1. Introduction

There is a prejudice among some specialists of non linear partial differential equations
and differential geometry: convex analysis is an elegant theory but too rigid to address
some of the most interesting and challenging problems in their field. Convex analysis
is mostly attached to elliptic and parabolic equations of variational origin, for which a
suitable convex potential can be exhibited and shown to be minimized (either statically
or dynamically). The Dirichlet principle for linear elliptic equation is archetypal.
Hyperbolic PDEs, for example, seem to be inaccessible to convex analysis, since they
are usually derived from variational principles that are definitely not convex. (How-
ever, convexity plays an important role in the so-called entropy conditions.) Also,
elliptic systems with variational formulations (such as in elasticity theory) often in-
volve structural conditions quite far from convexity (such as Hadamard’s "rank one"
conditions). (However, convexity can be often restored, for example through the con-
cept of polyconvexity [8], or by various kinds of "relaxation" methods [55, 6].) The
purpose of the present paper is to show few examples of nonlinear PDEs (mostly with
strong geometric features) for which there is a hidden convex structure. This is not
only a matter of curiosity. Once the convex structure is unrevealed, robust existence
and uniqueness results can be unexpectedly obtained for very general data. Of course,
as usual, regularity issues are left over as a hard post-process, but, at least, existence
and uniqueness results are obtained in a large framework. The paper will address:

1. THE MONGE-AMPERE EQUATION (solving the Minkowski problem and
strongly related to the so-called optimal transport theory since the 1990’s)

2. THE EULER EQUATION (describing the motion of inviscid and incompressible
fluids, interpreted by Arnold as geodesic curves on infinite dimensional groups of
volume preserving diffeomorphisms)

3. MULTIDIMENSIONAL HYPERBOLIC SCALAR CONSERVATION LAWS (a
simplified model for multidimensional systems of hyperbolic conservation laws)
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4. THE BORN-INFELD SYSTEM (a non-linear electromagnetic model introduced
in 1934, playing an important role in high energy Physics since the 1990’s)

Finally, let us mention that we borrowed the expression "hidden convexity" from a
lecture by L. C. Evans about various models where the same phenomena occur (such
as growing sandpiles [5] and weak KAM theory).

2. Monge-Ampère equation and optimal transportation maps

Given two positive functions α and β of same integral over Rd, we look for a convex
solution Φ of the the Monge-Ampère equation:

β(∇Φ(x)) det(D2Φ(x)) = α(x), x ∈ Rd. (1)

This nonlinear PDE is usually related to the Minkowski problem, which amounts to
find hypersurfaces of prescribed Gaussian curvature.

2.1. A weak formulation

Assuming a priori that x ∈ Rd → ∇Φ(x) is a diffeomorphism (with a jacobian ma-
trix D2Φ(x) everywhere symmetric positive), we immediately see, using the change of
variable y = ∇Φ(x), that (1) is equivalent to the following "weak formulation":

∫

f(y)β(y)dy =

∫

f(∇Φ(x)))α(x)dx (2)

for all suitable test function f on Rd. In the words of measure theory, this just means
that β(y)dy as a Borel measure on Rd is the image of the measure α(x)dx by the map
x → ∇Φ(x). Notice that such a weak formulation has nothing to do with the usual
definition of weak solutions in the sense of distribution (that does not make sense for a
fully non-linear equation such as (1)). It is also weaker than the concept of "viscosity
solution", as discussed in [26].

2.2. A convex variational principle

Proposition 2.1. Let us consider all smooth convex functions Ψ on Rd with a smooth
Legendre-Fenchel transform

Ψ∗(y) = sup
x∈Rd

x · y −Ψ(x). (3)

Then, in this family, a solution Φ to the Monge-Ampère equation (1) is a minimizer
of the convex functional

J [Ψ] =

∫

Ψ(x)α(x)dx+

∫

Ψ∗(y)β(y)dy. (4)

Proof. For any suitable convex function Ψ, we have:

J [Ψ] =

∫

Ψ(x)α(x)dx+

∫

Ψ∗(y)β(y)dy =

∫

(Ψ(x) + Ψ∗(∇Φ(x)))α(x)dx
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(since ∇Φ transports α toward β)

