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We construct an explicit approximation to a rearranged function u
∗ of u via iterated polarizations of u.

1. Introduction

Two-point rearrangement or polarization is a powerful tool to establish numerous func-
tional inequalities. The breakthrough paper of Al Baernstein II, [1], opened the way
to many interesting works.

Let us first recall that for any nonnegative real valued function u : RN → R+ and any
half spaceH of RN containing the originORN , we define the two-point rearrangement
(or polarization) of u with respect to H by:

uH(x) =

{

max {u(x), u(σH(x))} for x ∈ H,

min {u(x), u(σH(x))} elsewhere;
(1)

here σH is the reflection with respect to H.

We say that a nonnegative function u is a symmetrizable function if µ
{

x ∈ R
N :

u(x) > t} < ∞ for all t > 0, where µ denotes the Lebesgue measure in R
N . u∗ is the

unique function equimeasurable with u (see Section 2) such that u∗(x) = h(|x|) with
h non-increasing and right-continuous.

Inspired by the work of Al Baernstein II, F. Brock and Y. Solynin proved in [4] that
for a nonnegative function u ∈ Lp(RN), its Schwarz symmetrization u∗ is the limit of
iterated polarizations. Namely

un = uH1...Hn =

[

(

uH1
)H2

...
]Hn

→ u∗ ∈ Lp
(

R
N
)

provided that u ∈ Lp
+

(

R
N
)

. (2)
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It turned out that (2) is extremely useful to prove many rearrangement inequalities. In-
deed, it reduces complicated symmetrization inequalities to easier combinatorial prob-
lems. More precisely, to prove the generalized Hardy-Littlewood inequalities [3, 5], it
is sufficient to establish:

∫

RN

F (u1(x), . . . , un(x)) dx ≤

∫

RN

F
(

uH
1 (x), . . . , u

H
n (x)

)

dx (3)

for any H. Hence using (2) and suitable growth conditions, we get

∫

RN

F (u1(x), . . . , un(x)) dx ≤

∫

RN

F (u∗
1(x), . . . , u

∗
n(x)) dx. (4)

The same approach applies to establish the generalized Riesz inequality. C. Draghici [3]
and A. Burchard and the author [5] proved that:

∫

RN

. . .

∫

RN

F (u1(x1), . . . , un(xn))
∏

i<j

Ki,j (d(xi, xj)) dx1 . . . dxn (5)

≤

∫

RN

. . .

∫

RN

F
(

uH
1 (x1), . . . , u

H
n (xn)

)

∏

i<j

Ki,j (d(xi, xj)) dx1 . . . dxn

for any H, u1, . . . , u2 are symmetrizable functions and Ki,j are non-increasing kernels.
Hence using again the limiting procedure (2), we obtain:

∫

RN

. . .

∫

RN

F (u1(x1), . . . , un(xn))
∏

i<j

Ki,j (d(xi, xj)) dx1 . . . dxn

≤

∫

RN

. . .

∫

RN

F (u∗
1(x1), . . . , u

∗
n(xn))

∏

i<j

Ki,j (d(xi, xj)) dx1 . . . dxn. (6)

Moreover two-point rearrangement enables us to study equality cases in (4) and (6).
Once again it reduces a very hard functional analysis problem to a much less difficult
combinatorial one. Indeed, to study equality cases in the generalized Hardy-Littlewood
and Riesz inequalities it is sufficient to determine equality cases in (3) and (5) (respec-
tively). This was done by A. Burchard and the author in [3, Theorem 2]. The other
key tool was the following result

v = v∗ ⇔ v = vH ∀H ∈ H. (7)

Polarization is an efficient tool to establish Pólya-Szegö inequality. Indeed, if u is
a nonnegative function in the Sobolev space W 1,p(RN), then uH is also in the same
space, [8], and |∇u|p = |∇uH |p, which implies that |∇u|p = |∇uH1...Hn|p, the lower
semi-continuity of | · |p and (2) enables us to conclude that

|∇u|p ≥ |∇u∗|p. (8)
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Recently, M. Squassina and the author, [8], have extended this inequality to integrands
depending on u and its gradient. Our main ingredient was polarization. Generalized
Pólya-Szegö inequality has numerous applications in quasilinear equations.

However the study of equality cases in the Generalized Pólya-Szegö inequality needs
subtle informations about the iterated polarizations. The method of Brock and Solynin
to establish (2) is based on maximization techniques in which one cannot have concrete
informations about the maximum and consequently the sequence constructed in [4,
Lemma 6.1] is very abstracted. In [9, 10], Van Schaftingen has slightly improved the
construction of [4] but his proof is not direct either and the underlying ideas he used
are also based on implicit maximization problem.

The goal of this paper is to give an explicit construction of a sequence (un) obtained by
iterated polarizations of u with respect to some half spaces H. This construction is a
key ingredient in establishing equality cases in the generalized Pólya-Szegö inequality.

