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1. Introduction

By “typical� we mean “valid outside a small (or negligible) set�. There are various
concepts of “smallness� used in analysis: measure theoretic (null sets of different kind),
topological (sets of the first Baire category), metric (σ-porous sets or directionally σ-
porous sets), analytic (countable unions of sets that can be represented as (subsets of)
graphs of certain classes of Lipschitz functions). We refer to [2] for detailed discussions
relating to many specific types of these sets in Banach spaces and comparisons of their
levels of smallness.

Here we basically deal with two types of small sets associated with the two last types of
smallness concepts, namely directionally σ-porous sets and so called sparse sets. These
two classes of sets are among the smallest: directionally σ-porous sets are sets of the
first Baire category and at the same time Aronszajn null (hence Haar null, hence sets
of Lebesgue measure zero if the space is finite dimensional). In turn, sparse sets is a
proper subclass of the class of directionally σ-porous sets.

Typical convexity-relating properties of (Fréchet, Gateaux, Hadamard) derivatives and
directional derivatives of functions on separable Banach spaces have been extensively
studied in the literature and a number of interesting results have been obtained – see
e.g [2]. Just to mention a few: a convex continuous function is Gateaux differentiable
outside of a set which is a countable union of so called c-c-hypesurfaces: that is sets
that are subsets of graphs of DC-functions1 (Zajiček [15] – an extension of a classical
theorem of Mazur which already cannot be further strengthened in particular because
in IR it reduces to the function being non-differentiable at most countable set), the
upper Dini and the Clarke directional derivatives of a Lipschitz function coincide on
a residual set (Giles-Sciffer [7]), moreover the upper Dini directional derivative of a
Lipschitz function is convex (in direction) outside of a directionally σ-porous set (this

1Recall that a DC-function is a difference of two convex continuous functions bounded on bounded
sets.
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was stated in Bessis-Clarke [3] for the case of a Hilbert space and proved for finite
dimensional situation; the general result was proved by Preiss-Zajiček [12] – actually
it was proved there that the upper Dini directional derivative coincides with Michel-
Penot directional derivative up to a directionally σ-porous subset of the domain2), for
an arbitrary function the set of points at which the Dini-Hadamard subdifferential
contains more than one point is sparse (Benoist, Loewen-Wang [1, 9]).

In this note we strengthen some of these and other results mainly in one (or more) of
the following three respects: extension to smaller classes of small sets (e.g. from gener-
icity to σ-porosity), extension to a broader class of functions (mainly from Lipschitz
to continuous or even arbitrary) and extension to a broader class of spaces (e.g. from
separable Hilbert to general separable spaces). The point we wish to specially empha-
size is that the proofs are basically very elementary and in certain cases much simpler
than the proofs of the original results. They all exploit variants of the same techniques
that should be largely attributed to Preiss and Zajiček [11, 12]. In the next section
we give all necessary definitions (upper and lower directional derivatives of different
kind, derivatives, smallness concepts). The third section contains the statements of all
results obtained in the paper and some most elementary proofs. And the last section
contains the main proofs.

2. Preliminaries

Throughout the paper X is a Banach space which is assumed to be separable if nothing
else is specified; f a function on X with values in [−∞,∞]; dom f = {x ∈ X : |f(x)| <
∞}; t → +0 means t > 0 and t → 0; u ⇀ x means “u converges weakly to x�. All
limiting relations are sequential.

2.1. Derivatives.

Definition 2.1. Let x ∈ dom f , h ∈ X. Then

f−
D (x;h) = lim inf

t→+0

f(x+ th)− f(x)

t

is the lower Dini directional derivative of f at x at the direction h;

f−
H (x;h) = lim inf

t→+0

‖u‖→0

f(x+ t(h+ u))− f(x)

t

is the lower Dini-Hadamard (or just Hadamard) directional derivative of f at x at the
direction h;

f−
WH(x;h) = lim inf

t→+0

u⇀0

f(x+ t(h+ u))− f(x)

t

is the weak lower Hadamard directional derivative of f at x at the direction h.

Replacing lim inf by lim sup in the three equalities, we get definitions of the corre-
sponding upper directional derivatives f+

D (x;h), f+
H (x;h), f+

WH(x;h). If for a certain

2I am thankful to L. Zajiček and the reviewer for bringing my attention to this result.
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x the corresponding lower and upper directional derivatives coincide (as functions of
h), we say that f is directionally differentiable at x in the corresponding sense (Dini,
Dini-Hadamard, weak Hadamard), call the functions directional derivatives and denote
them in a natural way by: f ′

D(x;h), f ′
H(x;h), f ′

WH(x;h).

