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We consider two types of majorization relationships between sequences of vectors y = (yk)
m
k=1

and
x = (xk)

ℓ
k=1

in Rn with ℓ ≤ m. It is said that x is majorized by y, x ≺ y, if the sum of any k

vectors from x is in the convex hull of all possible sums of k vectors from y. It is said that x is doubly
stochastically majorized by y, x ≺ds y, if xk =

∑m

j=1
mkjyj , k = 1, ..., ℓ, for some doubly stochastic

matrix M = (mkj)
m,m
k,j=1

.

In [5], S. M. Malamud formulated the problem of finding a geometric condition guaranteeing that
x ≺ y ⇔ x ≺ds y. We answer this question in the case when the vectors in y are distinct and
are extreme points of their convex hull. In particular, we derive a geometric characterization of the
extreme points of the level set L2

≺
(y) = {x : x ≺ y}. Finally, we derive a set of algebraic conditions

that characterize the extreme points of Lℓ
≺
(y) = {x : x ≺ y} for any ℓ ≤ m and y.

Keywords: Convex set, doubly stochastic majorization, Malamud majorization, extreme point, con-
vex function, CVS class
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1. Introduction

The notion of majorization between two vectors in Rn is a classical subject with innu-
merable applications in areas ranging from matrix analysis to statistics, see for example
the monographs [1] and [6]. Given two vectors x1 and y1 in Rn we say that x1 is ma-
jorized by y1 if for every k = 1, ..., n the sum of the k-th largest coordinates of x1 is not
larger than the sum of the k-th largest coordinates of y1, with the sums equal when
k = n.

In this work we are interested in the properties of a new type of majorization between
two sequences x = (xk)

ℓ
k=1 and y = (yk)

m
k=1 of vectors in Rn. This new type of

majorization was introduced by S. M. Malamud in [5], who posed several natural
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questions about its properties. For any natural number k ≥ 1, define the set

Nk := {1, ..., k}.

Definition 1.1. Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn

with ℓ ≤ m. We say that x is (Malamud) majorized by y and write x ≺ y if for all
k ∈ Nℓ we have

conv {xi1 + · · ·+ xik : 1 ≤ i1 < · · · < ik ≤ ℓ}

⊂ conv {yi1 + · · ·+ yik : 1 ≤ i1 < · · · < ik ≤ m}.

In view of this definition, we introduce the following notation. For a sequence y =
(yk)

m
k=1 of vectors in Rn, we denote by Ak(y), or simply by Ak, the set:

Ak(y) := conv {yi1 + · · ·+ yik : 1 ≤ i1 < · · · < ik ≤ m} for k ∈ Nm. (1)

The next definition can be found in [5]. Here, we are following its presentation from
[4], where it was not introduced as a relation. Recall that a square matrix is doubly
stochastic if it has non-negative entries whose sums along each row and column is one.

Definition 1.2. Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn

with ℓ ≤ m. We say that x is doubly stochastically majorized by y and write x ≺ds y if
there is a doubly stochastic matrix M = (mij)

m,m
i,j=1 such that

xi =
m
∑

j=1

mijyj for all i ∈ Nℓ. (2)

Note that when n = 1 (and ℓ = m) both types of majorization reduce to the classical
notion of majorization between two vectors in Rm. Since neither majorization depends
on the order of the vectors in the sequences x and y, we often represent the sequence
y as an n×m matrix (y1, ..., ym) having column i equal to yi, and similarly for x. The
next easy result, stated in [5], shows that the doubly stochastic majorization is a more
restrictive notion.

Lemma 1.3. If x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 are two sequences of vectors in Rn with

ℓ ≤ m then, x ≺ds y implies that x ≺ y.

The converse of Lemma 1.3 does not hold in general. In the following example, given
by Malamud (see Example 2.11 in [5]), the relation x ≺ y holds but the relation x ≺ds y
does not hold.

Example 1.4. Let n = 2 and m = ℓ = 4. Set

x = (x1, x2, x3, x4) :=
(

(12, 12)T , (12, 12)T , (5, 3)T , (3, 5)T
)

,

y = (y1, y2, y3, y4) :=
(

(8, 16)T , (16, 8)T , (0, 0)T , (8, 8)T
)

.

We say that an ℓ×m rectangular matrix is row stochastic if it has non-negative entries
whose sum along each row is one and along each column is at most one, necessarily
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ℓ ≤ m. It is not too difficult to see that every rectangular row stochastic matrix can be
completed to a square doubly stochastic matrix. Thus, for two sequences x = (xk)

ℓ
k=1

and y = (yk)
m
k=1 of vectors in Rn with ℓ ≤ m we have x ≺ds y if and only if there exist

a row stochastic matrix M = (mij)
ℓ,m
i,j=1 such that (2) holds.

For any sequence y = (yk)
m
k=1 of vectors in Rn we consider the level sets of the two

majorizations

Lℓ
≺ds

(y) := {(x1, ..., xℓ) ∈ Rn×ℓ : (xk)
ℓ
k=1 ≺ds y}, and

Lℓ
≺(y) := {(x1, ..., xℓ) ∈ Rn×ℓ : (xk)

ℓ
k=1 ≺ y}.

It is easy to see that both these sets are closed and convex with Lℓ
≺ds

(y) ⊂ Lℓ
≺(y).

In this work, we are interested in the three questions Malamud posed in [5, page 4049]
regarding the relationships between the two types of matrix majorizations described
above. Question 1: formulate geometric conditions which together with x ≺ y imply
that x ≺ds y. Question 2: characterize the extreme points of the level set Lℓ

≺(y).
Question 3: under what conditions on the sequence y do we have Lℓ

≺(y) = Lℓ
≺ds

(y)?

Notice that Question 3 is an easy consequence of Question 2. Indeed, since both level
sets are polytopes they are equal if and only if they have the same set of extreme
points. For similar reasons, a geometric description of the extreme points of Lℓ

≺(y)
answers Question 1 as well. On the other hand, answering Question 2 turns out to be,
as we will see, a more difficult problem.

Answers to Questions 1 and 3 have been known in some special cases. For example, if
the vectors (yk)

m
k=1 are affinely independent and ℓ = m then, according to [5, Propo-

sition 2.13] the orders ≺ and ≺ds are equivalent and we have Lℓ
≺(y) = Lℓ

≺ds
(y). If the

vectors (yk)
m
k=1 are affinely independent and ℓ < m then, x ≺ y, if and only if, there

are vectors xℓ+1,...,xm such that (xk)
m
k=1 ≺ y (see Theorem 2.3 below). Thus, again the

orders ≺ and ≺ds are equivalent and Lℓ
≺ds

(y) = Lℓ
≺(y). Finally, when m = 3 according

to [5, Proposition 2.13] we have Lℓ
≺ds

(y) = Lℓ
≺(y).

We give a complete answer to Questions 1 and 3 in the case when a) the vectors in y
are distinct; and b) every vector in y is an extreme point of A1, see Theorem 4.22 and
Corollary 4.23. We achieve this by deriving a geometric characterization of the extreme
points of the level set L2

≺(y) thus, giving a partial answer to Question 2 under the same
conditions for y. As a consequence of our results we construct a wide class of convex
functions on Rn, see Theorem 4.26, that cannot be approximated by compositions of
a convex function on R with a linear function on Rn, see (5). Finally, in Section 5, see
Theorem 5.2, we present an algebraic characterization of the extreme points of Lℓ

≺(y)
for arbitrary ℓ ∈ Nm and y.

We conclude this section with a reduction result that plays a crucial role.

Theorem 1.5. Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn

with ℓ ≤ m. Suppose that

∀j1, j2 ∈ Nℓ, j1 6= j2 ((xj1 , xj2) ≺ y =⇒ (xj1 , xj2) ≺ds y) . (3)

Then, we have
x ≺ y =⇒ x ≺ds y.
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Proof. Suppose that (3) holds and that x ≺ y, we have to show that x ≺ds y. The
proof is by induction on ℓ with base case ℓ = 2 holding by assumption. Suppose the
result is true for ℓ − 1 < m. For any k the sequence xk := (x1, ..., xk, ..., xℓ), with xk

omitted, has length ℓ − 1 and xk ≺ y. Thus, by the induction hypothesis, xk ≺ds y.
That is, there is a row stochastic matrix Mk = (mk

ij)
ℓ−1,m
i,j=1 such that

xk
i :=

m
∑

j=1

mk
ijyj for all i ∈ Nℓ \ {k}.