≥

∫

x · ∇Φ(x)α(x)dx

(by definition of the Legendre transform (3))

=

∫

(Φ(x) + Φ∗(∇Φ(x)))α(x)dx

(indeed, in the definition of Φ∗(y) = sup x · y − Φ(x), the supremum is achieved when-
ever y = ∇Φ(x), which implies Φ∗(∇Φ(x)) = x · ∇Φ(x)− Φ(x))

=

∫

Φ(x)α(x)dx+

∫

Φ∗(y)β(y)dy = J [Φ],

which shows that, indeed, Φ is a minimizer for (4))

2.3. Existence and uniqueness for the weak Monge-Ampère problem

Based on the previous observation, using the tools of convex analysis, one can solve the
Monge-Ampère problem in its weak formulation, for a quite large class of data, with
both existence and uniqueness of a solution:

Theorem 2.2 ([15], see also [54]). Whenever α and β are nonnegative Lebesgue in-
tegrable functions on Rd, with same integral, and bounded second order moments,

∫

|x|2α(x)dx < +∞,

∫

|y|2β(y)dy < +∞,

there is a unique L2 map T with convex potential T = ∇Φ that solves the Monge-
Ampère problem in its weak formulation (2), for all continuous function f such that:
|f(x)| ≤ 1 + |x|2.
This map is called the optimal transport map between α(x)dx and β(y)dy.

By map with convex potential, we exactly mean a Borel map T with the following
property: there is a lsc convex function Φ defined on Rd, valued in ]−∞,+∞], such
that, for α(x)dx almost everywhere x ∈ Rd, Φ is differentiable at x and ∇Φ(x) = T (x).

Comments. The usual proof [16, 51, 46, 18] is based on the duality method intro-
duced by Kantorovich to solve the so-called Monge-Kantorovich problem, based on the
concept of joint measure (or coupling measure) [40]. [In the special case when α and β
are both compactly supported, we can use Rockafellar’s duality theorem (as quoted in
[24]), just by working on the Banach space E (and its dual space E ′) of all continuous
functions defined on a fixed closed ball BR, with a large enough radius R > 0, so that
the supports of α and β are contained in BR. See more details in [15].] A proof by
the direct method of calculus of variations is also possible, as done by Gangbo [35].
This theorem can be seen as the starting point of the so-called "optimal transport
theory" which has turned out to be a very important and active field of research in the
recent years, with a lot of interactions between calculus of variations, convex analy-
sis, differential geometry, PDEs, functional analysis and probability theory and several
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applications outside of mathematics (see [54] for a review). A typical (and striking)
application to the isoperimetric inequality is given in the appendix of the present pa-
per.
This theoretical result has also practical applications, for instance in medical imaging
[2, 3] and astronomy [34] and it is important to have good numerical methods. From
this viewpoint, the state of the art is not so satisfactory. In particular, there is no al-
gorithm, to the best of our knowledge, that can match the efficiency of the best known
algorithms for linear elliptic equations (multigrid methods, fast Poisson solvers etc...).
Several methods can be used, such as linear programming [7, 34], continuum mechanics
methods [9, 25], time continuation methods [2], direct Monge-Ampère solvers [29, 31]
for instance, but none of them can be considered as very efficient: this is a challenging
problem in numerical analysis.

3. The Euler equations

3.1. Geometric definition of the Euler equations

The Euler equations were introduced in 1755 [32] to describe the motion of inviscid
fluids. In the special case of an incompressible fluid moving inside a bounded convex
domain D in Rd, a natural configuration space is the set SDiff(D) of all orientation
and volume preserving diffeomorphisms of D. Then, a solution of the Euler equations
can be defined as a curve t → gt along SDiff(D) subject to:

d2gt
dt2

◦ g−1
t +∇pt = 0, (5)

where pt is a time dependent scalar field defined on D (called the "pressure field").
As shown by Arnold [4, 30], these equations have a very simple geometric interpreta-
tion. Indeed, gt is just a geodesic curve (with constant speed) along SDiff(D), with
respect to the L2 metric inherited from the Euclidean space L2(D,Rd), and −∇pt is
the acceleration term, taking into account the curvature of SDiff(D). From this inter-
pretation in terms of geodesics, we immediately deduce a variational principle for the
Euler equations. However, this principle cannot be convex due to the non convexity of
the configuration space. (Observe that SDiff(D) is contained in a sphere of the space
L2(D,Rd) and cannot be convex, except in the trivial case d = 1 where it reduces to
the identity map.)

