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1. Introduction

Let p be the projection from Y ×X onto Y , B ⊂ Y ×X a set and define Ω = p(B).
A uniformization of B is a function f : Ω → X such that (t, f(t)) ∈ B for every
t ∈ Ω. Notice that with the aid of the axiom of choice such a uniformization f always
exists. The problem is how nice can f be chosen when B is nice? For instance if B
is Borel (Y and X are topological spaces) can f be chosen being Borel (or analytic)
measurable? The study of the existence of nice uniformizations for Borel sets when
Y = X = Ω = [0, 1] attracted the attention of leading mathematicians from the
very beginning of the XX century such as Baire, Borel, Hadamard, Lebesgue, von
Neumann, Novikov, Kondo, Yankov, Luzin, Sierpinski, etc. and precipitated the birth
and flourishment of the descriptive set theory. More recent authors contributing to
this topic are, amongst others, Kuratowski, Ryll-Nardzewski, Sion, Larman, Mauldin,
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Pol, Saint-Raymond, etc. Notice that for our given B we naturally can define the
multi-function F : Ω → 2X that at each t ∈ Ω is given by

F (t) := {x ∈ X : (t, x) ∈ B}.

With this language properties of B are just properties of the graph of F defined as
Graph(F ) := {(t, x) : t ∈ Ω, x ∈ F (t)} and a uniformization of B is just a selector of
F , i.e., a single valued function f : Ω → X such that f(t) ∈ F (t) for every t ∈ Ω.

When dealing with general multi-functions F : Ω → 2X the domain Ω is usually a
measurable or a topological space and the range X is usually a topological space.
In this setting analysts, topologists and applied mathematicians soon realized that
many times when one needs to find a nice selector f for F , the starting point is
not an hypothesis about Graph(F ): one usually just know that F is lower or upper
semicontinuous, measurable, Effros measurable, scalarly measurable, etc. A striking
and pretty useful selection theorem relevant for this paper is the following:

Theorem A (Kuratowski-Ryll Nardzewski, [10]). Let (Ω,Σ) be a measurable
space and X a separable metric space. Let F : Ω → 2X be a multi-function with
complete non-empty values satisfying that

{t ∈ Ω : F (t) ∩O 6= ∅} ∈ Σ for each open set O ⊂ X. (E)

Then F admits a Σ−Borel(X) measurable selector f .

The development in the theory of the existence of measurable selections has been many
times linked to its applications to control theory, differential inclusions, mathematical
models in economy and integration of multi-functions. People doing integration of
multi-functions yearned over the years for a selection theorem where the range space
need not be separable, but as far as we know they could only get hold of Kuratowski-
Ryll Nardzewski’s theorem that just works in the separable case. In this paper we get
rid of the separability constraints for the range space and we find two strong selection
results for multi-functions with values weakly compact sets of a Banach space, see
Theorem 2.5 and Theorem 3.8 presented below.

Throughout this paper (Ω,Σ, µ) is a complete finite measure space and X is a real
Banach space. By 2X we denote the family of all non-empty subsets of X and by
cl(X), k(X), wk(X) and cwk(X) we denote, respectively, the subfamilies of 2X made
up of norm closed, norm compact, weakly compact and convex weakly compact subsets
of X.

Recall that a multi-function F : Ω → 2X that satisfies property (E) in Theorem 1
is said to be Effros measurable. A single valued function f : Ω → X is strongly
measurable if it is the µ-almost everywhere (shortly, µ-a.e.) limit of a sequence of
Σ-simple X-valued functions defined in Ω. Strongly measurable selectors have been
classically found along this line: assume that X is separable and take a multi-function
F : Ω → cl(X) Effros measurable, then apply Kuratowski-Ryll Nardzewski’s theorem
to produce a Σ−Borel(X,norm) measurable selector f of F and then with the help of
Pettis’ measurability theorem, cf. [6, Theorem 2, p. 42], conclude that f is strongly
measurable.

Our first main result for non necessarily separable Banach spaces reads as follows:



B. Cascales, V. Kadets, J. Rodŕıguez / Measurability and selections of ... 231

Theorem 2.5. For a multi-function F : Ω → wk(X) the following statements are
equivalent:

(i) F admits a strongly measurable selector.

(ii) For every ε > 0 and each A ∈ Σ with µ(A) > 0 there exist B ⊂ A, B ∈ Σ with
µ(B) > 0, and D ⊂ X with diam(D) ≤ ε such that F (t)∩D 6= ∅ for every t ∈ B.