Define an ℓ×m matrix M̄k obtained from Mk by adding a row of zeros right after the
(k − 1)-st row and let

M :=
1

ℓ− 1

ℓ
∑

k=1

M̄k.

It is easy to see that M = (mij)
ℓ,m
i,j=1 is row stochastic and satisfies (2).

Corollary 1.6. Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn

with ℓ ≤ m. Then, x ≺ds y if and only if for any two distinct indexes k1, k2 ∈ Nℓ there
are convex combinations

xki =
m
∑

j=1

αijyj for i = 1, 2,

with α1j + α2j ≤ 1 for all j = 1, ...,m.

In view of Theorem 1.5 it suffices to answer Question 1 only in the case ℓ = 2. That is,
it suffices to find a geometric condition on the vectors in y such that for any x1, x2 ∈ Rn

with {x1, x2} ≺ y we have {x1, x2} ≺ds y. For that reason, in Section 4 our efforts are
focused on deriving a geometric characterization of the extreme points of the level set
L2
≺(y).

2. Characterizations of the majorizations

The following characterization of the relation x ≺ds y was given with the aid of Hardy-
Littlewood-Polya-types of inequalities by Fischer and Holbrook in [4]. Here, we are
giving a slightly better formulation of the second part of this result.

Theorem 2.1. Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn

with ℓ ≤ m and let K = conv {y1, ..., ym}. Then the following are equivalent:

(1) x ≺ds y;

(2) for any nonnegative continuous convex function f on K we have

ℓ
∑

i=1

f(xi) ≤
m
∑

i=1

f(yi), (4)

provided each xi ∈ K for i ∈ Nℓ.
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A similar result for the relation x ≺ y was obtained in [5], with the aid of a new class
of functions CVS (Rn). This class is the closed cone (in the pointwise topology of the
set of convex functions defined on Rn), generated by the set of convex functions

CVS (Rn) := {f(〈x, y〉) : f is a convex function on R, y ∈ Rn}. (5)

It is remarked in [5] that CVS (Rn) is a proper subset of the set of all convex functions
defined on Rn. Also, it is stated in the same paper that F. V. Petrov constructed
an explicit example of a function that belongs to the difference of these two sets.
Immediately after Example 2.4 below, we exhibit another such function that will be
considerably generalized in Theorem 4.26. First, we need the following characterization
of the majorization relation ≺, given by Malamud in [5].

Theorem 2.2. Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn

with ℓ ≤ m. Then the following are equivalent:

(1) x ≺ y;

(2) (〈x1, h〉, ..., 〈xℓ, h〉) ≺ (〈y1, h〉, ..., 〈ym, h〉) for all h ∈ Rn;

(3) for any nonnegative f ∈ CVS (Rn) we have

ℓ
∑

i=1

f(xi) ≤
m
∑

i=1

f(yi).

The next characterization, needed for our work, is due to F. V. Petrov, see [5].

Theorem 2.3. Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn

with ℓ ≤ m. Then the following are equivalent:

(1) x ≺ y;

(2) for any k ∈ Nℓ and any k-tuple of indices 1 ≤ i1 < · · · < ik ≤ ℓ there exist
numbers {βj}

m
j=1 in [0, 1] with

∑m

j=1 βj = k such that

xi1 + · · ·+ xik =
m
∑

j=1

βjyj;

(3) there exist vectors xℓ+1, ..., xm ∈ Rn such that (xk)
m
k=1 ≺ (yk)

m
k=1.

In the next example, ℓ is equal to the dimension of the linear space spanned by the
vectors in y and x ≺ y but x �ds y. Note that not all y’s are extreme points of their
convex hull.

Example 2.4. Let n = 2, ℓ = 2, and m = 4. Set

x = (x1, x2) :=
(

(8/3, 16/3)T , (16/3, 8/3)T
)

;

y = (y1, y2, y3, y4) :=
(

(8, 16)T , (16, 8)T , (0, 0)T , (8, 8)T
)

.

We show that x ≺ y, but x �ds y. Indeed, there is only one way to write x1 and
x2 as a convex combination of the y’s namely as x1 = (1/3)y1 + (2/3)y3 and x2 =
(1/3)y2 + (2/3)y3. Next, notice that x1 + x2 = y3 + y4. Hence, we conclude by
Theorem 2.3 that x ≺ y. On the other hand, by the uniqueness of the representations
of x1 and x2 and Corollary 1.6 we conclude x �ds y.
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Given sequences x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 with x ≺ y and x �ds y, it follows

from Theorem 2.1 and Theorem 2.2, that there exists a continuous convex function
f : Rn → R violating Inequality (4) and thus, f 6∈ CVS (Rn). Furthermore, in view of
Theorem 1.5, there are distinct indexes j1, j2 ∈ Nℓ and a continuous convex function
f : Rn → R such that

f(xj1) + f(xj2) >
m
∑

i=1

f(yi).

For example, this is the case in both Examples 1.4 and 2.4 and the convex function

f(w) = dist (w, conv {y1, y2, y4}).

Imitating this example, in Theorem 4.26, we exhibit a wide family of continuous convex
functions f : Rn → R that are not in the class CVS (Rn).

The next lemma is needed in the sequel. In particular, it implies the equivalency
of parts (1) and (2) in Theorem 2.3. The notion of the support function, ρA(z) =
supx∈A〈x, z〉 of a convex set A ⊂ Rn, where z ∈ Rn, is employed in the proof.

Lemma 2.5. Let y = (yk)
m
k=1 be a sequence of vectors in Rn. For every k ∈ Nm, the

following representation holds

Ak(y) =

{

m
∑

j=1

βjyj : βj ∈ [0, 1],
m
∑

j=1

βj = k, j = 1, ...,m

}

.

Proof. Denote the set on the right-hand side by Bk. Clearly both sets Ak and Bk

are closed and convex. It is easy to see the inclusion Ak ⊂ Bk. To see the opposite
inclusion consider the support functions of Ak and Bk respectively. Fix a vector z ∈ Rn

and observe that

ρBk
(z) = max

{

m
∑

j=1

βj〈z, yj〉 : βj ∈ [0, 1],
m
∑

j=1

βj = k, j ∈ Nm

}

is equal to the sum of the k largest elements in the sequence {〈z, yj〉}
m
j=1. We conclude

that ρBk
(z) = 〈z, yj1+· · ·+yjk〉 for some point yj1+· · ·+yjk of Ak thus, ρBk

(z) ≤ ρAk
(z).

Hence, Bk ⊂ Ak, by [8, Corollary 13.1.1].

Note that the sets Ak(y)/k are a particular case of the convex interval hull of y consid-
ered in [3]. We show next, that in part (3 ) of Theorem 2.3 the vectors xℓ+1,...,xm can be
chosen to be all equal to a vector that can be selected independently of f ∈ CVS (Rn).
A similar result for the relation x ≺ds y was shown in [4].

Theorem 2.6. Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn

with ℓ ≤ m. Then the following are equivalent:

(1) x ≺ y;

(2) there exists a vector x′ ∈ A1(y) such that with xℓ+1 = ... = xm := x′ we have
(xk)

m
k=1 ≺ (yk)

m
k=1. In particular, we may choose

x′ :=

∑m

i=1 yi −
∑ℓ

i=1 xi

m− ℓ
; (6)
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(3) there is an x′ ∈ A1(y) such that for any nonnegative f ∈ CVS (Rn) we have

ℓ
∑

i=1

f(xi) + (m− ℓ)f(x′) ≤
m
∑

i=1

f(yi).

Proof. In order to show that (1) implies (2) note, as in F. V. Petrov’s proof of Theo-
rem 2.3, that defining

xℓ+1 :=

∑m

i=1 yi −
∑ℓ

i=1 xi

m− ℓ
, (7)

yields (xk)
ℓ+1
k=1 ≺ (yk)

m
k=1. F. V. Petrov stated that we can continue by induction and

we observe that

xℓ+2 :=

∑m

i=1 yi −
∑ℓ+1

i=1 xi

m− ℓ− 1
=

∑m

i=1 yi −
∑ℓ

i=1 xi −
1

m−ℓ

(

∑m

i=1 yi −
∑ℓ

i=1 xi

)

m− ℓ− 1

=

(

∑m

i=1 yi −
∑ℓ

i=1 xi

)

(

1− 1
m−ℓ

)

m− ℓ− 1
= xℓ+1.

