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This paper deals with an infinite-dimensional optimization approach to the strong separation of two
bounded sets in a normed space. We present an approximation procedure, called Algorithm (A),
such that a semi-infinite optimization problem must be solved at each step. Its global convergence
is established under certain natural assumptions, and a stopping criterion is also provided. The
particular case of strong separation in the space Lp(X,A, µ) is approached in detail. We also propose
Algorithm (B), which is an implementable modification of Algorithm (A) for separating two bounded
sets in Lp([a, b]), with [a, b] being an interval in R. Some illustative computational experience is
reported, and a particular stopping criterion is provided for the case of functions of bounded variation
in L2([a, b]).
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1. Introduction

Separation of sets, either in the Euclidean space or in an infinite dimensional space,
is a key topic in many fields of applied mathematics like artificial intelligence, pattern
recognition, weather forescasting, data mining, neural networks, etc., as in [1], [3], [6],
[7], and [8] (as a reduced sample of representative papers) is pointed out.

Let us consider two nonempty subsets, F and G, of a real normed space X. If the
topological dual space of X is represented by X∗, and the null vector in both X and
X∗ is denoted by θ, we can give the following definition:

Definition 1.1. An affine subspace H in X is called a topological hyperplane if there
exist a linear functional u ∈ X∗\ {θ} and a positive scalar γ such that H = {x ∈ X :
u(x) = γ} .
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We say that H separates strongly F and G if there exists a scalar ε such that

u (z) ≥ γ + ε > γ − ε ≥ u (y) for all y ∈ F and all z ∈ G.

In [5] the following infinite-dimensional optimization problem is associated with the
strong separation of F and G:

(P ) Inf β − α
s.t. u (y) + α ≤ 0, y ∈ F,

u (z) + β ≥ 0, z ∈ G,
u ∈ BX∗ , α ∈ R, β ∈ R,

where BX∗ is the closed unit ball in X∗.

The optimal value of (P ) , denoted by v (P ) , satisfies the inequality v (P ) ≤ 0, since
(u, α, β) = (θ, 0, 0) is a feasible solution of (P ) . In [5, Proposition 2.2(ii)] the following
result is proved:

Theorem 1.2. Given two nonempty subsets F and G of a normed space X, and the
associated problem (P ), there exists a topological hyperplane in X separating strongly
F and G if and only if v (P ) < 0.

In the case that v (P ) < 0, in order to establish that F and G can be strongly separated
we do not need to reach an optimal solution of (P ). In fact, finding a feasible solution
(u, α, β) of (P ) such that β − α < 0 is sufficient, since this inequality entails

u (z) ≥ −β > −α ≥ u (y) for all y ∈ F and all z ∈ G,

and u 6= θ; therefore

H = {x ∈ X | u (x) = −(1/2)(α+ β)}

is a topological hyperplane that strongly separates F and G.

In [5] a cutting plane algorithm for the strong separation of two compact sets in a
separable normed space is proposed. At each iteration of this algorithm, a subproblem
of (P ) , obtained by replacing the sets of indices F and G by finite subsets (grids), has
to be solved. If the algorithm does not stop at the current iteration, new points of F
and G are aggregated to the current grids according to certain standard rule (two cuts
are performed on the current feasible set).

The main drawback of the algorithm given in [5] is that each added cut requires to
solve a global optimization problem. This is why in this paper we propose a less costly
alternative approach, not requiring any global optimization, and yielding the strong
separation hyperplane whitout reaching optimality. More precisely, our procedure is
based on the following approximation scheme. Given a sequence (En)

∞
n=1 of finite

dimensional subspaces of X∗, we approach v(P ) by means of the optimal values, v(Pn),
where (Pn) is the semi-infinite optimization problem

(Pn) Inf β − α
s.t. u (y) + α ≤ 0, y ∈ F,

u (z) + β ≥ 0, z ∈ G,
u ∈ BEn

, α ∈ R, β ∈ R,
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and BEn
is the closed unit ball in En, the norm in En being induced by the norm in X∗.

In Section 2 we introduce condition (C) and we prove that v(Pn) → v(P ) as n → ∞,
provided that either F and G are bounded and that (C) holds. A stopping criterion is
also discussed. In Section 3 an optimally-convergent algorithm for solving the problem
of separating strongly two bounded sets in the space Lp(X,A, µ) is presented, and a
couple of conditions entailing (C) are provided. In this section we also provide an
implementable modification of our method for the strong separation of two sets in
Lp([a, b]), where [a, b] is an interval in R. An ending criterion for this method is given
in the case that the involved functions are of bounded variation, and some illustrative
computational experience is reported.