3.2. A concave maximization principle for the pressure

Surprisingly enough, the pressure field obeys (at least on short time intervals) a concave
maximization principle. More precisely,

Theorem 3.1. Let (gt, pt) be a smooth solution to the Euler equations (5) on a time
interval [t0, t1] small enough so that

(t1 − t0)
2D2pt(x) ≤ π2, ∀x ∈ D (6)

(in the sense of symmetric matrices). Then pt is a maximizer of the CONCAVE
functional

q →

∫ t1

t0

∫

D

qt(x)dtdx+

∫

D

Jq[gt0(x), gt1(x)]dx, (7)
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among all t dependent scalar field qt defined on D. Here

Jq[x, y] = inf

∫ t1

t0

(

−qt(z(t)) +
|z′(t)|2

2

)

dt, (8)

where the infimum is taken over all curves t → z(t) ∈ D such that z(t0) = x ∈ D,
z(t1) = y ∈ D, is defined for all pair of points (x, y) in D.

Proof. The proof is very elementary and does not essentially differ from the one we
used for the Monge-Ampère equation in the previous section (which is somewhat sur-
prising since the Euler equations and the MA equation look quite different). The main
difference is the smallness condition we need on the size of the time interval. Let us
consider a time dependent scalar field qt defined on D. By definition of Jq:

∫

D

Jq [gt0(x), gt1(x)] dx ≤

∫ t1

t0

∫

D

(

1

2

∣

∣

∣

∣

dgt
dt

∣

∣

∣

∣

2

− qt(gt(x))

)

dtdx.

Using a standard variational argument, we see that, under the smallness condition (6),
the Euler equation (5) asserts that, for all x ∈ D

Jp[gt0(x), gt1(x)] =

∫ t1

t0

(

1

2

∣

∣

∣

∣

dgt
dt

∣

∣

∣

∣

2

− pt(gt(x))

)

dt.

Integrating in x ∈ D, we get:

∫

D

Jp[gt0(x), gt1(x)]dx =

∫ t1

t0

∫

D

(

1

2

∣

∣

∣

∣

dgt
dt

∣

∣

∣

∣

2

− pt(gt(x))

)

dtdx.

Since gt ∈ SDiff(D) is volume preserving, we have:

∫

D

(qt(x)− qt(gt(x))dx =

∫

D

(pt(x)− pt(gt(x))dx = 0.

Finally,

∫ t1

t0

∫

D

qt(x)dtdx+

∫

D

Jq[gt0(x), gt1(x)]dx

≤

∫ t1

t0

∫

D

pt(x)dtdx+

∫

D

Jp[gt0(x), gt1(x)]dx

which shows that, indeed, (pt) is a maximizer.

3.3. Global convex analysis of the Euler equations

The maximization principle is the starting point for a global analysis of the Euler
equations. Of course, there is no attempt here to solve the Cauchy problem in the large
for d ≥ 3, which is one of the most outstanding problems in nonlinear PDEs theory.
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(This would more or less amount to prove the geodesic completeness of SDiff(D).) We
rather address the existence of minimizing geodesics between arbitrarily given points
of the configuration space SDiff(D). This problem may have no classical solution, as
shown by Shnirelman [47]. Combining various contributions by Shnirelman, Ambrosio-
Figalli and the author [17, 48, 19, 1], we get the global existence and uniqueness result:

Theorem 3.2 ([17], see also [1]). Let g0 and g1 be given volume preserving Borel
maps of D (not necessarily diffeomorphisms) and t0 < t1. Then

1) There is a unique t dependent pressure field pt, with zero mean on D, that solves
(in a suitable weak sense) the maximization problem stated in Theorem 3.1.