Therefore, following F. V. Petrov’s procedure, we see that xℓ+1 = ... = xm. It follows
from part (3 ) of Theorem 2.3 that x′ ∈ A1. In view of Theorem 2.2 and Theorem 2.3,
the proof is complete.

3. Polyhedral set-valued maps

A set-valued mapping S : Rn
⇉ Rm is a correspondence assigning to each x ∈ Rn a

subset S(x), possibly empty, of Rm. The graph of S is the set

gphS = {(x, y) ∈ Rn × Rm : y ∈ S(x)},

and the domain of S is the set

domS = {x ∈ Rn : S(x) 6= ∅}.

The mapping S is closed-valued if S(x) is a closed set for all x. Denote by Bm the closed
unit ball in Rm centered at the origin. The mapping S is called Lipschitz continuous
relative to a (nonempty) set D ⊂ Rn if D ⊂ domS, S is closed-valued on D, and there
exists κ ≥ 0 such that

S(x′) ⊂ S(x) + κ‖x′ − x‖Bm for all x′, x ∈ D.

The mapping S is called polyhedral convex if its graph is a polyhedral convex set. Note
that polyhedral convexity of S is equivalent, see [2, Section 3C], to the existence of a
positive integer r, matrices A ∈ Rr×n, B ∈ Rr×m and a vector q ∈ Rr such that

S(x) = {y ∈ Rm : Ax+By ≤ q} for all x ∈ Rn. (8)

We have the following result.
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Theorem 3.1. Any polyhedral convex mapping S : Rn
⇉ Rm is Lipschitz continuous

relative to its domain.

The proof of Theorem 3.1 uses the Hoffman lemma regarding approximate solutions of
system of linear inequalities, see for example [2, Theorem 3C.3].

Given a sequence of vectors y = (yk)
m
k=1 in Rn consider the set-valued mapping S :

Rn
⇉ Rm, defined by

S(x) =

{

α ∈ Rm : x =
m
∑

j=1

αjyj,
m
∑

j=1

αj = 1, aj ≥ 0, j ∈ Nm

}

. (9)

It is not difficult to see that S is a polyhedral convex mapping. Indeed, let r = 2n+m+2
and define matrices A ∈ Rr×n, B ∈ Rr×m and a vector q ∈ Rr by

A =













−In×n

In×n

01×n

01×n

0m×n













, B =













y
−y
e

−e
−Im×m













, q =













0n×1

0n×1

1
−1

0m×1













,

where I is the square identity matrix of indicated size, and 0 is the zero matrix of
indicated size, y is the n×m matrix with columns y1, ..., ym, and e is the all-one row-
vector of length m. One can see that we have S(x) = {α ∈ Rm : Ax+Bα ≤ q} showing
that S is a polyhedral convex mapping.

Clearly, domS = conv {y1, ..., ym} and by Theorem 3.1 it is Lipschitz continuous rel-
ative to domS. Note also that the mapping S is compact-valued. A simple limiting
argument leads to the following result.

Corollary 3.2. For every sequence {x′
n} in conv {y1, ..., ym} converging to x, there is

an α ∈ S(x) and a sequence {α′
ns
} converging to α, such that α′

ns
∈ S(x′

ns
) for all

s = 1, 2,..., where {ns}
∞
s=1 is a subsequence of 1, 2,....

4. Answers to Malamud’s Questions 1 and 3

In this section, we consider sequences of vectors y = (yk)
m
k=1 with the following proper-

ties: 1) every vector in y is an extreme point of A1; and 2) the vectors in y are pairwise
distinct.

Characterizing all of the extreme points of Lℓ
≺(y) thus, answering Question 2, appears

to be a difficult problem even under these assumptions. Still some of the extreme
points can be seen immediately. Indeed, every ℓ-tuple in the set

{(yi1 , ..., yiℓ) : 1 ≤ ij ≤ m for j ∈ Nℓ, and all i1, ..., iℓ distinct} (10)

is an extreme point of both level sets Lℓ
≺ds

(y) and Lℓ
≺(y). Thus, the problem is to

find whether Lℓ
≺(y) has other extreme points. Note that the extreme points of the set

Lℓ
≺ds

(y) are easy to characterize.

Theorem 4.1. The extreme points of Lℓ
≺ds

(y) are precisely given by (10).
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Proof. If x ∈ Lℓ
≺ds

(y) then, according to Definition 1.2 there is a doubly stochastic
matrix M such that (2) holds. According to Birkhoff’s theorem M is a convex com-
bination of permutation matrices. Taking the first ℓ rows of each permutation matrix
and mapping it naturally into an ℓ-tuple in (10) shows the result.

4.1. The extreme points of L2
≺(y)

We completely characterize the extreme points of the set L2
≺(y) under the two assump-

tions on y. The answer still depends on the particular configuration of the vectors y.
The rather long build-up that follows, culminates in Theorem 4.17, the main result of
the section. Its corollaries contain the complete answer to Questions 1 and 3.

Lemma 4.2. Suppose that (x1, x2) ∈ L2
≺(y) and that x1 ∈ y. Then (x1, x2) can be

represented as a convex combination of {(yi, yj) : 1 ≤ i 6= j ≤ m}.

Proof. Suppose without loss of generality that x1 = y1. In order to prove the lemma
it is sufficient to show that x2 ∈ conv {y2, ..., ym}. Since x2 ∈ A1, there is a convex
representation

x2 =
m
∑

i=1

αiyi. (11)

Since y1 + x2 ∈ A2, there are numbers β1,...,βm in [0, 1] with
∑m

i=1 βi = 2 such that
y1 + x2 =

∑m

i=1 βiyi. If β1 = 1 then, the proof is complete, since y1 cancels on both
sides and we get the required representation of x2. Assuming that β1 ∈ [0, 1), the last
equality implies

α1y1 +
α1

1− β1

x2 =
m
∑

i=2

α1βi

1− β1

yi.

Adding this equality to (11), canceling α1y1 on both sides, and solving for x2, we obtain

x2 =
m
∑

i=2

(1− β1)αi + α1βi

1 + α1 − β1

yi.

It is easy to check that the coefficients (1−β1)αi+α1βi

1+α1−β1
are in [0, 1] and that they sum up

to 1. This concludes the proof.

Corollary 4.3. Suppose that (x1, x2) ∈ L2
≺(y) and suppose that there are convex rep-

resentations xi =
∑m

j=1 αijyj, i = 1, 2, with α1j0 + α2j0 > 1 for some j0 ∈ Nm. Then,
there is a representation

x1 + x2 =
m
∑

i=1

βiyi with β1, ..., βm ∈ [0, 1],
m
∑

i=1

βi = 2,

such that βj0 = 1.

Proof. Suppose without loss of generality that j0 = 1. Define the vectors

x′
1 := y1,

x′
2 := (α11 + α21 − 1)y1 +

m
∑

j=2

(α1j + α2j)yj.
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Note first, that α11 + α21 < 2. Then, since α1j + α2j < 1 for all indexes j 6= j0,
we conclude that x′

1, x
′
2 ∈ A1. In addition, it is clear that x′

1 + x′
2 = x1 + x2 ∈ A2.

Thus, by Lemma 4.2, (x′
1, x

′
2) is a convex combination of {(yi, yj) : 1 ≤ i 6= j ≤ m}.

Since y1 is an extreme point of A1 we see that (x′
1, x

′
2) is a convex combination of

{(y1, yj) : 1 < j ≤ m} showing that x′
2 ∈ conv {y2, ..., ym}. Hence, the proof is

complete.

Recall the mapping S defined by (9). For any x ∈ domS and any α ∈ S(x), we define
the support of α by

supp (α) := {j : αj 6= 0}.