2. Strong separation

It is straightforward that problem (P ) is equivalent to

(P ′) Inf σF (u) + σ−G(u),
s.t. u ∈ BX∗ ,

where we use the support function

σS(u) := sup
x∈S

u(x).

By equivalent problems we mean here that u is optimal for (P ′) if and only if (u,−σF (u),
σ−G(u)) is optimal for (P ), and the optimal values coincide, i.e. v(P ) = v(P ′). Since
the functions σF and σ−G are w∗−lsc and BX∗ is w∗−compact (Alaoglu’s theorem),
the optimal value of (P ′), denoted by v(P ′), is finite and attainable.

Now we consider the problems

(P ′
n) Inf σF (u) + σ−G(u),

s.t. u ∈ BEn
,

where (En)
∞
n=1 is a given sequence of finite dimensional subspaces of X∗. Obviously

0 ≥ v(P ′
n) ≥ v(P ′), because we take in En the norm induced by the norm in X∗ and,

so, BEn
⊂ BX∗ .

Let us introduce a key condition for the convergence of our method:

(C) ∀u ∈ X∗, lim
n→∞

d∗(u,En) = 0, (1)

where d∗(u,En) = infv∈En
‖u− v‖∗ and ‖·‖∗ is the dual norm.

Condition (C) entails that ∪∞n=1En is dense in X∗, and thus X∗ is separable. Moreover,
when (En)

∞
n=1 is an expansive sequence, i.e. En ⊂ En+1 for all n, then (C) holds if

and only if ∪∞n=1En is dense in X∗. Observe also that if X∗ has a (Schauder) basis
{uk, k = 1, 2, ...} we can take En = span{u1, u2, ..., un}, n = 1, 2, ....

Proposition 2.1. If F and G are bounded subsets of the normed space X and condi-
tion (C) holds, then

lim
n→∞

v(P ′
n) = v(P ′). (2)
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Moreover, if there exists n0 such that

E⊥
n0
∩ span(F ∪G) = {θ}, (3)

where
E⊥

n0
:= {x ∈ X : u(x) = 0, for all u ∈ En0

},
then

v(P ′
1) = v(P ′

2) = ... = v(P ′
n0
) = 0⇒ v(P ′) = 0. (4)

Proof. Since 0 ≥ v(P ′
n) ≥ v(P ′), (2) trivially holds when v(P ′) = 0. Assume then that

v(P ′) < 0.

The boundedness of F and G entails the existence of a positive constant M such that
F ∪G ⊂M BX , with BX denoting the closed unit ball in X.

Let u ∈ BX∗ be an optimal solution of (P ′), i.e. σF (u)+σ−G(u) = v(P ′). Since v(P ′) < 0
it is straightforward that ‖u‖∗ = 1. Moreover, from (C), limn→∞ d∗(u,En) = 0, and for
every ε > 0 there will exist nε such that

d∗(u,En) <
ε

4M
, for every n ≥ nε.

So, we can pick an element un ∈ En such that

d∗(u, un) <
ε

4M
, for every n ≥ nε.

Now we define, for n ≥ nε,

vn :=





un, if ‖un‖∗ ≤ 1,

1

‖un‖∗
un, if ‖un‖∗ > 1.

Obviously vn ∈ BEn
and ‖un − vn‖∗ = max{0, ‖un‖∗ − 1}. Additionally

‖un‖∗ ≤ ‖u‖∗ + ‖un − u‖∗ = 1 + ‖un − u‖∗ ,

and, therefore,

‖u− vn‖∗ ≤ ‖u− un‖∗ + ‖un − vn‖∗
≤ ‖u− un‖∗ +max{0, ‖un‖∗ − 1}
≤ 2 ‖u− un‖∗ <

ε

2M
.

Hence, for every x ∈M BX , the following inequality holds

|(u− vn)(x)| = |u(x)− vn(x)| <
ε

2
.

Then, if S ⊂M BX , it can easily be proved that

|σS(u)− σS(vn)| ≤
ε

2
.
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The corresponding inequalities for S = F and S = −G yield

(σF (vn) + σ−G(vn))− v(P ′) = (σF (vn) + σ−G(vn))− (σF (u) + σ−G(u))

≤ |(σF (u) + σ−G(u))− (σF (vn) + σ−G(vn)|
≤ |σF (u)− σF (vn)|+ |σ−G(u)− σ−G(vn)|
≤ ε

2
+

ε

2
= ε,

and
v(P ′

n) ≤ σF (vn) + σ−G(vn) ≤ v(P ′) + ε, for all n ≥ nε,

i.e. v(P ′
n)→ v(P ′) as n→∞.