2) There is a sequence gnt valued in SDiff(D) such that

d2gnt
dt2

◦ (gnt )
−1 +∇pt → 0,

in the sense of distributions and gn0 → g0, g
n
1 → g1 in L2.

3) Any sequence of approximate minimizing geodesics (gnt ) (in a suitable sense) be-
twween g0 and g1 has the previous behaviour.

4) The pressure field is well defined in the space L2(]t0, t1[, BVloc(D)).

Of course, these results are not as straightforward as Theorem 3.1 and requires a lot
of technicalities (generalized flows, etc...). However, they still rely on convex analysis
which is very surprising in this infinite dimensional differential geometric setting. No-
tice that the uniqueness result is also surprising. Indeed, between two given points,
minimizing geodesics are not necessarily unique (as can be easily checked). However
the corresponding acceleration field −∇pt is unique! It is unlikely that such a property
could be proven using classical differential geometric tools. It is probably an output of
the hidden convex structure. Let us finally notice that the improved regularity obtained
by Ambrosio and Figalli [1] (they show that p belongs to L2(]t0, t1[, BVloc(D)) instead
of ∇p a locally bounded measure, as previously obtained in [19]) is just sufficient to
give a full meaning to the maximization problem. (A different formulation, involving
a kind of Kantorovich duality is used in [17, 19] and requires less regularity.)

4. Convex formulation of multidimensional scalar conservation laws

4.1. Hyperbolic systems of conservation laws

The general form of multidimensional nonlinear conservation laws is:

∂tut +
d
∑

i=1

∂i(Fi(ut)) = 0,

where ut(x) ∈ V ⊂ Rm is a time dependent vector-valued field defined on a d− di-
mensional manifold (say the flat torus Td = Rd/Zd for simplicity) and each Fi :
V ⊂ Rm → Rm is a given nonlinear function. This general form includes systems
of paramount importance in Mechanics and Physics, such as the gas dynamics and
the Magnetohydrodynamics equations, for example. A simple necessary (and nearly
sufficient) condition for the Cauchy problem to be well-posed for short times is the
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hyperbolicity condition which requires, for all ξ ∈ Rd and all v ∈ V the m × m real
matrix

d
∑

i=1

ξiF
′
i (v)

to be diagonalizable with real eigenvalues. For many systems of physical origin, with
a variational origin, there is an additional conservation law:

∂t(U(ut)) +
d
∑

i=1

∂i(Gi(ut)) = 0, (9)

where U and Gi are scalar functions (depending on F ). (This usually follows from
Noether’s invariance theorem.) Whenever U is a strictly convex function, the system
automatically gets hyperbolic. For most hyperbolic systems, solutions are expected to
become discontinuous in finite time, even for smooth initial conditions. There is no
theory available to solve the initial value problem in the large (see [28] for a modern
review), except in two extreme situations. First, for a single space variable (d = 1) and
small initial conditions (in total variation), global existence and uniqueness of "entropy
solutions" have been established through the celebrated results of J. Glimm (existence)
and A. Bressan and collaborators (well posedness) [38, 10]. (Note that some special
systems can also be treated with the help of compensated compactness methods [52],
without restriction on the size of the initial conditions.) Next, in the multidimensional
case, global existence and uniqueness of "entropy solutions" have been obtained by
Kruzhkov [41] in the case of a single (scalar) conservation law (m = 1).

Theorem 4.1 (Kruzhkov [41]). Assume F to be Lipschitz continuous. Then, for
all u0 ∈ L1(Td), there is a unique (ut), in the space C0(R+, L

1(Td)) with initial value
u0, such that:

∂tut +∇ · (F (ut)) = 0, (10)

is satisfied in the distributional sense and, for all Lipschitz convex function U defined
on R, the "entropy" inequality

∂t(U(ut)) +∇ · (Z(ut)) ≤ 0, (11)

holds true in the distributional sense, where

Z(v) =

∫ v

0

F ′(w)U ′(w)dw.