Lemma 4.4. If (x1, x2) ∈ L2
≺(y) is an extreme point then, for any αi ∈ S(xi), i = 1, 2,

we have
card (supp (α1) ∩ supp (α2)) ≤ 1.

Proof. Suppose card (supp (α1)∩supp (α2)) ≥ 2 for some αi ∈ S(xi), i = 1, 2. Without
loss of generality assume that {1, 2} ⊂ supp (α1) ∩ supp (α2), that is, the elements in
the set {αij : i, j = 1, 2} are strictly positive and strictly less than one. (If one of these
numbers is equal to one then, card (supp (α1) ∩ supp (α2)) ≤ 1.) For a real number ǫ
define

x′
1 := (α11 + ǫ)y1 + (α12 − ǫ)y2 +

m
∑

j=3

α1jyj,

x′
2 := (α21 − ǫ)y1 + (α22 + ǫ)y2 +

m
∑

j=3

α2jyj,

and

x′′
1 := (α11 − ǫ)y1 + (α12 + ǫ)y2 +

m
∑

j=3

α1jyj,

x′′
2 := (α21 + ǫ)y1 + (α22 − ǫ)y2 +

m
∑

j=3

α2jyj.

Clearly, for ǫ close enough to zero we have that (x′
1, x

′
2), (x

′′
1, x

′′
2) ∈ L2

≺(y) and (x1, x2) =
1
2
((x′

1, x
′
2) + (x′′

1, x
′′
2)), contradicting the assumption that (x1, x2) is an extreme point.

Corollary 4.5. If (x1, x2) ∈ L2
≺(y) is an extreme point then, for any αi ∈ S(xi),

i = 1, 2, we have

card (supp (α1) \ supp (α2)) ≥ 1 and card (supp (α2) \ supp (α1)) ≥ 1.

Proof. It is enough to show only the first inequality. Suppose on the contrary that
supp(α1)⊆ supp(α2) for some αi∈S(xi), i=1, 2. By Lemma 4.4 we have card (supp(α1))
= 1 and thus, x1 ∈ y. Then, by Lemma 4.2, (x1, x2) is a convex combination of
{(yi, yj) : 1 ≤ i 6= j ≤ m}. Since (x1, x2) is an extreme point of L2

≺(y), we see, using
Theorem 4.1, that (x1, x2) ∈ {(yi, yj) : 1 ≤ i 6= j ≤ m}, a contradiction.
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A simple observation using Corollary 1.6 and Theorem 4.1 yields the following lemma.

Lemma 4.6. If (x1, x2) ∈ L2
≺(y) and if for some αi ∈ S(xi), i = 1, 2, we have

α1j + α2j ≤ 1 for all j ∈ Nm

then, (x1, x2) is in the convex hull of {(yi, yj) : 1 ≤ i 6= j ≤ m}.

Thus, to find extreme points of L2
≺(y) that are not in (10), it needs to be assumed that

(x1, x2) does not have the property described in Lemma 4.6.

Assumption 4.7. Assume (x1, x2) ∈ L2
≺(y) is such that for any αi ∈ S(xi), i = 1, 2,

we have

α1j0 + α2j0 > 1 for some j0 ∈ Nm. (12)

For any fixed choice of αi ∈ S(xi), i = 1, 2, there can be only one index j0 for which
(12) holds and (without further assumptions) it depends on the particular choice of
the vectors αi ∈ S(xi), i = 1, 2. As we will see in Lemma 4.9, this is no longer the case
if we assume that (x1, x2) is an extreme point of L2

≺(y).

For a set C ⊂ Rn, denote by affC the affine space spanned by C:

affC =

{

x ∈ Rn : x =
k
∑

j=1

αjcj,
k
∑

j=1

αj = 1, cj ∈ C, j ∈ Nk, k = 1, 2, ...

}

.

For a convex set C ∈ Rn denote by riC the relative interior of C:

riC = {x ∈ C : ∃ǫ > 0 such that (x+ ǫBn) ∩ affC ⊂ C}.

Note that if C = {x} is a singleton then, affC = C, riC = C, and dim affC = 0.

Lemma 4.8. Let c1, ..., ck ∈ Rn and suppose that each ci is an extreme point of
conv {ci : i ∈ Nk}. Then

ri conv {ci : i ∈ Nk} =

{

k
∑

i=1

αici :
k
∑

i=1

αi = 1, αi ∈ (0, 1), i ∈ Nk

}

.

Proof. Let L := aff {ci : i ∈ Nk}, d := dimL, C := conv {ci : i ∈ Nk} and let the right-
hand side set, displayed in the lemma, be R. It is not difficult to see that riC ⊇ R and
that C is equal to the closure of R. We need to show the opposite inclusion. Suppose
there is a point x ∈ (riC) \ R. Since R is a convex set, there is an affine subspace M
of L, of dimension d− 1 such that x ∈ M and R is on one side of M . Since x ∈ riC,
there is a point z ∈ C that is strictly on the other side of M . Thus, z 6∈ clR, a
contradiction.

A nonempty set F is an extreme face of A1 if there is a vector a ∈ Rn and a real
number α such that aTy ≤ α for all y ∈ A1 and F = A1 ∩ {x ∈ Rn : aTx = α}.
Furthermore, F is a proper extreme face if F 6= A1 and F is not an extreme point of
A1. For every x ∈ A1 there is a unique (not necessarily proper) extreme face F of A1,
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such that x ∈ riF . Moreover, for any α ∈ S(x), the set {yj : j ∈ supp (α)} is a subset
of the set of extreme points of F . In other words, x can not be expressed as a convex
combination of the extreme points of A1 with a positive weight given to any vector
that is not an extreme point of F .

Let F1 (resp. F2) be the extreme face of A1 containing x1 (resp. x2) in its relative
interior.

Lemma 4.9. Let (x1, x2) be an extreme point of L2
≺(y) for which Assumption 4.7 holds.

Then

(1) F1 and F2 are proper extreme faces of A1;

(2) F1 ∩ F2 = {yj0} for some j0 ∈ Nm;

(3) supp (α1) ∩ supp (α2) = {j0} for any αi ∈ S(xi), i = 1, 2.

Proof. (1). By Lemma 4.8, there is αi ∈ S(xi) such that {yj : j ∈ supp (αi)} is
precisely the set of extreme points of Fi, i = 1, 2. In addition, by Lemma 4.4, we
have card (supp (α1) ∩ supp (α2)) ≤ 1. Since Assumption 4.7 holds, there is an index
j0 ∈ Nm such that α1j0 + α2j0 > 1, that is supp (α1) ∩ supp (α2) = {j0}. Corollary 4.5
now shows that neither F1 nor F2 is an extreme point and that both F1 and F2 are
proper extreme faces of A1.

(2). Since the intersection of the two extreme faces F1 and F2 is an extreme face, if
F1 ∩ F2 contains more than one point, it has to contain more than one extreme point,
contradicting the fact that card (supp (α1) ∩ supp (α2)) ≤ 1.

(3 ). Now, take any α′
i ∈ S(xi), i = 1, 2. By Assumption 4.7, there is an index j′ ∈ Nm

such that α′
1j′+α′

2j′ > 1, that is {j′} = supp (α′
1)∩supp (α′

2). Since {yj : j ∈ supp (α′
i)}

is a subset of the extreme points of Fi we obtain yj′ ∈ F1 ∩ F2. That is, j
′ = j0, since

the vectors in y are distinct.

For a set F ⊂ Rn, denote by linF the unique linear space parallel to affF :

linF := affF − a for any a ∈ affF.

Lemma 4.10. Let (x1, x2) be an extreme point of L2
≺(y) for which Assumption 4.7

holds. Then

linF1 ∩ linF2 = {0}. (13)

Proof. By Lemma 4.8, there is αi ∈ S(xi) such that {yj : j ∈ supp (αi)} is precisely
the set of extreme points of Fi, i = 1, 2. Suppose on the contrary that v 6= 0 belongs
to the set on the left-hand side of (13). In particular that means

v =
∑

j∈supp (αi)

βijyj for i = 1, 2,

for some coefficients with
∑

j∈supp (αi)
βij = 0 where i = 1, 2. For a number ǫ define

x′
1 :=

∑

j∈supp (α1)

α1jyj + ǫv and x′
2 :=

∑

j∈supp (α2)

α2jyj − ǫv,



P. Fischer, H. Sendov / On Malamud Majorization and the Extreme Points of ... 497

together with

x′′
1 :=

∑

j∈supp (α1)

α1jyj − ǫv and x′′
2 :=

∑

j∈supp (α2)

α2jyj + ǫv.