Let us prove that (3) implies that for any element u ∈ X∗ it is possible to find an
element u ∈ En0

such that

u(x) = u(x), for all x ∈ F ∪G. (5)

Reasoning by contradiction, assume that there exists u0 ∈ X∗�{θ} such that the
system of equations

{u(x) = u0(x), x ∈ F ∪G}
has no solution u ∈ En0

.

If {s1, s2, ..., sp} is a basis of En0
, the system above will not have solution u ∈ En0

if
and only if the system

{∑p

i=1
ηisi(x) = u0(x), x ∈ F ∪G

}
(6)

has no solution (η1, η2, ..., ηp) ∈ Rp.

The semi-infinite system of linear equations in (6) has no solution if and only if

(0, ..., 0, 1) ∈ span {(s1(x), ..., sp(x), u0(x)) , x ∈ F ∪G} . (7)

(We have applied the Gale Alternative theorem (see, for instance, [4, Corollary 3.1.1])).

Finally, (7) entails the existence of a nonzero function ϕ : F ∪ G → R such that
{x ∈ F ∪G : ϕ(x) 6= 0} is finite, and

(0, ..., 0, 1) =
∑

x∈F∪G

ϕ(x) (s1(x), ..., sp(x), u0(x)) . (8)

If we define
x0 =

∑

x∈F∪G

ϕ(x)x ∈ span(F ∪G),

from the first p equalities in (8) we get

s1(x0) = s2(x0) = ... = sp(x0) = 0⇔ x0 ∈ E⊥
n0
,

whereas the last equality yields x0 6= θ. In this way we have reached a contradiction
with the assumption (3).
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Now, we proceed with the proof of the stopping criterion (4). Reasoning again by
contradiction, we assume that

v(P ′
1) = v(P ′

2) = ... = v(P ′
n0
) = 0 and v(P ′) = v(P ) < 0.

The last inequality implies the existence of u ∈ X∗�{θ} and α, β ∈ R such that

u (z) ≥ −β > −α ≥ u (y) for all y ∈ F and all z ∈ G.

According to the reasoning above, (3) leads us to the existence of u ∈ En0
satisfying

(5), and therefore

u (z) ≥ −β > −α ≥ u (y) for all y ∈ F and all z ∈ G.

It is obvious that u 6= θ, and u/ ‖u‖ is feasible for the problem (P ′
n0
). This yields the

following contradiction:

v(P ′
n0
) ≤ β − α

‖u‖ < 0.

Remark 2.2. Let us discuss the computational implications of Proposition 2.1. In
the following section we propose an algorithm for solving problem (P ), approximating
its optimal value v(P ) by means of the optimal values v(Pn) (under condition (C)).
Consequently, such algorithm will return the constant null sequence if and only if it
is impossible to strongly separate F and G. Alternatively, if for a certain n1 one has
v(Pn1

) < 0, it turns out that it is possible to strongly separate both sets, and the
algorithm stops because we have already computed a strong separation hyperplane
(associated to a nonzero element u ∈ En1

). But if the algorithm keeps returning zeros
as the optimal values of problems (Pn), we simply cannot decide whether it is because,
despite the fact that v(P ) < 0, the first nonnull v(Pn) that the algoritm should return
is yet to come.

In Section 3, we shall give an example for which our algorithm returns arbitrarily long
sequences of zeros even for simple cases in which it is trivial to oberve that F and G
can be strongly separated. According to this argument, it is a key matter to establish
a stopping criterion like (4), and condition (3) gives rise to a such stopping criterion.
In Section 4 we show how to check (3) in the particular setting X = L2([a, b].

Remark 2.3. Here we used a self-contained argument, but (2) can also be proved by
using techniques of epiconvergence giving rise to the convergence of the optimal values
of a sequence of unconstrained optimization problems associated with finitely-valued
equi-Lipschitzian convex functions.

3. Strong separation in Lp(X,A, µ)
Let (X,A, µ) be a measure space, i.e. A is a σ−algebra on X and µ is a measure on
(X,A) (µ : A → [0,+∞]). For 1 < p < ∞, consider the linear space of equivalence
classes of real-valued A-measurable functions such that

∫
X
|f |p dµ <∞, equipped with

the norm

‖f‖p =
(∫

X

|f |p dµ
)1/p

.
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Here an equivalence class is formed by measurable functions that can differ from each
other on a set of µ-measure zero. This is a Banach space, denoted by Lp(X,A, µ).
Moreover, Lp(X,A, µ) is reflexive, and its dual is Lq(X,A, µ), with q ∈]1,∞[ satisfy-
ing (1/p) + (1/q) = 1. Although the elements of Lp(X,A, µ) are not functions, but
equivalence classes of functions, this distinction is tacitly assumed and we shall speak
of Lp(X,A, µ) as a space of functions. In particular, if X is a subset of the Euclidean
space, Rk, and µ is the Lebesgue measure, we write Lp(X). For instance, we shall con-
sider Lp([a, b]), where [a, b] is an interval in R, and some computational experience will
be reported for functions in L2([a, b]).