We write δ∗(x∗, C) := sup{x∗(x) : x ∈ C} for any set C ⊂ X and any x∗ in the dual
Banach space X∗. A multi-function F : Ω → 2X is said to be scalarly measurable if for
each x∗ ∈ X∗ the function t 7→ δ∗(x∗, F (t)) is measurable. In particular a single valued
function f : Ω → X is scalarly measurable if the composition x∗ ◦ f is measurable for
every x∗ ∈ X∗.

Here is our second main result in this paper:

Theorem 3.8. Every scalarly measurable multi-function F : Ω → wk(X) admits a
scalarly measurable selector.

As far as we know, one of the standard ways of looking for selectors of scalarly measur-
able multi-functions F : Ω → cwk(X) has been to assume that X is separable: in this
case scalar measurability of F is equivalent to its Effros measurability, cf. [4, Theorem
III.37] or [1, Corollary 4.10 (a)], and then F has indeed a strongly measurable selector
as commented above. Outside the separable setting only two particular cases of The-
orem 3.8 are known to be true with the extra hypothesis of the multi-function taking
moreover convex values, namely, when X∗ is weak∗-separable, cf. [12, Proposition 6],
and when X is reflexive, cf. [3, Theorem 5.1].

Whereas Theorem 2.5 is proved using techniques and reduction arguments which are
not alien to other previous selection results in the literature, the proof of Theorem 3.8
relies on the convergence of martingales provided by the Radon-Nidodým property of
convex weakly compact sets in Banach spaces.

Notation and terminology

Our standard references are [4] and [9] for multi-functions and convex analysis, [6] for
measurability in Banach spaces and [5] for general concepts in functional analysis.

For the real Banach space (X, ‖ · ‖) we denote by BX the closed unit ball and SX the
unit sphere. For a set D ⊂ X we define

diam(D) := sup
x,y∈D

‖x− y‖

and we denote by co(D) the convex hull of D. Given a multi-function F : Ω → 2X and
C ⊂ X, we write

F−(C) := {t ∈ Ω : F (t) ∩ C 6= ∅}.

2. Multi-functions admitting strongly measurable selectors

This section is devoted to prove Theorem 2.5 as presented in the introduction.
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Let Σ+ be the family of all A ∈ Σ with µ(A) > 0. Given A ∈ Σ+, the collection of all
subsets of A belonging to Σ+ is denoted by Σ+

A.

We isolate first the following definition.

Definition 2.1. We say that a multi-function F : Ω → 2X satisfies property (P) if for
each ε > 0 and each A ∈ Σ+ there exist B ∈ Σ+

A and D ⊂ X with diam(D) ≤ ε such
that F (t) ∩D 6= ∅ for every t ∈ B (i.e. B ⊂ F−(D)).

The notion of fragmented (σ-fragmented) multi-function introduced in [8] is a topolog-
ical counterpart to our property (P) above.

The next proposition provides the first examples of functions with property (P) in the
single valued case: the experienced reader will recognize easily that in this situation
property (P) offers a characterization of strongly measurable functions. A very short
proof is sketched for the sake of a wider audience:

Proposition 2.2. For a function f : Ω → X the following statements are equivalent:

(i) f satisfies property (P).

(ii) For each ε > 0 and each A ∈ Σ+ there exist B ∈ Σ+
A with diam

(
f(B)

)
≤ ε.

(iii) f is strongly measurable.

Proof. The statement in (ii) is just a different way of writing (i). The implication
(iii) ⇒ (ii) follows from Egoroff’s theorem, [7, Theorem 1, p. 94], the definition of
strongly measurable function as limit µ-a.e. of a sequence of simple functions and the
fact that simple functions satisfy (ii). The proof of (ii) ⇒ (iii) can be done using an
exhaustion argument to prove that for every ε > 0 there is a pairwise disjoint sequence
(An) in Σ and a sequence (xn) in X such that the function g : Ω → X defined by
g =

∑∞
n=1 xn1An

satisfies ‖f − g‖ ≤ ε µ-a.e. Now an appeal to [6, Corollary 3, p. 42]
gives us that f is strongly measurable.

Proposition 2.3. Let F : Ω → 2X be a multi-function.

(i) If there exists a multi-function G : Ω → 2X satisfying property (P) such that
G(t) ⊂ F (t) for µ-a.e. t ∈ Ω, then F satisfies property (P) as well.

