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We construct some examples of explicit solutions to the problem

min
γ

∫

Ω

dγ(x) dx

where the minimum is over all connected compact sets γ ⊂ Ω ⊂ R
2 of prescribed one-dimensional

Hausdorff measure.

More precisely we show that, if γ is a C1,1 curve of length l with curvature bounded by 1/R, l ≤ πR
and ε ≤ R, then γ is a solution to the above problem with Ω being the ε-neighbourhood of γ. In
particular, C1,1 regularity is optimal for this problem.

1. Introduction

Let Ω ⊂ R
2 be a bounded open set, and let Σl denote, for l > 0, the class of all compact

connected sets γ ⊂ Ω whose one-dimensional Hausdorff measure does not exceed l. The
variational problem

min
γ∈Σl

∫

Ω

dγ(x) dx, (1)

where dγ(x) = miny∈γ |y − x| is the distance function to γ, is called the optimal ir-

rigation problem, and was first studied in [1]. The reader is referred to [1, 2] for an
introduction to the problem, for its connections with mass transportation theory, and
for several results such as the existence of minimizers and their topological properties.
In particular, we mention the fact that each minimizer is topologically equivalent to a
binary tree, in the sense that it is a connected union of finitely many branches (Lip-
schitz curves) without closed loops, and no more than three branches can meet at one
point. Moreover, the regularity of the minimizers has been investigated in [6], where
local C1,1 regularity of each branch was proved, away from possible triple junctions
and corner points. Further qualitative properties of minimizers can be found in [5, 7].

Some interesting numerical experiments are also available (see [1]). As it was pointed
out in [1, 2], however, no example of explicit solution was known, not even in particular
cases. The difficulty was mainly due to the fact that, even though several necessary
optimality consitions have been obtained (see [1, 2, 6]), sufficient conditions seem hard
to find, and the fact that an optimal γ must be loop-free rules out several candidate
minimizers which would otherwise seem quite natural: for instance, if Ω is a disk, one
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might guess that for small l the optimal γ is a circle, but this is not the case since it
would violate the no-loop property. In fact, the numerical experiments in [1] suggest
that in this case, at least for small l, the optimal γ is some horseshoe-shaped curve
around the center of the disk. Larger values of the parameter l give rise to different
shapes, and in particular minimizers can have triple junctions: indeed, it is not difficult
to prove that certain configurations of Ω (e.g., the union of an equilateral triangle of
side 1 and three thin rectangles, each of sides 1 and λ >> 1, each rectangle having
one short side in common with one side of the triangle) can force any minimizer to
have a triple junction, at least for suitable values of l (e.g., l = O(λ) in the mentioned
example). One expects that quite ramificated structures may arise for large values of
l, but numerical simulations become harder and harder, due to the myriad of possible
topologies of the admissible configurations.

In this paper, we show how one can construct some explicit examples of minimiz-
ers. In particular we prove that any curve of class C1,1, with length l and curvature
bounded by 1/R, is a solution to (1), provided that l ≤ πR and Ω is a suitable tubular
neighbourhood of γ. Throughout the paper, the term curve denotes as usual a map
γ : [0, l] 7→ R

2 with a certain regularity. We use the same symbol γ, however, to denote
also the range γ([0, l]) of the map: thus, in particular, if l denotes the length of the
curve, our γ can be regarded as a compact, connected set which can compete in (1).
We think that no confusion should arise with this convention: we explicitly point out,
however, that the symbol γ always denotes the range of the curve when it appears in
the distance function dγ(x) = miny∈γ |y − x|.

Theorem 1.1 (construction of minimizers). Let γ : [0, l] 7→ R
2 be a curve of class

C1,1, parameterized by arclentgh, of length l. Let R > 0 be a number such that the

curvature bound

|γ′′(t)| ≤
1

R
for a.e. t ∈ [0, l] (2)

holds true, and suppose that l ≤ πR. Then, for every λ ∈ (0, R), the curve γ is a

solution to (1), where Ω is defined as

Ω =
{
x ∈ R

2 | dγ(x) < λ
}
.