Given the measure space (X,A, µ), we say that A is countably generated if there is a
countable subfamily C of A such that the σ-algebra generated by C, represented by
σ(C) coincides with A, i.e. σ(C) = A.
The measure µ in (X,A, µ) is said to be σ-finite if there exists a sequence {An}∞n=1 ⊂ A
such that

X =
∞⋃

n=1

An and µ(An) <∞, n = 1, 2, .... (9)

Given (X,A, µ), if A is countably generated and µ is σ-finite, the space Lp(X,A, µ),
1 < p <∞, is separable (see, for instance, [2, Proposition 3.4.5]).

Obviously these two conditions are fulfilled whenever A is the Borel σ-algebra B(X)
of a locally compact Hausdorff space X, whose topology has a countable basis and
µ(K) < +∞ for any compact subset K ⊂ X. This is in particular the case of any
nonempty subset X ⊂ Rk and the Lebesgue measure induced on X.

In our specific setting, Theorem 1.2 states that two nonempty subsets, F and G, of
Lp(X,A, µ), 1 < p <∞, can be strongly separated by a topological hyperplane if and
only if v (P ) < 0, where (P ) is the infinite-dimensional optimization problem

(P ) Inf β − α
s.t.

∫
X
f h dµ+ α ≤ 0, f ∈ F,∫

X
g h dµ+ β ≥ 0, g ∈ G,

‖h‖q ≤ 1, α ∈ R, β ∈ R,

(10)

with h ∈ Lq(X,A, µ), (1/p) + (1/q) = 1. Remember that if v (P ) < 0 and h is optimal

for (P ) , then
∥∥h
∥∥
q
= 1.

In this section we provide an algorithm for solving (P ) when F and G are bounded, and
we establish a convergence result for it under the double assumption thatA is countably
generated and µ is σ-finite. To this aim, we make the following construction:

It is clear that, because A is countably generated, we can choose a countable subfamily
C of A that generates A and contains the sets An, n = 1, 2, ..., in (9) (we just include
them in C).
Let C̃ consist of the sets in C together with their complements with respect to X, and

let Ã be the algebra generated by C̃. Then, it is clear that Ã is the set of finite unions
of sets having the form C1 ∩ C2 ∩ ... ∩ Ck, for some k and some choice of the sets C1,

C2,..., Ck in C̃. We have σ(Ã) = A, where σ(Ã) is the σ-algebra generated by Ã, and

An ∈ Ã, n = 1, 2, ... Moreover Ã is countable, as well as the subfamily
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D := {D ∈ Ã : µ(D) <∞},
and we can write

D = {D1, D2, ..., Dk, ...}. (11)

Next we present the announced algorithm for separating two bounded sets, F and G,
in Lp(X,A, µ), 1 < p <∞.

(A) Algorithm for solving (P ) with F and G bounded.

Consider the sequence D = {D1, D2, ..., Dk, ...} in (11).

Step 1. Set k = 1.

Step 2. Find an optimal solution (λ1k, λ2k, ..., λkk, αk, βk) of the semi-infinite program-
ming problem

(Pk) Inf β − α

s.t.
∫
X
f
(∑k

i=1 λi1Di

)
dµ+ α ≤ 0, f ∈ F,

∫
X
g
(∑k

i=1 λi1Di

)
dµ+ β ≥ 0, g ∈ G,∥∥∥∥

k∑
i=1

λi1Di

∥∥∥∥
q

≤ 1,

(12)

with vector of variables (λ1, λ2, ..., λk, α, β) ∈ Rk+2, and where 1Di
is the characteristic

function of Di (1Di
(x) = 1 if x ∈ Di and 1Di

(x) = 0 if x ∈ X�Di), i = 1, 2, ..., k, ...

Consider sk :=
∑k

i=1 λik1Di
∈ Lq(X,A, µ).

Step 3. If v(Pk) < 0, then stop: v(P ) < 0, ‖sk‖q = 1, and the topological hyperplane

Hk :=

{
h ∈ Lp(X,A, µ) :

∫

X

h sk dµ = −(1/2)(αk + βk)

}

separates strongly F and G.

Otherwise, set k ← k + 1, and go to Step 2.