(ii) If F admits strongly measurable selectors, then F satisfies property (P).

Proof. The proof of (i) follows straightforwardly from the definition of (P) and (ii)
follows from (i).

Note that if X is separable and F : Ω → cl(X) is Effros measurable then F has
property (P) because F admits a strongly measurable selector as commented in the
introduction. There are however multi-functions with values in k(R) with property
(P) which are not Effros measurable. A simple example follows. Let h : [0, 1] → R

+

be a non-measurable function and define F : [0, 1] → k(R) by F (t) := [0, h(t)]. Then
F has measurable selectors and so it satisfies property (P). However, F is not Effros
measurable, because F−((a,+∞)) = h−1((a,+∞)) for all a ∈ R

+.
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It is known that, when X is separable, a cwk(X)-valued function is Effros measurable
if and only if it is scalarly measurable, cf. [4, Theorem III.37] or [1, Corollary 4.10 (a)].
Without the convexity assumption we still have the following:

Lemma 2.4. Suppose that X is separable. Let F : Ω → wk(X) be a multi-function.
The following statements are equivalent:

(i) F is Effros measurable.

(ii) F−(W ) ∈ Σ for every set W ⊂ X which can be written as a finite intersection of
closed half-spaces.

Proof. It is well known (cf. [4, Theorem III.30]) that (i) is equivalent to saying that
F−(C) ∈ Σ for every norm closed set C ⊂ X. In particular, (i) implies (ii).

We divide the proof of (ii) ⇒ (i) into several steps.

Step 1. F−(rBX) ∈ Σ for all r > 0. Let (x∗
k) be a sequence in BX∗ such that

‖x‖ = sup
k∈N

x∗
k(x) for all x ∈ X.

Then rBX =
⋂

n∈N Wn, where Wn :=
⋂n

k=1{x ∈ X : x∗
k(x) ≤ r} for all n ∈ N. Since F

has weakly compact values and (Wn) is a decreasing sequence of weakly closed sets, it
is not difficult to check that F−(rBX) =

⋂

n∈N F
−(Wn) ∈ Σ.

Step 2. F−(C) ∈ Σ for every closed ball C ⊂ X. Write C = x0 + rBX with r > 0 and
x0 ∈ X. The multi-function G : Ω → wk(X) given by G(t) := −x0 + F (t) also has the
property that G−(W ) ∈ Σ for every finite intersection of closed half-spaces W ⊂ X,
hence Step 1 applied to G tells us that F−(C) = G−(rBX) ∈ Σ.

Step 3. F−(U) ∈ Σ for every norm open set U ⊂ X. Indeed, this follows from Step 2
and the fact that U can be written as a countable union of closed balls, because of the
separability of X. The proof is over.

We are now ready to prove the main result of this section.

Theorem 2.5. For a multi-function F : Ω → wk(X) the following statements are
equivalent:

(i) F admits a strongly measurable selector.

(ii) F satisfies property (P).

(iii) There exist a set of measure zero Ω0 ∈ Σ, a separable subspace Y ⊂ X and
a multi-function G : Ω \ Ω0 → wk(Y ) that is Effros measurable and such that
G(t) ⊂ F (t) for every t ∈ Ω \ Ω0.

Proof. The implication (i) ⇒ (ii) follows from Proposition 2.3.

Let us prove (ii) ⇒ (iii). We fix a decreasing sequence of positive real numbers (εm)
converging to 0. Now our arguments are divided in several steps.

Step 1. Combining property (P) and a standard exhaustion argument, we can find a
countable partition (up to a µ-null set) Γ1 = (An,1) of Ω in Σ+ and a sequence (Dn,1)
of subsets of X with diam(Dn,1) ≤ ε1 such that F (t)∩Dn,1 6= ∅ for every t ∈ An,1 and
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every n ∈ N. Observe that the set Vn,1,1 :=
⋂

t∈An,1
(F (t) + ε1BX) contains Dn,1 and so

is non-empty for every n ∈ N. The set E1 := Ω \
⋃

n∈N An,1 ∈ Σ has measure zero.

The same argument, but now with ε2 instead of ε1, allows us to find a countable
partition (up to a µ-null set) Γ2 = (An,2) of Ω in Σ+ such that the set Vn,2,2 :=
⋂

t∈An,2
(F (t)+ε2BX) is non-empty for every n ∈ N. Since ε1 ≥ ε2, we also have Vn,2,1 :=

⋂

t∈An,2
(F (t)+ ε1BX) 6= ∅ for every n ∈ N. Again, the set E2 := Ω \

⋃

n∈N An,2 ∈ Σ has
measure zero.