As a consequence, it turns out that C1,1 regularity (see [6]) is optimal for the minimizers
of (1) (at least if no smoothness assumption is made concerning the boundary of Ω).

Note that, since γ is supposed to be of class C1,1, the curvature bound (2) is satisfied
by any number R > 0 such that R−1 ≥ ‖γ′′‖L∞ : the real geometric assumption on γ
is in fact the inequality l ≤ πR which, being scale invariant, can be considered as a
shape factor. However it is clear that, given any curve of class C1,1, any sufficiently
short (compact, connected) portion of it is a minimizer, for a suitable Ω.

A more general – but perhaps less effective – result is the following.

Theorem 1.2. Let γ be a connected compact subset ofR2, having finite one-dimensional

Hausdorff measure l. Suppose also that, for some λ > 0 and for all s ∈ (0, λ], the sub-

level set of the distance function

As =
{
x ∈ R

2 | dγ(x) < s
}
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has an area given by

meas (As) = 2ls+ πs2. (3)

Then, with the choice Ω = Aλ, the set γ solves the irrigation problem (1).

Note that, when γ is a smooth non closed curve and s > 0 is sufficiently small, the
set As – a tubular neighbourhood of γ – is the union of a thin curvilinear rectangle
(which follows the bends of γ) and two half disks at the endpoints of γ: the area of
the rectangle (under smoothness assumptions on γ and smallness assumptions on s)
is expected to be 2ls, whereas each half disk has area πs2/2. If these three sets are
mutually disjoint, one can sum their areas and get an intuitive explanation of (3): on
the other hand, even under smoothness assumptions on γ, the distorted rectangle and
the two half disks may overlap, the rectangle will self-overlap if γ is not injective, etc.,
hence the validity of (3) is by no means guaranteed for a generic compact connected
set γ – not even for a smooth curve (note that, in the case of a closed curve, the two
half disks are not even present).

It turns out that, when γ is a curve, the assumptions of Theorem 1.1 are sufficient to
guarantee that γ as a set satisfies (3), even though proving this sufficiency has required
us some work, based on certain sharp relationships between length, curvature and level
sets of the distance function. These facts, some of which are essentially known in
global geometry (see for instance [3], which was kindly brought to our attention by
Frank Morgan), are discussed in detail in Section 2. To make this presentation self
contained, however, we have chosen to include detailed proofs of all the lemmas, based
on certain integral inequalities which might be of some interest in other frameworks as
well (see Lemmas 2.2 and 2.3).

These facts from the global geometry of curves allow us to obtain Theorem 1.1 from
Theorem 1.2. The proof of the latter theorem, however, is based on the following
estimate from below of the minimum value in (1), explicitly in terms of l and the area
of Ω, which we believe is of independent interest:

Theorem 1.3 (sharp estimate from below). Let Ω ⊂ R
2 be a Borel set of finite

measure, and let γ ⊂ R
2 be a connected compact set, having finite one-dimensional

Hausdorff measure l. Then

∫

Ω

dγ(x) dx ≥
2σ(l2 + πmeas (Ω))− lmeas (Ω)

3π
, (4)

where

σ =
−l +

√
l2 + πmeas (Ω)

π
,

is the non negative root of the equation 2lσ + πσ2 = meas (Ω).

One can easily check, by elementary computations, that the right hand side of (4) is
always positive. It turns out that this estimate is sharp in some cases, which enables
us to explicitly construct minimizers, i.e. sets γ which achieve this lower bound and
are hence optimal.
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We think it would be very interesting to construct explicit examples of minimizers γ
having at least one triple junction. So far, we have not been able to do so (even though
such minimizers can be proved to exist, as it was mentioned above).

Finally, we observe that the techniques used in this paper also work for more general
integrand functions than in (1), e.g. integrands of the kind F (dγ(x)), with F positive
and increasing.

We end this introduction by two elementary examples, to illustrate our results.