In addition, for all pairs of such "entropy" solutions (u, ũ),
∫

Td

|ut(x)− ũt(x)| dx ≤

∫

Td

|us(x)− ũs(x)| dx, ∀t ≥ s ≥ 0. (12)

This result is often quoted as a typical example of maximal monotone operator theory in
L1. (For the concept of maximal monotone operator, we refer to [24, 6].) The use of the
non hilbertian space L1 is crucial. Indeed (except in the trivial linear case F (v) = v),
the entropy solutions do not depend on their initial values in a Lipschitz continuous
way in any space Lp except fot p = 1. This is due to the fact that, even for a smooth
initial condition, the corresponding entropy solution ut may become discontinuous for
some t > 0 and, therefore, cannot belong to any Sobolev space W 1,p(Td) for p > 1.
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4.2. A purely convex formulation of multidimensional scalar conservation
laws

Clearly, convexity is already involved in Kruzhkov’s formulation (10,11) of scalar con-
servation laws, through the concept of "entropy inequality". However, a deeper, hidden,
convex structure can be exhibited, as observed recently by the author [23]. As a matter
of fact, the Kruzhkov entropy solutions can be fully recovered just by solving a rather
straightforward convex sudifferential inequality in the Hilbert space L2. For notational
simplicity, we limit ourself to the case when the initial condition u0 is valued in the
unit interval.

Theorem 4.2 (Brenier, 2006, [23]). Assume u0(x) to be valued in [0, 1], for x ∈
Td. Let Y0(x, a) be any bounded function of x ∈ Td and a ∈ [0, 1], non decreasing in
a, such that

u0(x) =

∫ 1

0

1{Y0(x, a) < 0}da, (13)

for instance: Y0(a) = a − u0(x). Then, the unique Kruzhkov solution to (10) is given
by

ut(x) =

∫ 1

0

1{Yt(x, a) < 0}da, (14)

where Yt solves the convex subdifferential inequality in L2(Td × [0,1]):

0 ǫ ∂tYt + F ′(a) · ∇xYt + ∂η[Yt], (15)

where η[Y ] = 0 if ∂aY ≥ 0, and η[Y ] = +∞ otherwise.

Observe that Y → F ′(a) · ∇xY + ∂η[Y ] defines a maximal monotone operator and
generates a semi-group of contractions in L2(Td × [0,1]) [24].

Sketch of Proof. Multidimensional scalar conservation laws enjoy a comparison prin-
ciple (this is why they are so simple with respect to general systems of conservation
laws). In other words, if a family of initial conditions u0(x, y) is non decreasing with
respect to a real parameter y, the corresponding Kruzhkov solutions ut(x, y) will satisfy
the same property. This key observation enables us to use a kind of level set method,
in the spirit of Sethian and Osher [45, 44], and even more closely, in the spirit of the
paper by Tsai, Giga and Osher [53]. Assume, for a while, that ut(x, y) is a priori
smooth and strictly increasing with respect to y. Thus, we can write

ut(x, Yt(x, a)) = a, Yt(x, ut(x, y)) = y

where Yt(x, a) is smooth and strictly increasing in a ∈ [0, 1]. Then, a straightforward
calculation shows that Y must solve the simple linear equation

∂tYt + F ′(a) · ∇xYt = 0 (16)

(which has Yt(x, a) = Y0(x − tF ′(a), a) as exact solution). Unfortunately, this linear
equation is not able to preserve the monotonicity condition ∂aY ≥ 0 in the large. Sub-
differential inequality (15) is, therefore, a natural substitute for it. The remarkable fact
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is that this rather straighforward modification exactly matches the Kruzhkov entropy
inequalities. More precisely, as Y solves (15) , then

ut(x, y) =

∫ 1

0

1{Yt(x, a) < y}da

can be shown to be the right entropy solutions with initial conditions u0(x, y). For
more details, we refer to [23].