In this way, we can find a sequence Γm = (An,m) of countable partitions (up to a µ-null
set Em) of Ω in Σ+ such that the sets Vn,m,k :=

⋂

t∈An,m
(F (t) + εkBX) are non-empty

for every k ≤ m and every n ∈ N. Clearly, the set Ω0 :=
⋃

m∈N Em has measure zero.

Take vn,m,k ∈ Vn,m,k for every k ≤ m and every n ∈ N, and let Y be the closed linear
span of all the vn,m,k’s, so that Y is separable. Since F has weakly compact values, it is
clear that each Wn,m,k := Vn,m,k ∩ Y is weakly closed (and non-empty). Given k ≤ m,
set Fm,k : Ω\Ω0 → 2Y by Fm,k :=

∑

n∈N Wn,m,k1An,m
. Observe that for each set C ⊂ Y

we have F−
m,k(C) ∈ Σ.

Given k ∈ N, we define Fk : Ω \ Ω0 → 2Y by Fk(t) := clw
(⋃

m≥k Fm,k(t)
)
. It is easy to

see that for each weakly open set U ⊂ Y we have F−
k (U) ∈ Σ.

Step 2. Fix t ∈ Ω \ Ω0. For each m ∈ N, let nm(t) ∈ N be such that t ∈ Anm(t),m.
Observe that for each k ∈ N we have Fk(t) ⊃ Fk+1(t) because the inequality εk+1 ≤ εk
allows us to write

⋃

m≥k+1

Fm,k+1(t) =
⋃

m≥k+1

⋂

s∈Anm(t),m

(
F (s) + εk+1BX

)
∩ Y

⊂
⋃

m≥k

⋂

s∈Anm(t),m

(
F (s) + εkBX

)
∩ Y =

⋃

m≥k

Fm,k(t).

Set G(t) :=
⋂

k∈N Fk(t). We will prove that the weakly closed set G(t) is non-empty
and contained in F (t). To this end, observe first that for every k ∈ N we have

G(t) ⊂ Fk(t) = clw

(⋃

m≥k

⋂

s∈Anm(t),m

(
F (s) + εkBX

)
∩ Y

)

⊂ F (t) + εkBX . (1)

For each k ∈ N we take xk ∈ Fk(t) and write xk = yk+zk with yk ∈ F (t) and zk ∈ εkBX

(bear in mind (1)). Since the sequence (yk) is contained in the weakly compact set F (t),
it has a weak cluster point y ∈ F (t). Since zk → 0 in norm as k → ∞, we conclude
that y is also a weak cluster point of (xk). Taking into account that Fk+1(t) ⊂ Fk(t) for
all k ∈ N, it follows that y ∈

⋂

k∈N Fk(t) = G(t) and so G(t) 6= ∅. A similar argument
shows that G(t) ⊂ F (t).

Step 3. It follows that G is a multi-function on Ω \ Ω0 taking values in wk(Y ). We
next prove that G is Effros measurable. To this end we will apply Lemma 2.4. Fix
W ⊂ Y of the form W =

⋂p

i=1{y ∈ Y : y∗i (y) ≤ ai}, where y∗i ∈ Y ∗ and ai ∈ R for all
1 ≤ i ≤ p. For each k ∈ N, we define

Ok :=

p
⋂

i=1

{y ∈ Y : y∗i (y) < ai + 1/k}.
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Each Ok is weakly open in Y and so F−
k (Ok) ∈ Σ. Observe that Ok+1 ⊂ Ok+1 ⊂ Ok

for all k ∈ N and that W =
⋂

k∈N Ok. We claim that

G−(W ) =
⋂

k∈N

F−
k (Ok) ∈ Σ.

The inclusion “⊂� is clear. Conversely, take t ∈
⋂

k∈N F
−
k (Ok). Select a point xk ∈

Fk(t) ∩ Ok for all k ∈ N. Since F (t) is weakly compact, the sequence (xk) has a weak
cluster point x ∈ G(t) (imitate the proof that G(t) 6= ∅). Moreover, x ∈

⋂

k∈N Ok =
⋂

k∈N Ok = W . It follows that t ∈ G−(W ). This proves the claim and shows that G is
Effros measurable. The proof of (ii) ⇒ (iii) is finished.