It is clear that for all ǫ close enough to zero we have x′
1, x

′
2, x

′′
1, x

′′
2 ∈ A1 and that

x′
1 + x′

2 = x′′
1 + x′′

2 = x1 + x2 ∈ A2. Then, we have (x1, x2) = 1
2
((x′

1, x
′
2) + (x′′

1, x
′′
2)),

which contradicts the assumption that (x1, x2) is an extreme point.

Assume that (x1, x2) is an extreme point of L2
≺(y) for which Assumption 4.7 holds.

Define

z := x1 + x2 − yj0 (14)

and note that by Corollary 4.3 we have z ∈ conv {y1, ..., yj0 , ..., ym}, where the hat
indicates that vector yj0 is omitted from the list. Let

A′
1 := conv {y1, ..., yj0 , ..., ym}.

Let F3 be the unique extreme face of A′
1 that contains z in its relative interior.

Lemma 4.11. Let (x1, x2) be an extreme point of L2
≺(y) for which Assumption 4.7

holds. Then

linF3 ∩ lin (F1 ∪ F2) = {0}. (15)

Proof. By Lemma 4.8, there is αi ∈ S(xi) such that {yj : j ∈ supp (αi)} is precisely
the set of extreme points of Fi, i = 1, 2. Note that supp (α1) ∩ supp (α2) = {j0}.
Suppose on the contrary that v 6= 0 belongs to the left-hand side of (15). In particular,
this means that

v = βj0yj0 +
∑

j∈supp (α1)
j 6=j0

βjyj +
∑

j∈supp (α2)
j 6=j0

βjyj,

for some coefficients with βj0 +
∑

j∈supp (α1)
j 6=j0

βj +
∑

j∈supp (α2)
j 6=j0

βj = 0. Define the vectors

v1 := βj0yj0 +
∑

j∈supp (α1)
j 6=j0

βjyj and v2 :=
∑

j∈supp (α2)
j 6=j0

βjyj

and the scalars

t1 := βj0 +
∑

j∈supp (α1)
j 6=j0

βjαi and t2 :=
∑

j∈supp (α2)
j 6=j0

βj.

Clearly, we have t1 + t2 = 0 and v1 + v2 = v. For a number ǫ define

x′
1 = (α1j0 − ǫt1)yj0 +

∑

j∈supp (α1)
j 6=j0

α1jyj + ǫv1,

x′
2 = (α2j0 − ǫt2)yj0 +

∑

j∈supp (α2)
j 6=j0

α2jyj + ǫv2,
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and

x′′
1 = (α1j0 + ǫt1)yj0 +

∑

j∈supp (α1)
j 6=j0

α1jyj − ǫv1,

x′′
2 = (α2j0 + ǫt2)yj0 +

∑

j∈supp (α2)
j 6=j0

α2jyj − ǫv2.

For all ǫ close enough to zero, we have x′
1, x

′
2 ∈ A1 and

x′
1 + x′

2 = x1 + x2 + ǫ(v1 + v2) = z + yj0 + ǫv ∈ yj0 + F3 ⊂ A2,

since z is in the relative interior of F3 and v ∈ linF3. This shows that (x
′
1, x

′
2) ∈ L2

≺(y)
and similarly (x′′

1, x
′′
2) ∈ L2

≺(y). Finally,

(x1, x2) =
1

2
((x′

1, x
′
2) + (x′′

1, x
′′
2))

contradicts the fact that (x1, x2) is an extreme point.

Lemma 4.12. Let (x1, x2) be an extreme point of L2
≺(y) for which Assumption 4.7

holds. Then z 6∈ {y1, ..., yj0 , ..., ym}.

Proof. Fix any αi ∈ S(xi) and note that by Lemma 4.9, part (3 ), and by Assump-
tion 4.7 we have α1j0 +α2j0 > 1. Suppose on the contrary that z = yj′ (recall (14)) for
some j′ ∈ Nm \ {j0}. If j

′ ∈ supp (α1) then, by (14), we obtain

yj′ = z = x1 + x2 − y1 = (α1j0 + α2j0 − 1)yj0 +
∑

j∈supp (α1)
j 6=j0

α1jyj +
∑

j∈supp (α2)
j 6=j0

α2jyj.

Solving for yj′ gives

yj′ =
α1j0 + α2j0 − 1

1− α1j′
yj0 +

∑

j∈supp (α1)
j 6=j0,j

′

α1j

1− α1j′
yj +

∑

j∈supp (α2)
j 6=j0

α2j

1− α1j′
yj.

The right-hand side is a convex combination not involving yj′ , contradicting the fact
that yj′ is an extreme point. The case j′ ∈ supp (α2) is analogous, while the case
j′ 6∈ supp (α1) ∪ supp (α2) is elementary.

Corollary 4.13. Assume that (x1, x2) is an extreme point of L2
≺(y) for which Assump-

tion 4.7 holds. Then

(1) F3 cannot intersect F1 ∪ F2 at more than one point. If such a point exists, it is
necessarily different from yj0;

(2) F3 is a proper extreme face of A′
1, that is z 6∈ riA′

1.

Definition 4.14. We say that the quadruple (yj0 , F1, F2, F3), consisting of a vector yj0
from y, two proper extreme faces F1, F2 of the polytope A1, and a proper extreme face
F3 of the polytope A′

1, has the property P if the following conditions are satisfied:
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(1) F1 ∩ F2 = {yj0};

(2) linF1 ∩ linF2 = {0} and lin (F1 ∪ F2) ∩ linF3 = {0};

(3) Defining the set

B := {(x1, x2) : xi ∈ riFi and α1j0 + α2j0 > 1 for all αi ∈ S(xi), i = 1, 2}

we have that {x1 + x2 − yj0 : (x1, x2) ∈ B} ∩ riF3 6= ∅.

Lemma 4.15. If the quadruple (yj0 , F1, F2, F3) has the property P then, there is pre-
cisely one pair (x1, x2) ∈ B such that x1 + x2 − yj0 ∈ F3.

Proof. Suppose on the contrary, that there are two such pairs (x1, x2) and (x′
1, x

′
2).

That is, u := x1 + x2 − yj0 ∈ F3 and u′ := x′
1 + x′

2 − yj0 ∈ F3. Then, u − u′ =
(x1 − x′

1) + (x2 − x′
2) ∈ linF3 ∩ lin (F1 ∪ F2), implies that u = u′. Thus, x1 − x′

1 =
x′
2 − x2 ∈ linF1 ∩ linF2, showing that (x1, x2) = (x′

1, x
′
2).

Definition 4.16. We say that the pair of vectors (x1, x2) in Rn has the property P if
there is a quadruple (yj0 , F1, F2, F3) with the property P, such that (x1, x2) ∈ B and
x1 + x2 − yj0 ∈ F3.

It is easy to see from the definition that, if a pair of vectors (x1, x2) in Rn has the
property P then, (x1, x2) ∈ L2

≺(y), but (x1, x2) 6∈ L2
≺ds

(y). We now state the main
result of the section.

Theorem 4.17 (The extreme points of L2
≺(y)). The pair of vectors (x1, x2) in Rn

is an extreme point of L2
≺(y) if and only if (x1, x2) = (yi, yj) for some 1 ≤ i 6= j ≤ m

or has the property P.