The following result yields the conclusion that, if the previous algorithm does not
terminate, F and G cannot be strongly separated. Here we are handling the expansive
sequence of finite dimensional subspaces of Lq(X,A, µ)

En :=

{
n∑

i=1

λi1Di
| λi ∈ R, i = 1, 2, ..., n

}
, n = 1, 2, ... (13)

Proposition 3.1. If v(P ) and v(Pk) represent the optimal values of the problems (P )
and (Pk) considered in (10) and (12), then we have

lim
k→∞

v(Pk) = v(P ). (14)

Consequently, if the sets F and G can be strongly separated Algorithm (A) terminates
in a finite number of iterations.
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Moreover, if there exists k0 such that for each h ∈ span(F ∪ G), h 6= θ, there is an
associated ℓh ∈ Ek0 such that ∫

X

h ℓh dµ 6= 0, (15)

then
v(P1) = v(P2) = ... = v(Pk0) = 0⇒ v(P ) = 0.

Proof. For the expansive sequence of finite dimensional subspaces defined in (13), it
is proved in [2, Proposition 3.4.5, p. 112] that ∪∞n=1En is dense in Lq(X,A, µ) and, so,
condition (C) holds. Applying Proposition 2.1, we conclude

lim
k→∞

v(Pk) = lim
k→∞

v(P ′
k) = v(P ′) = v(P ).

Obviously, condition (15) is equivalent, in this particular setting, to (3), and the second
part of Proposition 2.1 applies.

Let us consider the particular case of the strong separation of two bounded sets F and
G in Lp([a, b]), where [a, b] is an interval in R. Now we shall deal with the problem

(P ) Inf β − α

s.t.
∫ b

a
f h dt+ α ≤ 0, f ∈ F,∫ b

a
g h dt+ β ≥ 0, g ∈ G,∫ b

a
|h|q dt ≤ 1,

(16)

with variables h ∈ Lq([a, b]), α ∈ R, β ∈ R, and the integrals are in the sense of
Lebesgue.

For k = 1, 2, ..., we consider the k open subintervals of [a, b]

Dk
i =

]
a+

b− a

k
(i− 1), a+

b− a

k
i

[
, i = 1, 2, · · · , k,

and introduce the following specific algorithm:

(B) Algorithm for solving (P ) with F and G bounded in Lp([a, b]).

Consider the sequence D1,D2, ...,Dk, ..., with Dk := {Dk
i , i = 1, 2, · · · , k}.

Step 1. Set k = 1.

Step 2. Given the problem with real variables λi, i = 1, 2, · · · , k, α, and β,
(
P̃k

)
Inf β − α

s.t.
∫ b

a
f
(∑k

i=1 λi1Dk
i

)
dt+ α ≤ 0, f ∈ F,

∫ b

a
g
(∑k

i=1 λi1Dk
i

)
dt+ β ≥ 0, g ∈ G,

b−a
k

k∑
i=1

|λi|q ≤ 1,

find optimal values of
(
P̃k

)
: λik, i = 1, 2, · · · , k, αk, and βk.
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Define sk :=
∑k

i=1 λik1Dk
i
.

Step 3. If v(P̃k) < 0, then stop: v(P ) < 0 and the topological hyperplane

Hk :=

{
h ∈ Lp([a, b]) :

∫ b

a

h sk dt = −(1/2)(αk + βk)

}
,

separates strongly F and G.

Otherwise, set k ← k + 1, and go to Step 2.

The problem (P̃k) can be equivalently written

(
P̃k

)
Inf β − α

s.t.
∑k

i=1 λi

∫
Dk

i
f(t) dt+ α ≤ 0, f ∈ F,

∑k
i=1 λi

∫
Dk

i
g(t) dt+ β ≥ 0, g ∈ G,

k∑
i=1

|λi|q ≤ k
b−a

.

(17)

Next we present the convergence theorem relative to Algorithm (B). Now we are
considering the sequence of finite dimensional subspaces of Lq([a, b])

Ẽn :=

{
n∑

i=1

λi1Dn
i
| λi ∈ R, i = 1, 2, ..., n

}
, n = 1, 2, .... (18)

(Remember that Dn := {Dn
i , i = 1, 2, · · · , n}.)

Proposition 3.2. If v(P̃k) represent the optimal values of the problems (P̃k) considered
in (17), then we have

lim
k→∞

v(P̃k) = v(P ). (19)

Moreover, if v(P ) < 0 Algorithm (B) terminates in a finite number of iterations.

Additionally, if there exists k0 such that for each h ∈ span(F ∪ G), h 6= θ, there is a

function ℓh ∈ Ẽk0 such that ∫ b

a

h(t) ℓh(t) dt 6= 0, (20)

then
v(P̃1) = v(P̃2) = ... = v(P̃k0) = 0 =⇒ v(P ) = 0.