The arguments to prove (iii) ⇒ (i) have been discussed previously in this paper. We
can use Kuratowski-Ryll Nardzewski’s theorem to find a Σ-Borel(Y, norm) measurable
selector g : Ω \ Ω0 → Y of G. Now we define f : Ω → X as f(t) := g(t) for every
t ∈ Ω \ Ω0 and f(t) as any point in F (t) for t ∈ Ω0. Then f is a selector of F that
is strongly measurable according to Pettis’ measurability theorem, cf. [6, Theorem 2,
p. 42].

3. Scalarly measurable selectors

In order to prove the existence of scalarly measurable selectors for any scalarly mea-
surable wk(X)-valued function, Theorem 3.8, we need some previous work. Given
C ∈ wk(X) and x∗ ∈ X∗, we write

C|x
∗

:= {x ∈ C : x∗(x) = maxx∗(C)}

and
C|x∗ := {x ∈ C : x∗(x) = minx∗(C)}.

Observe that C|x∗ = C|−x∗

and that both C|x
∗

and C|x∗ belong to wk(X).

Lemma 3.1. Let C ∈ wk(X), consider L := co(C) ∈ cwk(X) and fix x∗ ∈ X∗. Then
L|x

∗

= co(C|x
∗

).

Proof. Since maxx∗(C) = maxx∗(L), we have C|x
∗

⊂ L|x
∗

and (since L|x
∗

is closed
and convex) we conclude that co(C|x

∗

) ⊂ L|x
∗

.

Let us prove now the other inclusion. Since L|x
∗

is weakly compact and convex, the
Krein-Milman theorem, [5, Theorem V.7.4], ensures that L|x

∗

= co(Ext(L|x
∗

)). So it
suffices to check that Ext(L|x

∗

) ⊂ C|x
∗

. Observe first that Ext(L|x
∗

) ⊂ Ext(L). On
the other hand, L = co(C) and so, by the so-called “converse� of the Krein-Milman
theorem, [5, Theorem V.7.8], Ext(L) ⊂ C. It follows that Ext(L|x

∗

) ⊂ C ∩ L|x
∗

=
C|x

∗

.

Lemma 3.2. Let F : Ω → wk(X) be a multi-function and consider the multi-function
G : Ω → cwk(X) defined by G(t) := co(F (t)) for all t ∈ Ω. Then F is scalarly
measurable if and only if G is scalarly measurable.

Proof. Bear in mind that δ∗(x∗, F ) = δ∗(x∗, G) for all x∗ ∈ X∗.
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Given a multi-function F : Ω → wk(X) and x∗ ∈ X∗, we define the multi-functions
F |x∗ , F |x

∗

: Ω → wk(X) by F |x∗(t) := F (t)|x∗ and F |x
∗

(t) := F (t)|x
∗

.

Lemma 3.3. Let F : Ω → wk(X) be a scalarly measurable multi-function and x∗ ∈
X∗. Then F |x

∗

and F |x∗ are scalarly measurable.

Proof. Since F |x∗ = F |−x∗

, it suffices to prove that F |x
∗

is scalarly measurable. Let
G : Ω → cwk(X) be the scalarly measurable multi-function given by G(t) := co(F (t))
(use Lemma 3.2). According to [12, Lemme 3], the multi-function G|x

∗

is scalarly
measurable. In view of Lemma 3.1, we have

G|x
∗

(t) = co(F |x
∗

(t)) for all t ∈ Ω,

and another appeal to Lemma 3.2 ensures that F |x
∗

is scalarly measurable.

Lemma 3.4. Let Fn : Ω → wk(X) be a sequence of scalarly measurable multi-functions
such that Fn(t) ⊃ Fn+1(t) for every n ∈ N and every t ∈ Ω. Then the multi-function
G : Ω → wk(X) given by G(t) :=

⋂

n∈N Fn(t) is scalarly measurable.

Proof. Note that for every t ∈ Ω the set G(t) is not empty and weakly compact.
For each x∗ ∈ X∗ we have δ∗(x∗, G) = infn∈N δ

∗(x∗, Fn) and therefore δ∗(x∗, G) is
measurable. Indeed, fix t ∈ Ω. Clearly (δ∗(x∗, Fn)(t)) is a decreasing sequence
bounded from below by δ∗(x∗, G)(t). For each n ∈ N we select xn ∈ Fn(t) such
that x∗(xn) = δ∗(x∗, Fn)(t) = maxx∗(Fn(t)). Let x ∈ G(t) be a weak cluster point
of (xn). Then δ∗(x∗, G)(t) ≥ x∗(x) and x∗(x) is a cluster point of x∗(xn), hence
x∗(x) = infn∈N δ

∗(x∗, Fn)(t) = δ∗(x∗, G)(t).