The following elementary properties of lower directional derivatives are of substantial
importance:

(a) Each lower directional derivative is a homogeneous function of h, that is f−
• (x;λh)

= λf−
• (x;h) if λ > 0; hence at zero it may assume only two values: zero and

minus infinity.

(b) f−
D (x; ·) = f−

H (x, ·) if f is Lipschitz near x. In this case f−
H (x, ·) is (globally)

Lipschitz with constant equal to the Lipschitz constant of f near x.

(c) f−
H (x, ·) = f−

WH(x, ·) if dimX < ∞.

(d) The lower Dini-Hadamard directional derivative is lower semicontinuous as a
function of direction h.

(e) If X has a separable dual then the weak lower Dini-Hadamard directional deriva-
tive is sequentially weak lower semicontinuous in h.

Note also that in the literature the expression “subderivative� is often used (instead of
“lower directional derivative�) etc.

Definition 2.2. Let x ∈ dom f , x∗ ∈ X∗. It is said that x∗ is the Gateaux derivative
of f at x: x∗ = f ′

G(x), if

lim
t→0

f(x+ th)− f(x)

t
= 〈x∗, h〉

for every h ∈ X; x∗ is the Hadamard derivative of f at x: x∗ = f ′
H(x), if

lim
t→0

‖u‖→0

f(x+ t(h+ u))− f(x)

t
= 〈x∗, h〉

for every h ∈ X; x∗ is the Fréchet derivative of f at x: x∗ = f ′
F (x), if

lim
‖h‖→0

f(x+ th)− f(x)− 〈x∗, h〉

‖h‖
= 0.

If one or another derivative exists, we say that f is differentiable at x in the corre-
sponding sense.

It is clear that a Fréchet derivative is also a Hadamard derivative and the latter is a
Gateaux derivative. It is also a trivial matter to see that either derivative, if exists, is
uniquely defined. Therefore it is often reasonable to drop subscripts and write f ′(x).

We next observe that the Dini and Dini-Hadamard directional derivatives are connected
with the Gateaux and Hadamard derivatives in an obvious way: the first (if exist) re-
duce to the latter when they are continuous linear functions of h. The same connection
exists between the weak Hadamard directional derivative and Fréchet derivative in sep-
arable reflexive spaces.3

3In the paper we do not work with Fréchet derivatives – we just mention its connection with the weak
lower Dini-Hadamard directional derivative.
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Finally we shall need two well known kinds of convex directional derivatives.

Definition 2.3. Let f be a lower semicontinuous function and x ∈ dom f . The quan-
tity

f ↑(x;h) = sup
δ>0

lim sup
t→+0

x′→f x

inf
‖h′−h‖<δ

f(x′ + th′)− f(x′)

t

is called the Clarke-Rockafellar directional derivative of f at x along h. (As usual,
x′ →f x means that x′ → x and f(x′) → f(x).)

Assume now that f is Lipschitz in a neighborhood of x. Then

f ⋄(x;h) = sup
z

lim sup
t→+0

f(x+ t(h+ z))− f(x+ tz)

t

is the Michel-Penot directional derivative of f at x along h.

Both are usually considered function of direction h with x being a parameter. We need
the following properties of the functions (under the made assumptions on the latter).

(f) Both f ↑(x; ·) and f ⋄(x; ·) are proper sublinear functions, the first lower semicon-
tinuous and the second globally Lipschitz with the Lipschitz constant equal to
the Lipschitz constant of f at x.

(g) If f is Lipschitz near x, then f ↑ reduces to

f ◦(x;h) = lim sup
t→+0

x′→x

f(x′ + th)− f(x′)

t
.

(h) A lower semicontinuous f is strictly Hadamard differentiable at x if and only if
f ↑(x; ·) is a linear continuous function; a Lipschitz f is Gateaux differentiable at
x if and only if f ⋄(x; ·) is a linear function.

For more details concerning the two types of directional derivatives see [13, 10].

Strict Hadamard differentiability at x means that (f is Hadamard differentiable at x
and) for any h

t−1(f(x′ + th′)− f(x′)− f ′(x)h′) → 0, when t → +0, x′ → x, h′ → h.