Proof. We only need to prove the sufficiency of the property P for (x1, x2) to be an
extreme point. Thus, let (x1, x2) ∈ L2

≺(y) have the property P with corresponding
quadruple (yj0 , F1, F2, F3). Suppose that

(x1, x2) = t(x′
1, x

′
2) + (1− t)(x′′

1, x
′′
2) (16)

for some distinct (x′
1, x

′
2), (x

′′
1, x

′′
2) ∈ L2

≺(y) and t ∈ (0, 1). Since the whole segment
[(x′

1, x
′
2), (x

′′
1, x

′′
2)] belongs to L2

≺(y) we can assume that (x′
1, x

′
2) and (x′′

1, x
′′
2) are ar-

bitrary close to (x1, x2). By applying Corollary 3.2 four times, there are vectors
αk
i ∈ S(xi) for i, k = 1, 2 and vectors α′

i ∈ S(x′
i), α′′

i ∈ S(x′′
i ) for i = 1, 2 such

that α1
i is arbitrarily close to α′

i and α2
i is arbitrarily close to α′′

i , for i = 1, 2. Using
the fact that (x1, x2) ∈ B, defined in part (3) of Definition 4.14, we obtain

α′
1j0

+ α′
2j0

> 1 and α′′
1j0

+ α′′
2j0

> 1.

Corollary 4.3 now implies that x′
1 + x′

2 − yj0 ∈ A′
1. Since F3 is an extreme face of A′

1,
x1 + x2 − yj0 ∈ riF3, and since (x′

1, x
′
2) is arbitrarily close to (x1, x2), we conclude that

x′
1+x′

2− yj0 ∈ riF3. Analogously, we obtain x′′
1 +x′′

2 − yj0 ∈ riF3. Subtracting the last
two inclusions, we obtain

x′
1 + x′

2 − (x′′
1 + x′′

2) ∈ linF3.
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The last difference can also be written as

(x′
1 − x′′

1) + (x′
2 − x′′

2) ∈ lin (F1 ∪ F2).

By the fact that linF3 ∩ lin (F1 ∪ F2) = {0}, we conclude that

x′
1 + x′

2 = x′′
1 + x′′

2 = x1 + x2,

where the last equality follows from (16). Therefore, we have x1 − x′
1 = x2 − x′

2 ∈
linF1∩ linF2. This, by the fact that linF1∩ linF2 = {0}, implies x1 = x′

1 and x2 = x′
2.

After analogous argument for (x′′
1, x

′′
2) we conclude

(x1, x2) = (x′
1, x

′
2) = (x′′

1, x
′′
2).

This contradicts the fact that the points (x′
1, x

′
2) and (x′′

1, x
′′
2) are distinct and proves

the result.

Example 4.18. Consider the vectors y = (y1, ..., y5) in R3, where y1 = (0, 0, 0)T ,
y2 = (0,−1, 2)T , y3 = (0, 1, 2)T , y4 = (1, 0, 1)T , and y5 = (−1, 0, 1)T . Let x1 =
(0,−1/4, 2/4)T and x2 = (0, 1/4, 2/4)T . Then, we have x1 = (3/4)y1+(1/4)y2 and x2 =
(3/4)y1+(1/4)y3, showing that x1, x2 ∈ A1 and x1+x2 = y1+(1/2)y4+(1/2)y5 showing
that (x1, x2) ∈ L2

≺(y). On the other hand (x1, x2) has the property P with quadruple
(y1, F1, F2, F3), where F1 = conv {y1, y2}, F2 = conv {y1, y3}, and F3 = conv {y4, y5}.
Thus, (x1, x2) is an extreme point of L2

≺(y) not in the set {(yi, yj) : 1 ≤ i 6= j ≤ 4}.

It is possible to prove the next corollary directly, without relying on Theorem 4.17, but
now it comes as a simple exercise in plane geometry.

Corollary 4.19. Suppose that vectors y = (yk)
m
k=1 belong to a two dimensional affine

subspace of Rn. The extreme point of L2
≺(y) are {(yi, yj) : 1 ≤ i 6= j ≤ m}, that is,

there are no extreme points with the property P.

Proof. It is not difficult to see that there are no quadruples (yj0 , F1, F2, F3) with the
property P.

The next corollary recovers an observation made by Malamud in [5] and mentioned in
the introduction.

Corollary 4.20. Suppose that vectors y = (yk)
m
k=1 in Rn are affinely independent. The

extreme point of L2
≺(y) are {(yi, yj) : 1 ≤ i 6= j ≤ m}, that is, there are no extreme

points with the property P.

Definition 4.21. We say that the polytope A1 ⊂ Rn with extreme points y = (yk)
m
k=1

has the property P if there is a quadruple (yj0 , F1, F2, F3) having the property P.

The next theorem is the answer to Question 1. We repeat the standing assumptions
that we imposed on the vectors in y throughout this subsection.

Theorem 4.22 (Answer to Question 1). Let y = (yk)
m
k=1 be a sequence of distinct

vectors in Rn such that every yk is an extreme point of the polytope A1(y). Then, for
any sequence x = (xk)

ℓ
k=1 we have (x ≺ y ⇔ x ≺ds y) if and only if the polytope A1(y)

does not have the property P.
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Proof. If the polytope A1(y) does not have the property P then, the extreme points
of L2

≺(y) are the same as the extreme points of L2
≺ds

(y). In other words (x1, x2) ≺ y
is equivalent to (x1, x2) ≺ds y for any x1, x2 ∈ Rn. By Theorem 1.5 together with
Lemma 1.3 we conclude.

Suppose that A1(y) has the property P, that is, there is a quadruple (yj0 , F1, F2, F3)
having the property P. Let (x1, x2) ∈ B be such that x1 + x2 − yj0 ∈ F3, that is
x1+x2 ∈ A2 showing that (x1, x2) ≺ y. Since α1j0 +α2j0 > 1 for all αi ∈ S(xi), i = 1, 2
we see that (x1, x2) ≺ds y does not hold.

Corollary 4.23 (Answer to Question 3). Let y = (yk)
m
k=1 be a sequence of distinct

vectors in Rn such that every yk is an extreme point of the polytope A1(y). Then, for
ℓ ≤ m we have Lℓ

≺(y) = Lℓ
≺ds

(y) if and only if the polytope A1(y) does not have the
property P.

Corollary 4.24. Let y = (yk)
m
k=1 be a sequence of distinct vectors in Rn such that

every yk is an extreme point of the polytope A1(y). Suppose that the vectors in y belong
to a two dimensional affine subspace of Rn. Then, for any sequence x = (xk)

ℓ
k=1,

ℓ ≤ m, we have x ≺ y ⇔ x ≺ds y.

Corollary 4.25. Let y = (yk)
m
k=1 be a sequence of affinely independent vectors in Rn.

Then, for any sequence x = (xk)
ℓ
k=1, ℓ ≤ m, we have x ≺ y ⇔ x ≺ds y.

We conclude this section with a result providing a geometric description of a wide
family of convex functions f : Rn → R that are not in the class CVS (Rn).

Theorem 4.26. Let y = (yk)
m
k=1 be a sequence of distinct vectors in Rn such that

every yk is an extreme point of the polytope A1(y). Suppose the polytope A1(y) has the
property P, that is, there is a quadruple (yj0 , F1, F2, F3) having the property P. Then,
the function

f(w) := dist (w,A′
1(y))

is convex on Rn but is not in the class CVS (Rn), where

A′
1(y) = conv {y1, ..., yj0 , ..., ym}.

Proof. Let B be the set given in Definition 4.14 and let (x1, x2) be the unique pair
in B (see Lemma 4.15) such that z := x1 + x2 − yj0 ∈ riF3. By Definition 4.14,
we have (x1, x2) ∈ L2

≺(y), but (x1, x2) 6∈ L2
≺ds

(y). Thus, according to Theorem 2.1
and Theorem 2.2, in order to show that f 6∈ CVS (Rn), it is sufficient to see that
Inequality (4) is violated, that is

dist (x1, A
′
1(y)) + dist (x2, A

′
1(y)) > dist (yj0 , A

′
1(y)). (17)

Since z ∈ F3 ⊂ A′
1(y), we conclude that dist (yj0 , A

′
1(y)) ≤ ‖z − yj0‖, that is, the

right-hand side of (17) is always at most ‖z − yj0‖. Without loss of generality we may
assume that

dist (yj0 , A
′
1(y)) = ‖z − yj0‖. (18)
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Since z ∈ riF3, it is not difficult to see that z − yj0 is orthogonal to affF3. Let H be
the hyperplane in Rn with normal z − yj0 and containing affF3, that is

H := {x ∈ Rn : 〈z − x, z − yj0〉 = 0}.