For a multi-function F : Ω → wk(X) we will also use the notation δ∗(x
∗, F ) to denote

the function given, for each x∗ ∈ X∗, by t 7→ δ∗(x
∗, F )(t) := infx∗(F (t)).

Remark 3.5. Let F : Ω → wk(X) be a scalarly measurable multi-function. Then
δ∗(x

∗, F ) and δ∗(x∗, F ) are measurable for all x∗ ∈ X∗ and we can consider

∆F := sup
x∗∈SX∗

∫

Ω

(
δ∗(x∗, F )− δ∗(x

∗, F )
)
dµ ∈ [0,∞].

Evidently, if ∆F = 0 then every selector f of F is scalarly measurable, because for
every x∗ ∈ SX∗ one has δ∗(x∗, F ) = x∗ ◦ f = δ∗(x

∗, F ) µ-a.e.

The following theorem is a particular case of the main result of this section, Theorem 3.8
below. We include a detailed proof which advances some of the ideas used in the
general case and provides a “constructive� method for finding selectors which might
be of interest for applications.

Theorem 3.6. Let F : Ω → k(X) be a scalary measurable multi-function. Then F
admits a scalary measurable selector.

Proof. We divide the proof into two cases.

Particular case: Assume there is M > 0 such that, for each x∗ ∈ SX∗, we have
|δ∗(x∗, F )| ≤ M µ-a.e.



B. Cascales, V. Kadets, J. Rodŕıguez / Measurability and selections of ... 237

Clearly, the assumption ensures that for each x∗ ∈ SX∗ we have |δ∗(x
∗, F )| ≤ M µ-a.e.

and that ∆F ≤ 2M < ∞. Let us define a sequence of scalarly measurable multi-
functions Fn : Ω → k(X) with Fn(t) ⊃ Fn+1(t) for every n ∈ N and every t ∈ Ω,
as follows. Set F1 := F and, if Fn is already defined, then set Fn+1 := Fn|

x∗

n , where
x∗
n ∈ SX∗ is selected in such a way that

∫

Ω

(
δ∗(x∗

n, Fn)− δ∗(x
∗
n, Fn)

)
dµ ≥

∆Fn

2
. (2)

By Lemma 3.3, each Fn is scalarly measurable. The multi-function G : Ω → k(X)
given by G(t) :=

⋂

n∈N Fn(t) is scalarly measurable after Lemma 3.4 and we have that
G(t) ⊂ F (t) for all t ∈ Ω. To prove the theorem in the particular case we are dealing
with it is sufficient to show that ∆G = 0. Our proof is by contradiction. Suppose that
∆G > 0. Then for each n ∈ N we have ∆Fn ≥ ∆G > 0 and (2) yields

∫

Ω

(
δ∗(x∗

n, Fn)− δ∗(x
∗
n, Fn)

)
dµ ≥

∆G

2
> 0.

By Lebesgue’s dominated convergence theorem, there is a point t0 ∈ Ω at which the
function δ∗(x∗

n, Fn)− δ∗(x
∗
n, Fn) does not tend to 0 as n → ∞. Set

εn := δ∗(x∗
n, Fn)(t0)− δ∗(x

∗
n, Fn)(t0) for every n ∈ N.

By passing to a subsequence we may assume that infn∈N εn = ε > 0. For each n ∈ N

we pick xn ∈ Fn(t0) with x∗
n(xn) = δ∗(x

∗
n, Fn)(t0). Then, given m > n, we have

xm ∈ Fm(t0) ⊂ Fn+1(t0) = Fn|
x∗

n(t0) and so x∗
n(xm) = δ∗(x∗

n, Fn)(t0), hence

‖xm − xn‖ ≥ x∗
n(xm − xn) = εn ≥ ε.

Since all xn’s belong to the norm compact set F (t0), we reach a contradiction that
finishes the proof of this case.