2.2. Small sets.

Here we define the concepts of smallness that will be used below. For more information
and details see [2, 17]. Let X be a Banach space and S ⊂ X. It is usually said that
(the closure of) S is nowhere dense if for every x ∈ S and every sufficiently small δ > 0
there are x′ ∈ B(x, δ) and a δ′ > 0 such that

B(x′, δ′) ∩ S = ∅. (∗)

Definition 2.4. If, moreover for any x ∈ S it is possible to find a r > 0 and a
sequence of pairs (tn, xn) → (+0, x) such that, for all n, (∗) holds with x′ = xn and
δ′ = r‖x− xn‖, we say that S is porous. (The concept of porosity was first introduced
in [5].)
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If furthermore for any x ∈ S there are a u ∈ X with ‖u‖ = 1, an r > 0 and a sequence
tn → +0, such that (∗) holds with x′ = x + tnu and δ′ = rtn, then S is said to be
directionally porous.

Recall that a set of the first Baire category is a subset of a countable union of closed
nowhere dense sets. A set is σ-porous if it is a union of a countable family of porous
sets. The set is directionally σ-porous if it is a countable union of directionally porous
sets.

It is immediate from definitions that

(j) Every σ-porous set is a set of the first Baire category and every directionally
σ-porous set is σ-porous.

(k) A σ-porous set in IRn has n-dimensional Lebesgue measure zero.

The latter is immediate from the Lebesgue density theorem. However not every set
which is both measure negligible and of the first category is σ-porous [14].

A σ-porous set may not be directionally σ-porous. The main difference between the
two classes is that directionally σ-porous sets have much stronger measure-theoretic
smallness property (see [2]):

(l) A directionally σ-porous set in a separable Banach space is Aronszajn null.

On the other hand, even in a Hilbert space there exist an Aronszajn null set whose
complement is σ-porous ([2], Theorem 4.19 and Example 6.46).

Definition 2.5 ([4, 16]). A set S ⊂ X is a Lipschitz hypersurface if there is a sub-
space L ⊂ X of codimension one, vector h 6∈ L and a Lipschtz function f defined on an
open subset of L such that S coincides with the image of Graph f under the mapping
(x, α) 7→ x+ αh from L× IR into X. A set S is called sparse if it can be covered by a
countable family of Lipschitz hypersurfaces.

It is clear that

(m) A hypersurface in IR is a point, so a sparse set in IR is at most countable.

It is also an easy matter to see that

(n) A Lipschitz hypersurface is directionally porous, so a sparse set is directionally
σ-porous.

Indeed, let L ⊂ X be a subspace of codimension one, let h 6∈ L, let f be a Lipschitz
function on an open subset V of L and let S = {x = u + f(u)h : u ∈ V }. Now
if K is strictly greater than the Lipschitz constant of f , then for an x ∈ S the ball
B(x+ tKh, t) cannot meet S for any t > 0.4

We shall see (in the proof of the second part of Theorem 3.1) that the converse is also
true: S is a Lipschitz hypersurface if there are a u with ‖u‖ = 1 and an r > 0 such
that for any x ∈ S and any t 6= 0 (∗) holds with x′ = x+ tu and δ′ = rt.

4Indeed, if x′ = u′ + f(u′)h belongs to the ball for some t, then u′ − u + (f(u′) − f(u))h = tKh + ξ

for some ξ with ‖ξ‖ ≤ t, then, as h 6∈ L we have (f(u′) − f(u)) = tK and u′ − u = ξ, that is
|f(u′)− f(u)| = tK ≥ K‖u′ − u‖ > |f(u′)− f(u)|.
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3. Results

Theorem 3.1. Let X be a separable Banach space. Then for any function f on X the

following two statements hold true.

(a) The set of x ∈ dom f for which the inequality

f−
H (x;h1) + f−

H (x;h2) > f−
H (x;h1 + h2) (1)

holds for some h1, h2 ∈ X is directionally σ-porous. Thus for all x outside of a

directionally σ-porous subset of dom f either f−
H (x; ·) is an continuous superlinear

function or |f−
H (x;h)| ≡ ∞.

(b) The set of x ∈ dom f for which the inequality

f−
H (x;h) + f−

H (x;−h) > 0 (2)

holds for some h ∈ X is sparse; in particular such is the set of x ∈ dom f for

which the restriction of f−
H (x; ·) to a certain subspace of X is convex and not

linear.

For locally Lipschitz functions on Hilbert spaces the first statement was proved in
[3] (Theorems 3.1 and 4.1). The second statement for locally Lipschitz function was
proved in [16] (with a reference to [8] as source of the idea for the proof).

Remark. The theorem can easily be reformulated for upper Dini-Hadamard direc-
tional derivatives. The only we need is to change the signs of all inequalities to the
opposite.