Define the closed and open half-space

H+ := {x ∈ Rn : 〈z − x, z − yj0〉 ≥ 0}, and

H++ := {x ∈ Rn : 〈z − x, z − yj0〉 > 0},

and similarly H− and H−−. Note that z ∈ H. Since yj0 6∈ F3 we have yj0 6= z and
thus, yj0 ∈ H++.

Claim. A′
1(y) ⊂ H−.

Proof. Assume that z1 ∈ A′
1(y) is different from z and z1 ∈ H++. Then, by the

accessibility lemma, see [7, page 164], the segment (z, z1] is contained in A′
1(y)∩H++.

Since yj0 +‖z−yj0‖intBn ⊂ H++ and H is tangent to the closed ball yj0 +‖z−yj0‖Bn,
we obtain that (z, z1] ∩ (yj0 + ‖z − yj0‖intBn) 6= ∅. This contradicts the fact that
dist (yj0 , A

′
1(y)) = ‖z − yj0‖. Thus, A

′
1(y) ⊂ H−.

Claim. We have that x1, x2 ∈ H++.

Proof. By the supporting hyperplane theorem, since x1 and x2 belong to the convex
set A1(y) with extreme point yj0 , we conclude that 〈x2 − yj0 , x1 − yj0〉 ≥ 0. Thus,

〈z − x1, z − yj0〉 = 〈x2 − yj0 , x1 + x2 − 2yj0〉

= ‖x2 − yj0‖
2 + 〈x2 − yj0 , x1 − yj0〉

> 0,

since x2 ∈ riF2 and yj0 is an extreme point of F2. Analogously, we see that 〈z−x2, z−
yj0〉 ≥ 0.

To summarize, we showed that x1, x2, yj0 ∈ H++ and A′
1(y) ⊂ H−. This implies

dist (xi, H) ≤ dist (xi, A
′
1(y)), i = 1, 2. (19)

Next, since xi ∈ riFi is a convex combination of yj0 and a point from A′
1(y), the ray

{yj0 + t(xi − yj0) : t ≥ 0} intersects H in a unique point, say Pi, i = 1, 2. Moreover,
since x1, x2, yj0 ∈ H++ we have Pi = yj0 + ti(xi − yj0) for some ti > 1, i = 1, 2.

Claim. z belongs to the open segment between P1 and P2.

Proof. By the fact that Pi ∈ H we obtain

0 = 〈z − Pi, z − yj0〉 = ‖z − yj0‖
2 − ti〈xi − yj0 , z − yj0〉

or equivalently
1

ti
=

〈xi − yj0 , z − yj0〉

‖z − yj0‖
2

, i = 1, 2.
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By the definition of z and the observation 1/t1 + 1/t2 = 1, we obtain

z = (x1 − yj0) + (x2 − yj0) + yj0 =
P1 − yj0

t1
+

P2 − yj0
t2

+ yj0

=
1

t1
P1 +

1

t2
P2.

The fact that 1/ti ∈ (0, 1), i = 1, 2, completes the proof of the claim.

We now focus our attention on the triangle with vertices yj0 , P1, and P2. We have
shown that xi belongs to the open segment between yj0 and Pi, i = 1, 2 and that z
belongs to the open segment between P1 and P2. Let zi be the projection of xi onto
H, that is

dist (xi, H) = ‖zi − xi‖, i = 1, 2. (20)

Since vector z−yj0 is orthogonal to H we conclude that zi belongs to the open segment
between Pi and z, i = 1, 2. Thus, z is a convex combination of z1 and z2. Observe
that z1 6= z2 or else z1 = z2 = z and x1, x2 must be on the open segment between yj0
and z, showing that the extreme faces F1 and F2 have more than one point in common
contradicting Definition 4.14. Finally, since the triangle with vertices yj0 , P1, P2 is in
lin (F1 ∪ F2), we conclude that

z1 − z2 ∈ lin (F1 ∪ F2). (21)

Claim. We have

dist (x1, H) + dist (x2, H) < dist (x1, A
′
1(y)) + dist (x2, A

′
1(y)). (22)

Proof. Suppose on the contrary that the claim is not true, that is by (19) we must
have dist (xi, H) = dist (xi, zi) = dist (xi, A

′
1(y)) implying that zi ∈ A′

1(y), i = 1, 2.
Since z ∈ riF3 and F3 is an extreme face of A′

1(y), we see that z1, z2 ∈ F3 and thus,

z1 − z2 ∈ linF3.

This, together with (21) contradicts the fact that lin (F1 ∪ F2) ∩ linF3 = {0} in Defi-
nition 4.14.

Inequality (22) together with (18) and (20) shows that in order to prove (17) it is
enough to see that

‖z1 − x1‖+ ‖z2 − x2‖ = ‖z − yj0‖.

Indeed, the triangle with vertices x1, z1, z is similar to the triangle with vertices yj0 ,
z, P2, implying that

‖z1 − x1‖

‖z − yj0‖
=

‖z − x1‖

‖P2 − yj0‖
=

‖x2 − yj0‖

‖P2 − yj0‖
, (23)
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where we used that z− x1 = x2 − yj0 . Analogously, since the triangle with vertices x2,
z2, P2 is similar to the triangle with vertices yj0 , z, P2, we obtain

‖z2 − x2‖

‖z − yj0‖
=

‖P2 − x2‖

‖P2 − yj0‖
. (24)

Combining (23) and (24) we finally obtain

‖z1 − x1‖+ ‖z2 − x2‖ = ‖z − yj0‖
‖x2 − yj0‖

‖P2 − yj0‖
+ ‖z − yj0‖

‖P2 − x2‖

‖P2 − yj0‖

= ‖z − yj0‖,

where we used that x2 is on the segment between yj0 and P2.

5. The extreme points of Lℓ
≺(y)

Let x = (xk)
ℓ
k=1 and y = (yk)

m
k=1 be two sequences of vectors in Rn with ℓ ≤ m and

x ∈ Lℓ
≺(y). We do not impose any restrictions on the vectors y. In this section we

derive an algebraic characterization of the extreme points of Lℓ
≺(y) in this general case.

For any subset π ⊂ Nℓ denote

xπ :=
∑

k∈π

xk.

According to Theorem 2.3, for every subset π ⊆ Nℓ there are numbers {απ,j}
m
j=1 in

[0, 1] with
∑m

j=1 απ,j = card (π) and such that

xπ =
m
∑

j=1

απ,jyj.

Them-tuple απ := (απ,1, ..., απ,m) will be called a Petrov representation of xπ. If the set
π contains just one element, say π = {k} then, we just write xk and αk = (αk,1, ..., αk,m).
Slight care is required with this notation. While xπ denotes the sum of the vectors
{xk : k ∈ π}, the coefficient απ,j is not necessarily the sum of {αk,j : k ∈ π}. Given a
Petrov representation απ, consider the set

supp ∗ (απ) := {j ∈ Nm : απ,j ∈ (0, 1)}.

If α′
π and α′′

π are two Petrov representations of xπ then, we say that α′
π ≤ α′′

π if
supp ∗ (α

′
π) ⊂ supp ∗ (α

′′
π). This relation is reflexive and transitive and thus, for a fixed

π, it defines a preorder on all Petrov representations of xπ. A Petrov representation
α∗
π of xπ will be called maximal if there is no Petrov representation απ of xπ with

supp ∗ (α
∗
π) $ supp ∗ (απ). It is easy to see that for any Petrov representation απ of xπ

there is a maximal Petrov representation α∗
π with απ ≤ α∗

π.

Lemma 5.1. Let π ⊂ Nℓ with card (π) = k, and let α∗
π be a maximal Petrov represen-

tation of xπ. Let F be the unique extreme face of Ak such that xπ ∈ riF . Furthermore,
let S be the set

S = {{i1, ..., ik} : yi1 + · · ·+ yik is an extreme point of F}.

Then, for any j ∈ Nm we have:
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(1) If α∗
π,j = 1 then j ∈ s for all s ∈ S;

(2) If α∗
π,j = 0 then j 6∈ s for any s ∈ S;

(3) If x ∈ riF has a maximal Petrov representation α∗
x then,

{j ∈ Nm : α∗
π,j = i} = {j ∈ Nm : α∗

x,j = i} for i = 0, 1.