General case. Since {δ∗(x∗, F ) : x∗ ∈ SX∗} ⊂ R
Ω is a pointwise bounded family of

measurable functions, we can find a countable partition E1, E2, . . . of Ω in Σ and a
sequence (Mn) of positive real numbers such that, for each n ∈ N and each x∗ ∈ SX∗ ,
we have |δ∗(x∗, F )| ≤ Mn µ-a.e. on En (cf. [11, Proposition 3.1]). The particular case
already proved can be applied to the restriction of F to each En ensuring that F admits
a scalarly measurable selector. The proof is over.

In order to deal with Lemma 3.7 below we need to introduce some terminology. As
usual, {0, 1}<N =

⋃

k∈N{0, 1}
k. Given τ = (τn) ∈ T := {0, 1}N and m ∈ N, we write

τ |m = (τ1, . . . , τm) ∈ {0, 1}m. Given k ∈ N and σ = (σ1, . . . , σk) ∈ {0, 1}k, we denote
σ a 0 = (σ1, . . . , σk, 0) and σ a 1 = (σ1, . . . , σk, 1).

Let λ be the usual Borel product probability measure on T . For every n ∈ N, let Tn

be the σ-algebra on T generated by the first n coordinate projections, i.e. the (finite)
σ-algebra generated by the sets

Hσ := {τ ∈ T : τ |n = σ}, σ ∈ {0, 1}n.
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Lemma 3.7. Let A ∈ wk(X), x∗ ∈ SX∗ and x∗
σ ∈ SX∗ for every σ ∈ {0, 1}<N.

Consider the family of sets Aσ ∈ wk(X), σ ∈ {0, 1}<N, defined recurrently as follows:

(a) A(0) := A|x∗ and A(1) := A|x
∗

;

(b) Aσa0 := Aσ|x∗

σ
and Aσa1 := Aσ|

x∗

σ for every σ ∈ {0, 1}<N.

Then

lim
n→∞

1

2n

∑

σ∈{0,1}n

(
maxx∗

σ(Aσ)−minx∗
σ(Aσ)

)
= 0.

Proof. Fix a free ultrafilter U on N and for each σ ∈ {0, 1}<N also fix xσ ∈ Aσ. For
σ ∈ {0, 1}<N we denote by zσ the weak limit along U of the sequence

xσ, . . . , xσ,
︸ ︷︷ ︸

length of σ

xσa0 + xσa1

2
,
xσa0a0 + xσa0a1 + xσa1a0 + xσa1a1

4
, · · · (3)

Note that the sequence in (3) lies in the set co(A) that is weakly compact by the Krein-
Smulyan theorem, [5, Theorem V.7.14], and therefore the existence of zσ is ensured and
moreover zσ ∈ co(A).

The following assertions are easily checked to be true for every σ ∈ {0, 1}<N:

(α) zσ = 1
2
(zσa0 + zσa1);

(β) x∗
σ(zσa0) = minx∗

σ(Aσ) and x∗
σ(zσa1) = maxx∗

σ(Aσ);

(γ) x∗
σ(zσ) =

1
2

(
maxx∗

σ(Aσ) + minx∗
σ(Aσ)

)
.

Given n ∈ N we define gn : T → X by the formula

gn :=
∑

σ∈{0,1}n

zσ1Hσ
.

Property (α) above says that {zσ}σ∈{0,1}<N is a tree and therefore the sequence (gn,
Tn)n∈N is a martingale. Since (gn, Tn)n∈N is a martingale such that

⋃

n∈N Tn generates
Borel(T ) and each gn takes values in the weakly compact convex set co(A), it follows
that there exists the limit of (gn) in the norm topology of L1(λ,X), cf. [2, Theorems
3.6.1 and 2.3.6]. In particular:

lim
n→∞

∫

T

‖gn+1(τ)− gn(τ)‖ dλ(τ) = 0. (4)

Fix n ∈ N. Note that property (β) implies that for any τ ∈ T we have

x∗
τ |n

(
gn+1(τ)

)
=

{

minx∗
τ |n(Aτ |n) if τn+1 = 0,

maxx∗
τ |n(Aτ |n) if τn+1 = 1.

For any σ ∈ {0, 1}n and every τ ∈ Hσ we use property (γ) to deduce that

x∗
σ

(
gn(τ)

)
=

1

2

(
maxx∗

σ(Aσ) + minx∗
σ(Aσ)

)
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and so

‖gn+1(τ)− gn(τ)‖ ≥
∣
∣x∗

σ

(
gn+1(τ)− gn(τ)

)∣
∣ =

1

2

(
maxx∗

σ(Aσ)−minx∗
σ(Aσ)

)
.