Corollary 3.2 ([12]). If f is locally Lipschitz function defined on an open set U ,

then it is intermediately Gateaux differentiable at every point of its domain except at

most for a directionally σ-porous set. This means that for all x ∈ dom f outside of a

directionally σ-porous set there is an x∗ ∈ X∗ such that

f+
D (x;h) ≥ 〈x∗, h〉 ≥ f−

D (x;h), ∀ h ∈ X.

Proof. As for a Lipschitz function the Dini and Hadamard directional derivatives
coincide, the theorem says that f+

D (x; ·) is convex and f−
D (x; ·) is concave for all x

outside of a directionally σ-porous subset of U . As f is Locally Lipschitz, both f−
D (x, ·)

and f+
D (x, ·) are Lipschitz and f+

D (x;h) ≥ f−
D (x;h) for all h. So it remains to separate

the graphs of the functions.

The corollary is a strengthening of the separable version of a theorem by Fabian-
Preiss [6] in which generic intermediate Gateaux differentiability was proved for locally
Lipschitz functions on Asplund generated spaces. [7] contains a simple proof of the
Fabian-Preiss theorem for separable spaces. Later in [3] it was shown that for a locally
Lipschitz functions on a Hilbert space the property holds outside of a directionally
σ-porous, not just first category, subset of the domain of the function.

Corollary 3.3 ([9]). For any function f on X the collection of x such that ∂Hf(x)
contains more than one element is a sparse set.



A. D. Ioffe / Typical Convexity (Concavity) of Dini-Hadamard Upper (Lower) ... 1025

Proof. If x∗
1 6= x∗

2 and both belong to ∂Hf(x), then for any h for which, say 〈x∗
1 −

x∗
2, h〉 > 0 we have

f−
H (x;h) + f−

H (x,−h) ≥ 〈x∗
1, h〉+ 〈x∗

2,−h〉 > 0.

If f is convex continuous on a convex open set, then ∂f(x) 6= ∅ for all x ∈ dom f . On
the other hand, if ∂f(x) is a singleton, the function is Gateaux differentiable. Thus we
arrive to the following well known result extending the classical Mazur theorem about
generic Gateaux differentiability of convex continuous functions on separable spaces.

Corollary 3.4. Let f be a convex function defined and continuous on a convex open

set U . Then f is Gateaux differentiable at x for all x ∈ dom f outside of a sparse

subset of U .

Proof. For a convex continuous functions f we have f ′(x;h) = f−
H (x;h) for all x ∈ U

and h ∈ X. The function f ′(x; ·) is convex continuous and the condition f ′(x;h) +
f ′(x;−h) ≤ 0 for all h implies that it is linear, hence the Gateaux derivative of f at
x.

In fact the set of points of Gateaux non-differentiability of a convex continuous function
on a separable Banach space admits a more precise description ([15], see also [2],
Theorem 4.20): it is a countable union of so called c-c-hypersurfaces which are graphs
of locally Lipschitz functions representable as differences of convex continuous functions
bounded on bounded sets. We note that there are sparse sets which are not countable
unions of c-c-hypersurfaces [16].

Theorem 3.5. Let X be a Banach space with separable dual. Then for any function

f on X the set of x ∈ dom f for which the inequality

f−
WH(x;h1) + f−

WH(x;h2) > f−
WH(x;h1 + h2) (1WH)

holds for some h1, h2 ∈ X is directionally σ-porous. Thus for all x outside of a direc-

tionally σ-porous subset of dom f either f−
H (x; ·) is a continuous superlinear function

or |f−
WH(x;h)| ≡ ∞.

The theorem is a generalization of the second main result of [3] (Theorem 3.2) in
which locally Lipschitz functions on a separable Hilbert space were considered and the
inequality was proved for h2 taken from a certain finite dimensional subspace and h1

from its complement. Observe also that the extension of the second part of Theorem
3.1 to weak lower Hadamard directional derivatives is trivial as f−

WH(x;h) ≤ f−
H (x;h)

for all h.

Theorem 3.6. Let U ⊂ X be open, and let f be a continuous function defined on U .