Proof. (1). Since xπ ∈ riF , by Lemma 4.8 there are numbers {γs ∈ (0, 1) : s ∈ S}
with

∑

s∈S γs = 1 such that

xπ =
∑

s∈S

γs

(

∑

j∈s

yj

)

=
m
∑

j=1

(

∑

s∈S:j∈s

γs

)

yj. (25)

Define a vector α ∈ Rm by

αj :=
∑

s∈S:j∈s

γs for j ∈ Nm.

It is easy to see that αj ∈ [0, 1] and
∑m

j=1 αj = k, since every γs is counted k times.
Thus, α is a Petrov representation of xπ.

We now show the necessity. Suppose there is an index j0 ∈ Nm such that α∗
π,j0

= 1
but j0 6∈ s0 for some s0 ∈ S, that is, 0 ≤ αj0 < 1. Recalling that we also have
xπ =

∑m

j=1 α
∗
π,jyj and combining it with (25), we find that for any real number t we

have

xπ =
m
∑

j=1

(

α∗
π,j + t(αj − α∗

π,j)
)

yj. (26)

Note that if α∗
π,j = 1 then, αj−α∗

π,j ≤ 0 and if α∗
π,j = 0 then, αj−α∗

π,j ≥ 0. In addition,
we have αj0 − α∗

π,j0
< 0. Thus, for all positive values of t close enough to zero, (26)

defines a Petrov representation of xπ strictly bigger than α∗
π, which is a contradiction.

The proof of part (2) is analogous.

(3 ). Let x ∈ riF have a maximal Petrov representation α∗
x. Suppose that there is an

index j0 ∈ {j ∈ Nm : α∗
π,j = 1} \ {j ∈ Nm : α∗

x,j = 1}. Note that, if α∗
π,j = 1 then,

α∗
x,j − α∗

π,j ≤ 0 and if α∗
π,j = 0 then, α∗

x,j − α∗
π,j ≥ 0, while in addition

α∗
x,j0

− α∗
π,j0

< 0.

Thus, for all positive t close enough to zero,

xπ =
m
∑

j=1

(α∗
π,j + t(α∗

x,j − α∗
π,j))yj

defines a Petrov representation of xπ strictly bigger than α∗
π. This contradiction shows

that {j ∈ Nm : α∗
π,j = 1} ⊂ {j ∈ Nm : α∗

x,j = 1}. The verification of the opposite
inclusion is analogous, after exchanging the roles of α∗

π and α∗
x, as well as the proof of

the equality {j ∈ Nm : α∗
π,j = 0} = {j ∈ Nm : α∗

x,j = 0}.
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For any subset π ⊂ Nℓ, fix a maximal Petrov representation α∗
π of xπ, and define the

following system of linear equations with variables E := (ǫk,j)
ℓ,m
k,j=1,1 and Γ := {γπ,j :

π ⊂ Nℓ, j ∈ Nm}:

m
∑

j=1

(

∑

k∈π

ǫk,j

)

yj =
m
∑

j=1

γπ,jyj for all π ⊂ Nℓ;

m
∑

j=1

γπ,j = 0 for all π ⊂ Nℓ; (27)

γπ,j = 0 whenever α∗
π,j ∈ {0, 1}.

By Lemma 5.1, the system is independent of the maximal Petrov representations cho-
sen.

Theorem 5.2. The sequence x ∈ Lℓ
≺(y) is an extreme point of Lℓ

≺(y) if and only if
every solution of the system (27) satisfies

∑m

j=1 ǫk,jyj = 0 for all k ∈ Nℓ.

Proof. Suppose that the linear system (27) has a solution (E ,Γ) with
∑m

j=1 ǫk,jyj 6= 0
for some k ∈ Nℓ. By homogeneity, for any number t, (tE , tΓ) is also a solution to (27).
Define the vectors

x′
k :=

m
∑

j=1

(α∗
k,j + tǫk,j)yj and x′′

k :=
m
∑

j=1

(α∗
k,j − tǫk,j)yj, k ∈ Nℓ,

and let x′ := (x′
k)

ℓ
k=1 and x′′ := (x′′

k)
ℓ
k=1. By assumption, we have that x′, x, and x′′ are

distinct sequences of vectors. We need to show now that x′, x′′ ∈ Lℓ
≺(y). Fix a subset

π ⊂ Nℓ and observe that

x′
π =

∑

k∈π

x′
k =

∑

k∈π

m
∑

j=1

(α∗
k,j + tǫk,j)yj =

m
∑

j=1

α∗
π,jyj + t

m
∑

j=1

(

∑

k∈π

ǫk,j

)

yj

=
m
∑

j=1

α∗
π,jyj + t

m
∑

j=1

γπ,jyj =
m
∑

j=1

(α∗
π,j + tγπ,j)yj.

For all t close to zero, the last expression is a Petrov representation of x′
π showing that

x′
π ∈ Acard (π). That is x′ ∈ Lℓ

≺(y). The argument for x′′ is analogous. The fact that
x′ 6= x′′ and x = (x′ + x′′)/2 implies that x is not an extreme point.

Suppose now, that x ∈ Lℓ
≺(y) is not an extreme point. Then, there are distinct

x′, x′′ ∈ Lℓ
≺(y) with x = (x′ + x′′)/2. Since x′

k ∈ A1, there are convex representations

x′
k :=

m
∑

j=1

α′
k,jyj for k = 1, ..., ℓ,

and we define ǫk,j := α′
k,j − α∗

k,j. We show now that E := (ǫk,j)
ℓ,m
k,j=1,1 together with

some values Γ := {γπ,j : π ⊂ Nℓ, j ∈ Nm} is a solution of (27). That solution, using the
fact that x 6= x′, trivially satisfies

∑m

j=1 ǫk,jyj 6= 0 for some k ∈ Nℓ. Fix a set π ⊂ Nℓ
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and let F be the unique extreme face of Acard (π) with the property xπ ∈ riF . Since
xπ = (x′

π + x′′
π)/2, we may assume, without loss of generality, that x′ is close enough

to x so that x′
π ∈ riF . Let the maximal Petrov representation of x′

π ∈ riF ⊂ Acard (π)

be x′
π =

∑m

j=1 α
′∗
π,jyj. Then,

m
∑

j=1

α′∗
π,jyj =

∑

k∈π

x′
k =

∑

k∈π

m
∑

j=1

α′
k,jyj =

∑

k∈π

m
∑

j=1

(α∗
k,j + ǫk,j)yj

=
∑

k∈π

xk +
m
∑

j=1

(

∑

k∈π

ǫk,j

)

yj =
m
∑

j=1

α∗
π,jyj +

m
∑

j=1

(

∑

k∈π

ǫk,j

)

yj,

and consequently

m
∑

j=1

(

∑

k∈π

ǫk,j

)

yj =
m
∑

j=1

(α′∗
π,j − α∗

π,j)yj.

Using Lemma 5.1, part (3 ), for the quantities γπ,j := α′∗
π,j −α∗

π,j for all j ∈ Nm we have
∑m

j=1 γπ,j = 0 with γπ,j = 0 whenever α∗
π,j ∈ {0, 1}. This shows that the linear system

(27) has a solution with the required properties.
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[3] B. Ćurgus, K. Kołodziejczyk: On a convex operator for finite sets, Discrete Appl. Math.
155 (2007) 1774–1792.

[4] P. Fischer, J. A. R. Holbrook: Balayage defined by the nonnegative convex functions,
Proc. Amer. Math. Soc. 79 (1980) 445–448.

[5] S. M. Malamud: Inverse spectral problem for normal matrices and the Gauss-Lucas
theorem, Trans. Amer. Math. Soc 357(10) (2004) 4043–4064.

[6] A. W. Marshall, I. Olkin: Inequalities: Theory of Majorization and its Applications,
Mathematics in Science and Engineering 143, Academic Press, New York (1979).

[7] A. L. Peressini, F. E. Sullivan, J. J. Uhl, Jr.: The Mathematics of Nonlinear Program-
ming, Undergraduate Texts in Mathematics, Springer, New York (1988).

[8] R. T. Rockefellar: Convex Analysis, Princeton University Press, Princeton (1970).

[9] F. A. Valentine: Convex Sets, McGraw-Hill, New York (1964).