Consequently, we have

2

∫

T

‖gn+1(τ)− gn(τ)‖ dλ(τ)

= 2
∑

σ∈{0,1}n

∫

Hσ

‖gn+1(τ)− gn(τ)‖ dλ(τ)

≥
∑

σ∈{0,1}n

(
maxx∗

σ(Aσ)−minx∗
σ(Aσ)

)
λ(Hσ)

=
1

2n

∑

σ∈{0,1}n

(
maxx∗

σ(Aσ)−minx∗
σ(Aσ)

)
,

which combined with (4) finishes the proof.

Theorem 3.8. Every scalarly measurable multi-function F : Ω → wk(X) admits a
scalary measurable selector.

Proof. As in the proof of Theorem 3.6, we can assume without loss of generality that
there is M > 0 such that for each x∗ ∈ SX∗ we have |δ∗(x∗, F )| ≤ M µ-a.e. and
|δ∗(x

∗, F )| ≤ M µ-a.e. We divide the proof into two steps.

Step 1. For every ε > 0 there exists a scalarly measurable multi-function G : Ω →
wk(X) such that G(t) ⊂ F (t) for all t ∈ Ω and ∆G ≤ ε.

Our proof is by contradiction. Suppose there is ε > 0 such that ∆G > ε for every
scalarly measurable multi-function G : Ω → wk(X) such that G(t) ⊂ F (t) for all
t ∈ Ω. We define recurrently, for each σ ∈ {0, 1}<N, a functional x∗

σ ∈ SX∗ and a
scalarly measurable multi-function Fσ : Ω → wk(X) with Fσ(t) ⊂ F (t) for all t ∈ Ω,
as follows. Since ∆F > ε, we can find x∗ ∈ SX∗ such that

∫

Ω

(
δ∗(x∗, F )− δ∗(x

∗, F )
)
dµ > ε.

Set F(0) := F |x∗ and F(1) := F |x
∗

, so that both F(0) and F(1) are scalarly measurable
(by Lemma 3.3). Assume now that for some σ ∈ {0, 1}<N the multi-function Fσ is
already constructed. Then ∆Fσ > ε and we can select x∗

σ ∈ SX∗ such that
∫

Ω

(
δ∗(x∗

σ, Fσ)− δ∗(x
∗
σ, Fσ)

)
dµ > ε. (5)

Then we set Fσa0 := Fσ|x∗

σ
and Fσa1 := Fσ|

x∗

σ , which are scalarly measurable (again
by Lemma 3.3).

Fix n ∈ N and define the measurable function an : Ω → R by

an(t) :=
1

2n

∑

σ∈{0,1}n

(
δ∗(x∗

σ, Fσ)(t)− δ∗(x
∗
σ, Fσ)(t)

)
.
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Clearly, for each n ∈ N we have |an| ≤ 2M µ-a.e. Moreover, given any t ∈ Ω,
Lemma 3.7 applied to the weakly compact set F (t) ensures that limn→∞ an(t) = 0. By
Lebesgue’s dominated convergence theorem we have limn→∞

∫

Ω
an dµ = 0. However for

each n ∈ N inequality (5) implies that
∫

Ω

an dµ =
1

2n

∑

σ∈{0,1}n

∫

Ω

(
δ∗(x∗

σ, Fσ)− δ∗(x
∗
σ, Fσ)

)
dµ > ε.

This contradiction finishes the proof of the first step.

Step 2. By the first step, we can find a scalarly measurable multi-function F1 : Ω →
wk(X) such that F1(t) ⊂ F (t) for all t ∈ Ω and ∆F1 ≤ 1. Again, the first step applied
to F1 ensures the existence of a scalarly measurable multi-function F2 : Ω → wk(X)
such that F2(t) ⊂ F1(t) for all t ∈ Ω and ∆F2 ≤ 1/2. In this way, we can find a
sequence of scalarly measurable multi-functions Fn : Ω → wk(X) with ∆Fn ≤ 1/n
such that Fn+1(t) ⊂ Fn(t) for every t ∈ Ω. Then the multi-function G : Ω → wk(X)
given by G(t) :=

⋂

n∈N Fn(t) is scalarly measurable (by Lemma 3.4) and ∆G = 0
because 0 ≤ ∆G ≤ ∆Fn for every n ∈ N. Consequently, every selector of G (which in
turn is a selector of F ) is scalary measurable. The proof is over.
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