Proof. If s : [a, b]→ R is a nonzero step function, there will be numbers α0, α1, ..., αJ

such that a = α0 < α1 < ... < αJ = b and s will take the value aj at every point of the
interval ]αj−1, αj[, j = 1, 2, ..., J. Given the properties of the Lebesgue integral, we can
neglect the values of s at the points αj and consider

s =
J∑

j=1

aj1]αj−1,αj [.

Since s is nonzero, at least one of the scalars aj, j = 1, 2, ..., J, is different from zero.



M. A. López, S.-Y. Wu, C. Ling, L. Qi / A Mathematical Programming ... 221

Let us introduce the subintervals

Ck
j =

⋃{
Dk

i ∈ Dk : D
k
i ⊂ ]αj−1, αj[

}
, j = 1, 2, ..., J.

Obviously

µ
(
]αj−1, αj[�Ck

j

)
≤ b− a

k
, j = 1, 2, ..., J, k = 1, 2, ...,

where µ is here the Lebesgue measure. Then, given ε > 0, there will exist kε such that,
for every k ≥ kε one has

b− a

k
≤
(

ε

|aj| J

)q

, for all aj 6= 0, j = 1, 2, ..., J. (21)

Now if we consider the function sk : [a, b]→ R

s
k
=

J∑

j=1

aj1Ck
j
,

then

‖s− sk‖q =

∥∥∥∥∥

J∑

j=1

aj

(
1
]αj−1,αj[

−1Ck
j

)∥∥∥∥∥
q

≤
J∑

j=1

|aj|
∥∥∥∥1]αj−1,αj[

−1Ck
j

∥∥∥∥
q

(22)

=
J∑

j=1

|aj|µ
(
]αj−1, αj[�Ck

j

)1/q

≤
J∑

j=1,aj 6=0

|aj|
ε

|aj| J
≤ ε.

Given the sequence of finite dimensional subspaces of Lq([a, b]) introduced in (18),

(Ẽn)
∞
n=1, our previous reasoning proves that, for every step function s, one has

lim
n→∞

dLq
(s, Ẽn) = 0.

(If s = 0, then s ∈ Ẽn for all n.)

Since the subspace of step functions is dense in Lq([a, b]), a straightforward application
of the triangular inequality leads us to conclude that condition (C) holds. Applying

Proposition 2.1, we get limk→∞ v(P̃k) = v(P ).

For proving the second statement in this proposition, just observe that (20) is nothing
else but the particular version of (15) in this specific context.
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Computational experience. We coded Algorithm (B) in Matlab 7.0.1 for strongly

separate two finite sets of functions in L2([a, b]). To solve the subproblems (P̃k) we
used the function fmincon, a nonlinear programming solver in Matlab toolbox.

Problem 3.3. Let [a, b] = [1, 100], and consider the sets

F =
{
t, t2, t3, t4, t5, t6, t7, t8, t9, t10

}

and

G = {1, sin t, cos t, sin 2t, cos 2t, sin 3t, cos 3t, sin 4t, cos 4t} .

These two sets are easy to be separated since Algorithm (B) yields the solution in k = 1.

The optimal solution of (P̃1) is

λ11 = −0.1005, α1 = 502.4687, β1 = 9.9499,

and the topological hyperplane strongly separating F and G is

H1 =

{
h ∈ L2([1, 100]) :

∫ 100

1

h(t) dt = 2549. 3

}
.

Problem 3.4. Let [a, b] = [0, 3], F = {1, t, t2, t4}, and G = {t3, t5, t7, t8}.
Applying our algorithm, we obtain for k = 3, α3 = 0.4839, β3 = 0.4645, and

λ3 = (−0.9970,−0.0776, 0.0047)T .

Hence, a topological hyperplane strongly separating F and G is

H3 =

{
h ∈ L2([0, 3]) :

∫ 3

0

h(t)s3(t) dt = −0.4742
}
,

where s3(t) =
∑3

i=1 λi31D3
i
(t) and D3

i =]i− 1, i[, i = 1, 2, 3.

Problem 3.5. Let [a, b] = [1, 9], F = {1, cos t, cos 2t, · · · , cos 15t}, and G = {sin t,
sin 2t, · · · , sin 12t}.
The number of subintervals needed is k = 3, and the solution of (P̃3) is (α3, β3) =
(0.0008,−0.0022) and

λ3 = (−0.0450,−0.4089, 0.4536)T .

The topological hyperplane strongly separating F and G is

H3 =

{
h ∈ L2([1, 9]) :

∫ 9

1

h(t)s3(t) dt = 0.0007

}
,

where s3(t) =
∑3

i=1 λi31D3
i
(t) and D3

i =]1 + 8(i− 1)/3, 1 + 8i/3[, i = 1, 2, 3.
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Problem 3.6. Let [a, b] = [1, 10], and the sets of functions

F =





t tan
1

t
,

t

1 + t3
, cos 3t, sin t2, t4, t− ln(1 + t),

1

t
+ et, 4t− sin t, tan

(
1

t
+ 1

)
, e−t2 − t2





,

and

G =

{
5, 5t, t2, ln(1 + t2), sin 5t, cos 7t, t5 + e−t4 ,

t√
1 + t2

}
.