Remark. Our approach is reminiscent of both the "kinetic method" and the "level
set" method. The kinetic approach amounts to linearize the scalar conservation laws
as (16) by adding an extra variable (here a). This idea (that has obvious roots in
the kinetic theory of Maxwell and Boltzmann) was independently introduced for scalar
conservation laws by Giga-Miyakawa and the author [14, 15, 37]. Using this approach,
Lions, Perthame and Tadmor [43] later introduced the so-called kinetic formulation of
scalar conservation laws and, using the averaging lemma of Golse, Perthame and Sentis
[39], established the remarkable result that multidimensional scalar conservation laws
enjoy a regularizing effect when they are genuinely nonlinear. (In other words, due to
shock waves, entropy solutions automatically get a fractional amount of differentiabil-
ity!). On the other side, the level set method by Osher and Sethian [45, 44] describes
functions according to their level sets (here Y (t, x, a) = y). This is a very general and
powerful approach to all kinds of numerical and analytic issues in pure and applied
mathematics. An application of the level set method to scalar conservation laws was
made by Tsai, Giga and Osher in [53] and more or less amounts to introduce a viscous
(parabolic) approximation of subdifferential inequality (15). Finally, let us mention
that some very special systems of conservation laws can be treated in a similar way
[21].

5. The Born-Infeld system

Using convential notations of classical electromagnetism, the Born-Infeld system reads:

∂tB +∇×

(

B × (D ×B) +D
√

1 +D2 +B2 + (D ×B)2

)

= 0, ∇ ·B = 0,

∂tD +∇×

(

D × (D ×B)−B
√

1 +D2 +B2 + (D ×B)2

)

= 0, ∇ ·D = 0,

This system is a nonlinear correction to the Maxwell equations, which can describe
strings and branes in high energy Physics [12, 13, 11, 36]. Concerning the initial value
problem, global smooth solutions have been proven to exist for small localized initial
conditions by Chae and Huh [27] (using Klainerman’s null forms and following a related
work by Lindblad [42] ). The additional conservation law

∂th+∇ ·Q = 0,

where
h =

√

1 +D2 +B2 + (D ×B)2, Q = D ×B.
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provides an "entropy function" h which is a convex function of the unknown (D,B) only
in a neighborhood of (0, 0). However, h is clearly a convex function of B, D, and B×D.
Thus, there is a hope to restore convexity by considering B × D as an independent
variable, which will be done subsequently by "augmenting" the Born-Infeld system.

5.1. The augmented Born-Infeld (ABI) system

Using Noether’s invariance theorem, we get from the BI system 4 additional ("momen-
tum-energy" ) conservation laws:

∂tQ+∇ ·

(

Q⊗Q−B ⊗B −D ⊗D

h

)

= ∇

(

1

h

)

, ∂th+∇ ·Q = 0. (17)

We call augmented Born-Infeld system (ABI) the 10× 10 system of equations made of
the 6 original BI evolution equations

∂tB +∇×

(

B ×Q+D

h

)

= ∂tD +∇×

(

D ×Q−B

h

)

= 0, (18)

with the differential constraints

∇ ·B = 0, ∇ ·D = 0, (19)

together with the 4 additional conservation laws (17) but WITHOUT the algebraic
constraints

h =
√

1 +D2 +B2 + (D ×B)2, Q = D ×B. (20)

These algebraic constraints define a 6 manifold in the space (h,Q,D,B) ∈ R10 that we
call "BI manifold". We have the following consistency result:

Proposition 5.1 (Brenier, 2004 [20]). Smooth solutions of the ABI system ((17),
(18), (19)) preserve the BI manifold (20). Therefore, any smooth solution of the orig-
inal BI system can be seen as a smooth solution to the ABI system ((17), (18), (19))
with an initial condition valued on the BI manifold.

5.2. First appearance of convexity in the ABI system

Surprisingly enough, the 10 × 10 augmented ABI system ((17), (18), (19)) admits an
extra conservation law:

∂tU +∇ · Z = 0,

where

U(h,Q,D,B) =
1 +D2 +B2 +Q2

h

is convex (and Z is a rational function of h,Q,D,B). This leads to the GLOBAL
hyperbolicity of the system.
Notice that the ABI system looks like Magnetohydrodynamics equations and enjoys
classical Galilean invariance:

(t, x) → (t, x+ u t), (h,Q,D,B) → (h,Q− hu,D,B),
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for any constant speed u ∈ R3!
For a large class of nonlinear Maxwell equations, a similar extension can be done (with
9 equations instead of 10) as in [49]. It should be mentioned that a similar method
was introduced earlier in the framework of nonlinear elastodynamics with polyconvex
energy (see [28]).