Example 1.4 (segment). Let γ be a segment with endpoints P,Q and length l =
|Q−P |. Of course the curvature is zero, hence (2) (with the natural parameterization
γ(t) = P + t(Q − P )/l, 0 ≤ t ≤ l) is satisfied for any value of R > 0. Hence, for
every λ > 0, we can apply Theorem 1.1 by choosing R large enough. Then, clearly, the
resulting sublevel set Ω is the convex envelope of the two disks of radius λ, centered
at P and Q, and the segment γ solves the irrigation problem with this choice of Ω.
Moreover, an elementary computation shows that, in this case, the estimate (4) is
optimal.

We point out that a segment γ is the only example we know, of a compact commected
set of length l such that (3) holds true for every s. Indeed, we believe that a segment
is the only compact set with this property.

Example 1.5 (arc of circle). Let γ be an arc of circle of radius R and angular width
θ ≤ π. Then clearly l = θR ≤ πR, and (2) is satisfied with the natural parameteriza-
tions of γ. Hence we can apply Theorem 1.1 for every λ ∈ [0, R], and γ results to be
optimal for the corresponding choices of Ω.

2. Some auxiliary results

In this section we establish some auxiliary results which will be useful in the sequel.
We recall that, for every non empty set γ ⊂ R

2, we denote by dγ the distance function
to γ, i.e.

dγ(x) = inf{|y − x| | y ∈ γ}, x ∈ R
2

(the infimum is in fact a minimum, if γ is a closed set).

Lemma 2.1. Let Ω ⊆ R
2 be a measurable set and let γ ⊂ R

2 be a compact connected

set. Then

meas ({x ∈ Ω | dγ(x) ≤ s}) ≤ min
{
meas(Ω), 2ls+ πs2

}
, s > 0, (5)

where l denotes the one-dimensional Hausdorff measure of γ.

Proof. It is clear that the left hand side cannot exceed meas(Ω). On the other hand,
the inequality

meas
(
{x ∈ R

2 | dγ(x) ≤ s}
)
≤ 2ls+ πs2, s > 0,

has been proved in [4] as a lemma.
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Lemma 2.2. Assume 0 < l ≤ π, and θ : [0, l] 7→ R is a Lipschitz function such that

θ(0) = 0 and |θ′(t)| ≤ 1 almost everywhere. Then

(∫ l

0

cos(θ(t)) dt

)2

+

(∫ l

0

sin(θ(t)) dt

)2

≥ 2(1− cos l). (6)

Moreover, equality holds if and only if either θ(t) = t or θ(t) = −t.

Proof. For any two numbers s, t ∈ [0, l] we have

0 ≤ |θ(t)− θ(s)| ≤ |t− s| ≤ l ≤ π.

Therefore, since the cosine function is decreasing on the interval [0, π], we have

cos(θ(t)− θ(s)) = cos |θ(t)− θ(s)| ≥ cos |t− s| = cos(t− s) ∀s, t ∈ [0, l]. (7)

By Fubini Theorem, we have

(∫ l

0

cos(θ(t)) dt

)2

+

(∫ l

0

sin(θ(t)) dt

)2

=

∫ l

0

∫ l

0

(cos θ(t) cos θ(s) + sin θ(t) sin θ(s)) dtds =

∫ l

0

∫ l

0

cos(θ(t)− θ(s)) dtds.

Therefore, (7) yields

(∫ l

0

cos(θ(t)) dt

)2

+

(∫ l

0

sin(θ(t)) dt

)2

≥

∫ l

0

∫ l

0

cos(t− s) dtds

=

∫ l

0

∫ l

0

(cos t cos s+ sin t sin s) dtds =

(∫ l

0

cos t dt

)2

+

(∫ l

0

sin t dt

)2

= (sin l)2 + (1− cos l)2 = 2− 2 cos l

and the claim follows.