The number of subintervals involved is k = 9, and the solution of (P̃9) is (α9, β9) =
(0.0032,−0.0024) and
λ9 = (−0.1334, 0.5220,−0.6116, 0.0014, 0.4927,−0.2988,−0.0146, 0.0574,−0.0122)T .

The topological hyperplane strongly separating F and G is

H9 =

{
h ∈ L2([1, 10]) :

∫ 10

1

h(t)s9(t) dt = −0.0004
}
,

where s9(t) =
∑9

i=1 λi91D9
i
(t) and Di =]i, 1 + i[, i = 1, 2, · · · , 9.

Problem 3.7. Let [a, b] = [1, 6],

F =

{
1, t, t4, tet, sin t, ln t, cos 4t, cot

1

3t

}
,

and

G =

{
t2, t3,

1

1 + t2
, te−t, sin(t− 1), tan

1

t

}
.

The number of subintervals is k = 7, and the solution of (P̃7) is (α7, β7) = (0.0067,
0.0037) and

λ7 = (0.1020,−0.4309, 0.7258,−0.7001, 0.4102,−0.1354, 0.0189)T .
Then the topological hyperplane strongly separating F and G is

H7 =

{
h ∈ L2([1, 6]) :

∫ 6

1

h(t)s7(t) dt = −0.0052
}
,

where s7(t) =
∑7

i=1 λi71D7
i
(t) and D7

i =]1 + 5(i− 1)/7, 1 + 5i/7[, i = 1, 2, · · · , 7.

The test results for Problem 3.3–3.7 are summarized in Table 3.1, where k is the number
of subintervals in which we divided [a, b]. The results reported in Table 3.1 show a fast
convergence of Algorithm (B) in all these test problems.

Problem 3.8. Let [a, b] = [1, 3], F = {1, t, t2, t4}, and G = {t3, t5, t7, t8, 0.1t2 +
0.9t4}.
It is clear that F and G cannot be strongly separated by any topological hyperplane since
the function 0.1t2 + 0.9t4 in G is a convex combination of the functions t2 and t4 in
F . Consequently, Algorithm (B) stopped when k = 150 (using different starting points)

with v(P̃k) = 0, k = 1, 2, ..., 150.
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Problem (λ0, α0, β0) k v(P̃k)
3.3 (0, · · · , 0,−1, 1) 1 -492.5188
3.4 (0, · · · , 0,−1, 1) 1 0

2 0
3 -0.0194

3.5 (0, · · · , 0,−1, 1) 1 0
2 0
3 -0.0030

3.6 (0, · · · , 0,−1, 1) 7 0
8 0
9 -0.0056

3.7 (0, · · · , 0,−1, 1) 5 0
6 0
7 -0.0030

Table 3.1: The last three iterates generated by Algorithm (B)

The following example shows that Algorithm (B) can return arbitrarily large sequences
of zeros even for very simple problems involving sets F and G which can easily be
strongly separated.

Example 3.9. Let F = {0} and G = {gn} two singletons from L2([0, 2π]), with

gn(t) :=
1√
π
sin(n!t).

The L2-norm of gn is 1, and it is obvious that F and G can be strongly separated by
using the topological hyperplane

H =

{
ℓ ∈ L2([0, 2π]) :

∫ 2π

0

ℓ(t) sin(n!t) dt =

√
π

2

}
.

However, when we use Algorithm (B) to separate F from G, we obtain v(P̃1) = v(P̃2) =

... = v(P̃n) = 0 since, for all k ≤ n and i = 1, 2, ..., k,

∫

Dk
i

gn(t) dt =
1√
π

∫ i
k
2π

i−1

k
2π

sin(n!t) dt

=
1

n!
√
π

∫ i
k
2πn!

i−1

k
2πn!

sin(s) ds

= 0.

So, it is straightforward that v(P̃k) = 0. In fact, we have proved that condition (3) fails
for every k ≤ n, since

gn ∈ E⊥
k = {1Dk

i
, i = 1, 2, ..., k}⊥.

Next we provide a particular stopping criterion for the special case in which F and G
are sets of bounded variation functions.
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Let us recall that the total variation of a measurable function h in the interval [a, b] is

V(h) := sup
p∈N

sup
a≤α0<...<αp≤b

p−1∑

i=0

(sup[αi,αi+1]
h− inf[αi,αi+1] h),

where sup[αi,αi+1]
h and inf[αi,αi+1] h are the essential supremum and the essential infi-

mum of h in the corresponding subinterval. Since h is actually a class of functions, any
two of them identical except on a set of null measure, the total variation defined above
is nothing else but the infimum of the classically-defined total variation among all the
real functions whithin the class h. Next we give a lemma which is needed later on.