After the submission of the paper, the author learned that Jean Van Schaftingen had
obtained the main result of the present article independently in a recent preprint [11].
We would like to point out that the same version of this paper was sent to some
colleagues on December 11, 2008.

2. Notation and Definitions

• All statements about measurability refer to the Lebesgue measure µ in R
N unless

it is indicated (N ∈ N
∗).

• In an integral where no domain of integration (variable of integration) is indicated,
it is to be understood that the integration extends over all RN (respectively the
variable of integration is dµ)

• M(RN) is the set of real valued measurable functions, for p > 1; Lp(RN) =
{

u ∈ M(RN) : |u|p < ∞
}

where |u|p =
(∫

|u|p
)

1

p , | · | is the euclidean norm in R
N .

L+
p (R

N) is the cone of non-negative functions of Lp(R
N).

• The set of symmetrizable functions FN =
{

u ∈ M+(R
N) : µ

{

x ∈ R
N : u(x) > t

}

< ∞ ∀t > 0}; M+(R
N) is the set of nonnegative measurable functions.

• If u and v are in FN , we say that u is equimeasurable with v if µ{x ∈ R
N :

u(x) > t} = µ{x ∈ R
N : v(x) > t} ∀t > 0; we write u ∼ v.

• For u ∈ FN , its Schwarz symmetrization u∗ is the unique function such that
u ∼ u∗ with u∗(x) = h(|x|);h : (0,∞) → R+ is nonincreasing and right contin-
uous. When u = u∗, we say that u is Schwarz symmetric. When h is strictly
decreasing, we say that u∗ is strictly decreasing too (for a more detailed account,
see [7]).

• It is well-known that for any half space H containing ORN , we have that: u, uH

and u∗ are equimeasurable [1], therefore:

|u|p = |uH |p = |u∗|p for any u ∈ L+

p (R
N). (9)
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Topology of Half spaces: H denotes the set of closed half spaces H of R
N

containing ORN.

We equip it with the endowed norm ensuring that Hn → H if and only if there is
a sequence of isometries in : RN → R

N such that Hn = in(H) and in converges to
identity when n goes to infinity.

3. Preliminaries and Main Result

Before we state our main Theorem, let us prove some intermediate results. We start
by giving Lemma 3.1 which can be very useful for many other purposes.

3.1. Polarization Inequalities and strict Inequalities:

Lemma 3.1. Let u, v be two elements of FN , F : R+×R+ → R be a Borel measurable

function such that:

i) F (w1, w2)+F (z1, z2)≤ F (max(z1, w1),max(z2, w2))+F (min(z1, w1),min(z2, w2))
for any z1 6= w1 and z2 6= w2.

Then:
∫

F (u, v) ≤

∫

F (uH , vH) for any H ∈ H

provided that both integrals are finite.

In addition, if v = v∗ and is strictly radially decreasing, and if i) holds with strict

inequality, then the following holds: If
∫

F (u, v) =
∫

F (uH , vH) ∀H ∈ H then u = uH

for any H ∈ H and u = u∗.

Proof. Using the integrability assumptions, we can write:

∫

F (u(x), v(x)) dx =

∫

H

F (u(x), v(x)) +

∫

H

F (u (σH(x)) , v (σH(x)))

∫

F
(

uH(x), vH(x)
)

dx =

∫

H

F
(

uH(x), vH(x)
)

+

∫

H

F
(

uH (σH(x)) , v
H (σH(x))

)

Therefore
∫

F
(

uH(x), vH(x)
)

−
∫

F (u(x), v(x)) =
∫

H
F
(

uH(x), vH(x)
)

−F (u(x), v(x))
−F (u (σH(x)) , v (σH(x))) + F (u (σH(x)) , v (σH(x))) (*)

For x ∈ H, set z1 = u(x), z2 = v(x), w1 = u (σH(x)) , w2 = v (σH(x)). Then max(z1, w1)
= uH(x) and min(z1, w1) = uH (σH(x)). The result follows thanks to i).

Now if v = v∗ is strictly decreasing and (*) equals zero then (u(x)− u (σH(x))) and
(v(x)− v (σH(x))) have the same sign (up to a set of measure zero).

Since v = vH ∀H ∈ H, we certainly have that v(x) ≥ v (σH(x)) for almost every x ∈ H
(here we used that |σH(x)| ≥ |x| for x ∈ H).

Hence u(x) ≥ u (σH(x)) for a.e. x ∈ H. Using (7), the result follows.

Corollary 3.2 (Hardy-Littlewood inequality for polarization). For any u ∈
Lp
+(R

N) and v ∈ Lq
+(R

N) with 1

p
+ 1

q
= 1:
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1.
∫

uv ≤
∫

uHvH ∀H ∈ H.