Then

f+
H (x; ·) = f ↑(x; ·) (3)

for all x ∈ U of a residual subset of U . If furthermore, f is locally Lipschitz on U ,

then

f+
H (x; ·) = f ⋄(x; ·) (4)

outside of a directionally σ-porous subset of U .
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Recall that the main result of [7] is that (3) holds for a locally Lipschitz function on a
residual subset of U . Thus the first part of the theorem extends this result by showing
that the equality of the upper Dini-Hadamard and Clarke-Rockafellar super-derivatives
is a generic phenomenon even if the function is only continuous, not necessarily Lips-
chitz. The second part of the theorem was established in [12]. We state and prove it
mainly to emphasize the connection of the two results and to show that the proof of
the second needs only a slight revision of the proof of the first. It is to be further noted
that in the first statement the passage from residual to a complement of a directionally
σ-porous set is impossible in principle: consider e.g. a Lipschitz function f on [0, 1]
whose derivative is a.e. either 1 or −1 and the sets on which the derivative is equal
to either of the numbers are dense. Then the Clarke directional derivative f ↑(x;h)
(actually coinciding with better known Clarke’s directional derivative f ◦) is equal to
|h| for all x.

The concluding result deals with Hadamard differentiability.

Theorem 3.7. Let again f be a function on a separable Banach space X and assume

that for any x ∈ dom f there is a set Sx ⊂ X such that the Dini-Hadamard directional

derivative

f ′
H(x;h) = lim

t→+0

h′→h

f(x+ th′)− f(x)

t

exists and finite for all x ∈ dom f and all h ∈ Sx.

(a) If Sx ≡ X, then f is Hadamard differentiable at every x ∈ dom f outside of a

sparse subset of dom f .

(b) If the linear span of every Sx coincides with X, then f is Hadamard differentiable

at every x ∈ dom f outside of a directionally σ-porous subset of dom f .

(c) The conclusion of (b) is valid also if f is defined and locally Lipschitz on an open

set and the linear spans of Sx are dense in X.

The last statement was proved in [12]. We again note that under the assumptions
of (c) we can speak about Gateaux differentiability. Observe further that under the
assumption of part (a) of Theorem 3.7, f is a continuous function on an open set U , then
f is locally Lipschitz on a dense open subset of U . This follows from Proposition 6.45
of [2]. We note also that for a locally Lipschitz function the existence of directional
derivative at every point of the domain implies generic Gateaux differentiability for
function on Asplund generated spaces [6], not just on separable Banach spaces.

Finally, combining Theorems 3.6 and 3.7, we get

Corollary 3.8. If f is a continuous function on an open set U and the Dini-Hadamard

directional derivative exists for all x ∈ U , then f is strictly Hadamard differentiable on

a residual subset of U .

4. Proofs.

In what follows we denote by Q the set of rational numbers, by N the set of natural
numbers and by Q+ the set of positive rationals.
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Proof of Theorem 3.1. (a) Clearly (1) is tantamount to the existence of rational
α1 and α2 such that

f−
H (x;hi) > αi, i = 1, 2; f−

H (x;h1 + h2) < α1 + α2. (5)

The first inequality in (5) is equivalent to the existence of an m ∈ N such that

f(x+ t(hi + u))− f(x) > tαi

for all t and u satisfying 0 ≤ t ≤ 1/m and ‖u‖ ≤ 2/m respectively.

Let X̃ be a dense countable subset of X. Take h̃i ∈ X̃ with ‖hi − h̃i‖ < 1/m and
‖h1 + h2 − (h̃1 + h̃2)‖ ≤ 1/3m. Then

f(x+ t(h̃i + u))− f(x) > tαi, if t ∈ [0, 1/m], ‖u‖ ≤ 1/m. (6)

On the other hand, the second inequality in (5) means that there are sequences of
tn → +0 and un ∈ X with ‖un‖ → 0 as n → ∞ such that

f(x+ tn(h1 + h2 + un))− f(x) < tn(α1 + α2). (7)

We may assume that ‖un‖ ≤ 1/6m. So setting vn = (h1 + h2 + un) − (h̃1 + h̃2), we
have ‖vn‖ ≤ (1/2m) and

f(x+ tn(h̃1 + h̃2 + vn))− f(x) < tn(α1 + α2). (8)

Denote by S the collection of x for which (1) holds with some h1, h2 ∈ X, and
let S(h̃1, h̃2, α1, α2,m) stand for the collection of x for which (6) and (8) hold. The
above discussion shows that S is contained in the union of S(h̃1, h̃2, α1, α2,m) over all
(h̃1, h̃2, α1, α2,m) ∈ X̃2 ×Q2 ×N . We claim that S(h̃1, h̃2, α1, α2,m) is a directionally
porous set.