5.3. Second appearance of convexity in the ABI system

The 10 × 10 ABI (augmented Born-Infeld) system is linearly degenerate [28] and sta-
ble under weak-* convergence: weak limits of uniformly bounded sequences in L∞ of
smooth solutions depending on one space variable only are still solutions. (This can be
proven by using the Murat-Tartar "div-curl" lemma.) Thus, we may conjecture that
the convex-hull of the BI manifold is a natural configuration space for the (extended)
BI theory. (As a matter of fact, the differential constraints ∇ ·D = ∇ ·B = 0 must be
carefully taken into account, as pointed out to us by Felix Otto.) The convex hull has
full dimension. More precisely, as shown by D. Serre [50], the convexified BI manifold
is just defined by the following inequality:

h ≥
√

1 +D2 +B2 +Q2 + 2|D ×B −Q|. (21)

Observe that, on this convexified BI manifold (21):

1) The electromagnetic field (D,B) and the "density and momentum" fields (h,Q)
can be chosen independently of each other, as long as they satisfy the required
inequality (21). Thus, in some sense, the ABI system describes a coupling between
field and matter, although the original Born-Infeld model is purely electromag-
netic.

2) "Matter" may exist without electromagnetic field: B = D = 0, which leads to the
Chaplygin gas (a possible model for ‘dark energy’ or ‘vacuum energy’)

∂tQ+∇ ·

(

Q⊗Q

h

)

= ∇

(

1

h

)

, ∂th+∇ ·Q = 0,

3) ‘Moderate’ Galilean transforms are allowed

(t, x) → (t, x+ U t), (h,Q,D,B) → (h,Q− hU,D,B),

which is impossible on the original BI manifold (consistently with special relativ-
ity) but becomes possible under weak completion (see the related discussion on
"subrelativistic" conditions in [22]).

6. Appendix: A proof of the isoperimetric inequality using an optimal
transport map

In this appendix, we describe a typical and striking application of optimal transport
map methods. Let Ω be a smooth bounded open set and B1 the unit ball in Rd. The
isoperimetric inequality reads (with obvious notations):

|Ω|1−1/d|B1|
1/d ≤

1

d
|∂Ω|.
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Let ∇Φ the optimal transportation map between

α(x) =
1

|Ω|
1{x ∈ Ω}, β(y) =

1

|B1|
1{x ∈ B1}.

In such a situation, according to Caffarelli’s regularity result [26], ∇Φ is a diffeomor-
phism between Ω and B1 (up to their boundaries) with C2 internal regularity (which
is not a trivial fact) and

det(D2Φ(x)) =
|B1|

|Ω|
, x ∈ Ω.

holds true in the classical sense. Then the proof (adaptated from Gromov) of the
isoperimetric inequality is straightforward and sharp. Indeed, since ∇Φ maps Ω to the
unit ball, we have:

|∂Ω| =

∫

∂Ω

dσ(x) ≥

∫

∂Ω

∇Φ(x) · n(x)dσ(x)

(denoting by dσ and n(x) respectively the Hausdorff measure and the unit normal
along the boundary of Ω)

=

∫

Ω

∆Φ(x)dx

(using Green’s formula)

≥ d

∫

Ω

(det(D2Φ(x))1/ddx

(using that (detA)1/d ≤ 1/d Trace(A) for any nonnegative symmetric matrix A)

= d|Ω|1−1/d|B1|
1/d

since det(D2Φ(x)) = |B1|
|Ω|

, x ∈ Ω.
So, the isoperimetric inequality

|Ω|1−1/d|B1|
1/d ≤

1

d
|∂Ω|

follows, with equality only when Ω is a ball, as can be easily checked by tracing back
the previous inequalities. Notice that Gromov’s original proof does not require the
map T to be optimal (it is enough that its jacobian matrix has positive eigenvalues).
However, the optimal map plays a crucial role for various refinements of the isoperi-
metric inequality (in particular its quantitative versions by Figalli-Maggi-Pratelli [33],
for example).
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