Lemma 3.10. Let n ∈ N and h ∈ L2([a, b]) such that
∫ b

a

h(t)ℓ(t) dt = 0, for all ℓ ∈ En, (23)

where En = span{1Dn
i
, i = 1, 2, ..., n}. Then

V(h) ≥ ‖h‖L2

√
n

b− a
. (24)

Proof. (24) is trivially satisfied when h = 0; therefore we can assume that ‖h‖L2
> 0.

Set

λi :=

∫
Dn

i
h2(t) dt

‖h‖L2

.

It is obvious that λi ≥ 0, i = 1, 2, ..., n, and that
∑n

i=1 λi = 1. At the same time,
a standard argument in measure theory allows us to ensure the existence of a set of
positive measure K ⊂ Dn

i such that

|h| ≥
√

nλi

b− a
‖h‖L2

on K. (25)

Moreover condition (23) implies that
∫ b

a
h(t) dt = 0, and there must exist two subsets of

Dn
i of positive measure, say U and V , such that h is nonpositive on U and nonnegative

on V. Hence, supDn
i
h ≥ 0 and infDn

i
h ≤ 0 and, from (25) either supDn

i
h ≥

√
nλi

b−a
‖h‖L2

or infDn
i
h ≤ −

√
nλi

b−a
‖h‖L2

. Thus

supDn
i
h− infDn

i
h ≥

√
nλi

b− a
‖h‖L2

,

and, consequently,

V(h) ≥ ‖h‖L2

√
n

b− a

n∑

i=1

√
λi

≥ ‖h‖L2

√
n

b− a

n∑

i=1

λi

= ‖h‖L2

√
n

b− a
.
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Proposition 3.11 (Stopping criterion). Assume that there exists M > 0 such that

V(h) ≤M for all h ∈ F ∪G,

and an algebraic basis of span(F ∪G), {hi, i ∈ I}, for which the scalar

α := inf





∥∥∥∥∥
∑

i∈I

λihi

∥∥∥∥∥
L2

:

∑
i∈I |λi| = 1 and only

finitely many λi are nonzero





is positive. Finally, consider any

k0 >
(b− a)M2

α2
.

Then,

v(P̃1) = v(P̃2) = ... = v(P̃k0) = 0 =⇒ v(P ) = 0.

Remark 3.12 (Before the proof). If span(F ∪G) is finite-dimensional, i.e. if the
cardinal |I| is finite, the continuity of the norm and the compactness of the set

{
(λ1, λ2, ..., λ|I|) :

∑

i∈I

|λi| = 1

}
⊂ R|I|,

yields the positiveness of α.

Proof. Since V : span(F ∪G)→ R+ is a norm, we have for every set of coefficients λi,
i ∈ I, such that

∑
i∈I |λi| = 1 and only finitely many of them are nonzero, the following

inequality

V

(
∑

i∈I

λihi

)
≤M.

Therefore, for every h =
∑

i∈I ηihi ∈ span(F ∪G)�{θ},

V(h) = V

(
∑

j∈I

∣∣ηj
∣∣∑

i∈I

ηi∑
j∈I

∣∣ηj
∣∣hi

)
≤M

∑

j∈I

∣∣ηj
∣∣ .

According to this and the definition of α one has

‖h‖L2
≥ α

∑

j∈I

∣∣ηj
∣∣ ≥ αV(h)

M

and, so,
V(h)

‖h‖L2

≤ M

α
. (26)

Suppose, now, that for all h ∈ span(F ∪G) we have

√
k0

b− a
>

V(h)

‖h‖L2

. (27)
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Then, by the last lemma, for each h ∈ span(F ∪G) there exists a certain ℓh ∈ Ek0 such
that ∫ b

a

h(t)ℓh(t) dt 6= 0.

Consequently, v(P̃1) = v(P̃2) = ... = v(P̃k0) = 0 will imply v(P ) = 0, but from (26), we
observe that (27) holds when √

k0
b− a

>
M

α
,

or equivalently, if

k0 >
(b− a)M2

α2
.
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[4] M. Á. Goberna, M. A. López: Linear Semi-Infinite Optimization, Wiley, Chichester
(1998).

[5] M. Á. Goberna, M. A. López, S.-Y. Wu: Separation by hyperplanes: a linear semi-
infinite programming approach, in: Semi-Infinite Programming. Recent Advances, M.
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