So fix a (h̃1, h̃2, α1, α2,m) ∈ X̃2×Q2×N and let x ∈ S(h̃1, h̃2, α1, α2,m). Let tn → +0,
and vn with ‖vn‖ ≤ 1/2m be such that (6) holds for all n. Take a u with ‖u‖ ≤ 1/2m.
We have using (6) and (8) (and taking into account that ‖vn − u‖ ≤ 1/m)

f(x+ tn(h̃1 + u) + tn(h̃2 + vn − u))− f(x+ tn(h̃1 + u))

= f(x+ tn(h̃1 + h̃2 + vn))− f(x+ tn(h̃1 + u)) (9)

< tn(α1 + α2) + f(x)− f(x+ tn(h̃1 + u)) ≤ tnα2.

This means that x + tn(h̃1 + u) 6∈ S(h̃1, h̃2, α1, α2,m) if ‖u‖ ≤ 1/2m. In other words,
(x+ tn(h̃1 +(1/2m)B)∩S(h̃1, h̃2, α1, α2,m) = ∅. As tn → 0 as n → ∞ this shows that
S(h̃1, h̃2, α1, α2,m) is a directionally porous set as claimed.

To complete the proof of the first statement we note that in case when f−
H (x; ·) is

concave and not identical minus infinity, we necessarily have f−
H (x; 0) = 0 and as

f−
H (x; ·) is lower semicontinuous, it is bounded below in a neighborhood of zero. Since
it is concave, it is continuous at zero and since it is homogeneous it is continuous on
X.
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(b) Let P be the set of x for which (2) holds with some h. Here by the way, we
only can consider vectors h with norm one, due to positive homogeneity of f−

H (x; ·).
As f−

H (x; ·) is lower semicontinuous, (2) must hold also for some h ∈ S̃, where S̃ is a
dense countable subset of the unit sphere. On the other hand, (2) is equivalent to the
existence of α1, α2 ∈ Q such that f−

H (x;h) > α1, f
−
H (x;−h) > α2 and α1 + α2 > 0.

We have α1 = α + β, α2 = −α + β, where β = (α1 + α2)/2 > 0. By definition of the
Dini-Hadamard subderivative, it follows that there is an m ∈ N such that

f(x+ t(h+ u))− f(x) > tα+ |t|β, if 0 < |t| < 1/m, ‖u‖ < 1/m. (10)

Thus, if we denote by P (h, α, β,m) the set of x for which (10) holds, then P is a subset
of the union of P (h, α, β,m) when (h, α, β,m) runs through S̃ ×Q×Q+ ×N . As the
latter is a countable set, the theorem will be proved if we show that every P (h, α, β,m)
can be covered by a countable family of Lipschitz surfaces. This fact was actually
proved in [9]. We give below a somewhat simpler and shorter proof, partly for the
purpose of completeness.

Let x ∈ P (h, α, β,m). Take a t ∈ [0, 1/m] and a u with ‖u‖ ≤ 1/m and set x′ =
x+ t(h+ u) We have by (10)

f(x′ − t(h+ u))− f(x′) = f(x)− f(x+ t(h+ u)) < −tα− β|t|,

so that x′ 6∈ P (h, α, β,m) if t 6= 0. In other words

(

x+ t

(

h+
1

m
B

))

∩ P (h, α, β,m) = ∅, if 0 < |t| ≤
1

m
. (11)

Take a nonzero x∗ such that 〈x∗, h〉 > 0 and let L = Kerx∗. Then X = L ⊕ IRh,
so that every u ∈ X has a unique representation u = w + λh with w ∈ L, λ ∈ IR.
For any n = 0,±1,±2, . . . let Pn(h, α, β,m) be the collection of all x = w + λh ∈
P (h, α, β,m) such that (n/m) ≤ λ ≤ ((n + 1)/m). Then P (h, α, β,m) is the union of
all Pn(h, α, β,m). So it is enough to show that every Pn(h, α, β,m) can be covered by
a Lipschitz hypersurface.

Take a k > 0 such that ‖x‖ ≤ kmax{‖w‖, |λ|} whenever x = w + λh. Denote by
BL = L ∩ B the unit ball in L. Then, with a slight abuse of notation, we can rewrite
(11) as

(

(w, λ) + t

(

(0, 1) +
1

km
BL × [−1, 1]

))

∩ P (h, α, β,m) = ∅, if 0 < |t| ≤
1

m
, (12)

provided x = w + λh ∈ P (h, α, β,m). It follows that for any w there maybe at most
one λ such that x = w + λh ∈ Pn(h, α, β,m). This means that Pn(h, α, β,m) can be
viewed as the graph of a certain function ϕn(w) satisfying (n/m) ≤ ϕn(w) ≤ (n+1)/m
for all points of its domain. We claim that this function is Lipschitz on its domain.