If additionally v = v∗ is strictly decreasing then:

2. If
∫

uv =
∫

uHv ∀H ∈ H, then u = u∗.

Proof. Set F (r, s) = rs and apply Lemma 3.1.

Remark 3.3. A similar result was proved in [7] with uH replaced by u∗ and vH re-
placed by v∗.

Corollary 3.4 (non-expansivity of two-point rearrangement). For any u, v ∈
Lp
+(R

N), |uH − vH |p ≤ |u− v|p ∀H ∈ H.

Proof. Set F (r, s) = −|r − s|p and apply Lemma 3.1.

Remark 3.5. Corollary 3.4 tells us that if un is a sequence in Lp
+(R

N) converging to
u in Lp(RN), then uH

n → uH in Lp(RN) for any H ∈ H.

Remark 3.6. A similar result [3, Therorem 1] is obtained for Schwarz symmetrization.
It implies that if un → u in Lp(RN) then u∗

n → u∗.

3.2. Density Result

Lemma (Brock, Solynin [4, Lemma 6.1]). Let u ∈ Lp
+(R

N) and (Hn)n≥1 be a se-

quence of closed half spaces of RNcontaining 0RN . Then: un = uH1...Hn =

[

(

uH1

)H2
..
.]Hn

is relatively compact in Lp(RN).

Proof. We will use [2, Theorem IV.25 p72].

First using (9), it follows that
∫

|uH1...Hn| =
∫

|uH1...Hn−1|p = . . .
∫

|u|p.

Therefore (un) is bounded in Lp(RN).

On the other hand, given ε > 0, we can find R > 0 such that
∫

|x|>R
|u|p < ε.

Since
∫

|x|>R
|un+1|

p ≤
∫

|x|>R
|un|

p ≤ . . . ≤
∫

|x|>R
|u|p, we can deduce that for any n ∈ N :

∫

|x|>R
|un|

p ≤ ε.

Now for any τδ a family of strictly decreasing Schwarz symmetric functions such that
τδ(t) = τ(t/δ)δ−N , where τ is radial, radially nonincreasing, has compact support, and
∫

τ = 1, there is a positive δ satisfying:
∫

RN

∫

RN

|u(x)− u(y)|pτδ(x− y) dx dy < ε.

By [3, Theorem 2], we have:
∫

RN

∫

RN

|un(x)− un(y)|
pτδ(x− y) dx dy <

∫

RN

∫

RN

|u(x)− u(y)|pτδ(x− y) dx dy < ε.

Finally applying the Riesz-Fréchet-Kolmogorov theorem [2], the conclusion follows.
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Theorem. Let u ∈ Lp
+(R

N), (Hn)n≥1 be a dense sequence in the set of closed half

spaces containing 0RN .

Define (un)n≥0 by

{

u0 = u

un+1 = uH1...Hn+1

n .

Then un → u∗ in Lp(RN).

Proof. Using Lemma 3.2, (up to a subsequence) un converges to v in Lp(RN). Let f
be a strictly decreasing Schwarz symmetric function in Lq

+(R
N) with 1

p
+ 1

q
= 1.

It follows, using m times [Part (1), Corollary 3.2], that:

∫

uH1...Hm

n f ≤

∫

un+1f for any m ∈ N with m ≤ n. (10)

Using Remark 3.5, we obtain by letting n go to infinity:

∫

vH1...Hmf ≤

∫

vf. (11)

On the other hand, using once again [Part (1), Corollary 3.2], we know that:

∫

vf ≤

∫

vH1f ≤

∫

vH1H2f ≤ . . .

∫

vH1...Hmf. (12)

(11) together with (12) imply that:

∫

vf =

∫

vH1f =

∫

vH1H2f = . . .

∫

vH1...Hmf. (13)

Hence it follows by [Part (2), Corollary 3.2] that v = vH1 , vH1 = vH1H2 , . . ., vH1...Hm−1 =
vH1...Hm .

Therefore v = vH1 , vH1 =
(

vH1

)H2 = vH2 = v. It follows that v = vHk for 1 ≤ k ≤ m.
But this is true for any m ≤ n, from which we deduce that:

v = vHk ∀k ∈ N. (14)

Now since (Hn)n≥1 is dense in H, for any H ∈ H we can find a subsequence (we will
also denote it (Hn)) such that there exists (in)n≥1 a sequence of isometries such that in
converges to the identity with Hn = in(H). Hence:

vHn → vH . (15)

(14) together with (15) imply that v = vH ∀H ∈ H and therefore using (7):

v = v∗. (16)
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To conclude, we need to prove that u∗ = v∗. Remark 3.6 tells us that:

u∗
n → v∗ in Lp(RN). (17)

On the other hand, we know that:

u∗ ∼ u ∼ un ∼ u∗
n. (18)

u∗
n → v∗ and u∗

n ∼ u∗ ⇒ v∗ ∼ u∗, thus u∗ = v∗.
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