Indeed, if w and w′ belong to domϕ, then |ϕn(w)− ϕn(w
′)| ≤ 1/m. So if ‖w − w′‖ ≥

(1/km2), then we have

|ϕn(w)− ϕn(w
′)| ≤ km‖w − w′‖. (13)
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Suppose now that ‖w − w′‖ < (1/km2). By (12)

(w′, ϕn(w
′)) 6∈ (w,ϕn(w)) + t

(

{0} × [0, 1] +
1

km
BL × {0}

)

if 0 < t ≤
1

m
.

But now w′ ∈ w + t(1/km)BL if t ≥ τ = km‖w − w′‖. Therefore ϕn(w
′) 6∈ ϕn(w) +

[τ, 1/m]. On the other hand,

ϕn(w
′) ≤

n+ 1

m
≤ ϕn(w) +

1

m
,

we must conclude that ϕn(w
′) ≤ ϕn(w)+τ = ϕn(w)+km‖w−w′‖. Applying the same

argument with t ≤ 0 and τ = −km‖w − w′‖, we get ϕn(w
′) ≥ ϕn(w) − km‖w − w′‖,

that is (13) holds for all w, w′ ∈ domϕn. This proves the claim and the theorem.

Proof of Theorem 3.5. It is similar to the proof of the first part of Theorem 3.1.
Indeed, let x∗

1, x
∗
2, . . . be a dense countable subset of the unit sphere in X∗. Then

f−
WH(x;h) > α if and only if there is an α′ > α such that for any N ∈ N there is an
m ∈ N such that f(x + t(h + u))− f(x) > tα′, whenever 0 ≤ t ≤ 1/m, ‖u‖ ≤ N and
|〈x∗

i , u〉| ≤ 1/m, i = 1, . . . ,m. Indeed, let WN be the collection of sequences (tn, vn)
such that tn → +0, ‖vn‖ ≤ N and (vn) converges weakly to zero. Then

f−
WH(x;h) = inf

N∈N
inf

(tn,vn)∈WN

lim inf
n→∞

f(x+ tn(h+ vn))− f(x)

tn
. (14)

Suppose now that f−
WH(x;h) > α′ > α. Then there are N , δ > 0 and a weak neighbor-

hood V of zero such that t−1(f(x + t(h + u)) − f(x) > α′ for all t ∈ [0, δ] and u ∈ V
with ‖u‖ ≤ N and it remains to choose m to guarantee that mδ > 1 and V contains
(1/m)B plus the annihilator of {x∗

1, . . . , x
∗
m}. The opposite implication is of course

immediate from the definition.

On the other hand, if f−
WH(x;h) < α then by (14) there is an N ∈ N and a sequence

(tn, un) ∈ WN such that t−1
n (f(x+ tn(h+ un))− f(x)) < α for all n.

Suppose now that there are hi and αi, i = 1, 2 such that f−
WH(x;hi) > αi and

f−
WH(x;h1 + h2) < α1 + α2. The latter, as we have just seen, implies the existence
of a sequence (tn, un) ∈ WN such that (7) holds for all n. Let N ∈ N satisfies
N > sup ‖un‖. Choose m ∈ N so big that f(x + t(hi + u)) − f(x) > tαi whenever
0 ≤ t ≤ 1/m, ‖u‖ ≤ N + 1/m and |〈x∗

i , u〉| ≤ 2/m.

Let further, as in the proof of Theorem 3.1, X̃ be a dense countable subset of X. Since
that moment the proof can follow the proof of the first part of Theorem 3.1 word for
word. We take h̃i ∈ X̃ satisfying the same relations and shall see afterwords that for
u with ‖u‖ ≤ 1/2m the calculation of (9) remains valid in our case which leads to the
proof of the first statement.

Proof of Theorem 3.6. The Clarke-Rockafellar directional derivative cannot be
smaller than the Dini-Hadamard superderivative. So to prove the first statement we
have to show that the collection of x ∈ U at which f ↑(x;h) > f+

H (x;h) for some h is
the set of first Baire category.
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Let R be the set of x such that f ↑(x;h) > f+
H (x;h)) for some h. Let x ∈ R. Then

there is an α ∈ IR and a γ > 0 such that f ↑(x;h) > γ+α and f+
H (x;h) < α. The latter

means that there is a δ > 0 such that

f(x+ t(h+ u))− f(x) < tα, if 0 < t < δ, ‖u‖ < δ, (15)

while the first inequality means that there is a δ > 0 and a sequence (tn, xn) such that
tn → +0, xn → x, f(xn) → f(x) and

f(xn + tn(h+ u))− f(xn) > tn(γ + α), if ‖u‖ < δ, ∀ n ∈ N . (16)

Let R(h, α, γ, δ) be the set of all x for which (15), (16) holds (the latter for some
sequences of tn → +0 and xn → x). Then R is the union of R(h, α, γ, δ) over all
(h, α, γ, δ) ∈ X̃ ×Q×Q+ ×Q+ and we have to verify that every R(h, α, γ, δ) is a set
of the first Baire category.

So let x ∈ R(h, α, γ, δ). By continuity, we can find for any n a positive ρn < δ such
that |f(xn + tnu) − f(xn)| < tnγ if ‖u‖ ≤ ρn. Then (16) implies that for large n for
which tn < δ

f((xn + tnu) + tnh)− f(xn + tnu) > tnα

if ‖u‖ ≤ ρn, that is xn + tnρnB does not meet R(h, α, γ, δ). This means that every
neighborhood of x contains “bubbles� not belonging to R(h, α, γ, δ) and therefore the
closure of R(h, α, γ, δ) is nowhere dense, hence a set of the first Baire category. This
completes the proof of the first part of the theorem.

The proof of the second needs a minor modification. First, as we talk about the Michel-
Penot directional derivative, we can choose xn of the form xn = x+tnz for some z ∈ X.
On the other hand, as the function is Lipschitz near x, we can take ρn ≡ ρ < γ/2K,
where K is the Lipschitz constant of f . Then the radius of the “bubble� not meeting
R(h, α, γ, δ) remains proportional to the radius of the neighborhood of x and we can
conclude that R(h, α, γ, δ) is a directionally porous set.

Proof of Theorem 3.7. (a) We have to verify that the set of x ∈ dom f such that
for some h1, h2 either

f ′
H(x;h1) + f ′

H(x;h2) > f ′
H(x;h1 + h2) (17)

or

f ′
H(x;h1) + f ′

H(x;h2) < f ′
H(x;h1 + h2) (18)

is sparse. Clearly, it is enough to consider the set of x for which (17) holds with some
h1, h2.

Arguing as in the proof of the first part of Theorem 3.1, we conclude that (17) is
equivalent to the existence of h̃i ∈ X̃, αi ∈ Q (i = 1, 2) and an m ∈ N such that

f(x+ t(h̃i + u))− f(x) > |t|αi; f(x+ t(h̃1 + h̃2 + u))− f(x) < |t|(α1 + α2) (19)

if 0 < |t| ≤ 1/m, ‖u‖ ≤ 1/m.
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Denote by R(h̃1, h̃2, α1, α2,m) the collection of x such that (19) holds. Then

f((x+ t(h̃1 + u)) + t(h̃2 + v − u))− f(x+ t(h̃1 + u)) < |t|α2

if 0 < |t| ≤ 1/m, ‖u‖, ‖v‖ ≤ 1/2m which shows that x+ t(h̃1+u) 6∈ R(h̃1, h̃2, α1, α2,m)
for such t and u, that is

x+ t

(

h̃1 +
1

m
B

)

⋂

R(h̃1, h̃2, α1, α2,m) = ∅

if 0 < |t| ≤ 1/m. This is precisely the same as (11) with P (h, α, β,m) replaced by
R(h̃1, h̃2, α1, α2,m). From this point the proof repeats word for word the corresponding
part of the proof of the second statement of Theorem 3.1.

(b) It follows from Theorem 3.1(a) that there is a directionally σ-porous set D ⊂ dom f
such that for all x ∈ dom f \D and all h1, h2 ∈ Sx we have

f+
H (x, h1 + h2) ≤ f ′

H(x;h1) + f ′
h(x;h2) ≤ f−

H (x, h1 + h2).

This shows that f ′
H(x;h1+h2) exists and is equal to f ′

H(x;h1)+f ′
H(x;h2). Thus f

′
H(x; ·)

is defined and linear on the span of Sx which is X.

(c) As f is Lipschitz near x,

|f±
H (x;h)− f ′

H(x, h
′)| ≤ K‖h− h′|

for any h ∈ X if f is Hadamard directionally differentiable along h′. Here K is the
Lipschitz constant of f . On the other hand, the same argument as above shows that
f ′
H(x; ·) is defined and linear on the span of Sx. Combining this two facts, we conclude
that H ′(x; ·) is defined and linear on the closure of the span of Sx.
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