Lemma 2.3. Assume 0 < l ≤ π, and θ : [0, l] 7→ R is a Lipschitz function such that

θ(0) = 0 and |θ′(t)| ≤ 1 almost everywhere. Then

(∫ l

0

cos(θ(t)) dt

)2

+

(∫ l

0

sin(θ(t)) dt+ 1

)2

≥ 1,

(∫ l

0

cos(θ(t)) dt

)2

+

(∫ l

0

sin(θ(t)) dt− 1

)2

≥ 1,

(8)

and, equality holds in the first inequality if and only if θ(t) = −t, whereas it occurs in

the second if and only if θ(t) = t. Moreover,

∫ l

0

cos θ(t) dt ≥ sin l. (9)
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Proof. Since θ(0) = 0 and θ is 1-Lipschitz, then θ(t) has a linear growth, i.e.

|θ(t)| ≤ t ∀t ∈ [0, l]. (10)

Therefore, since cos(z) is decreasing on the interval [0, π], we have

cos θ(t) ≥ cos t ∀t ∈ [0, l]. (11)

Integrating this inequality over [0, l], we obtain (9). Since sin l ≥ 0, squaring (9) we
find (∫ l

0

cos θ(t) dt

)2

≥ (sin l)2. (12)

Note that, expanding the second square, the two inequalities in (8) are equivalent to
the two inequalities

(∫ l

0

cos(θ(t)) dt

)2

+

(∫ l

0

sin(θ(t)) dt

)2

≥ −2

∫ l

0

sin(θ(t)) dt,

(∫ l

0

cos(θ(t)) dt

)2

+

(∫ l

0

sin(θ(t)) dt

)2

≥ 2

∫ l

0

sin(θ(t)) dt.

Therefore, if ∣∣∣∣
∫ l

0

sin θ(t) dt

∣∣∣∣ ≤ 1− cos l, (13)

then (8) follows from Lemma 2.2. If equality occurs, still from Lemma 2.2 we conclude
that θ is a linear function.

It remains to consider the case where
∣∣∣∣
∫ l

0

sin θ(t) dt

∣∣∣∣ > 1− cos l. (14)

Note that this condition implies that l > π/2. Indeed, if l ≤ π/2, then the sine function
is increasing on [0, l], and we would have from (10)

| sin θ(t)| = sin |θ(t)| ≤ sin t ∀t ∈ [0, l].

Therefore, it would follow
∣∣∣∣
∫ l

0

sin θ(t) dt

∣∣∣∣ ≤
∫ l

0

sin t dt = 1− cos l,

which would violate (14).

But π/2 < l ≤ π implies that cos l < 0, hence from (14) we have

∫ l

0

sin θ(t) dt− 1 > − cos l > 0,

and hence (∫ l

0

sin θ(t) dt− 1

)2

> (cos l)2.

Adding this inequality to (12) reveals that strict inequality occurs in (8).
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The following Proposition is a particular form of the so callled Schur’s Lemma in global
geometry (see [3]). We present a self contained proof based on the last two lemmas.

Proposition 2.4. Let γ : [0, l] 7→ R
2 be a curve of class C1,1, parameterized by ar-

clength, with curvature satisfying |γ′′(t)| ≤ 1/R for some R > 0 and a.e. t ∈ [0, l].
Suppose, moreover, that l ≤ πR.

Then γ is injective. If, moreover, D is a disk of radius R tangent to γ′(t0) at the point

γ(t0), t0 ∈ [0, l], then γ(t) cannot enter the interior of D.

Proof. We begin with the last claim. By separately considering the two curves t 7→
γ(t+ t0) for 0 ≤ t ≤ l− t0, and t 7→ γ(t0− t) for 0 ≤ t ≤ t0, we can assume that t0 = 0.
Moreover by scaling, i.e. by considering the curve t 7→ R−1γ(Rt) for 0 ≤ t ≤ l/R,
we can assume that R = 1 (and l ≤ π). Finally, by a rigid motion and possibly a
reflection, we can also assume that γ(0) = (0, 0), that γ′(0) = (1, 0) and that D is the
disk of radius one, centered at the point (0, 1). Writing γ′(t) as (cos(θ(t)), sin(θ(t))) for
a suitable function θ : [0, l] 7→ R, one easily checks that θ(t) satisfies the assumptions
of Lemma 2.3.

Then, since we have

γ(T ) =

∫ T

0

γ′(t) dt =

(∫ T

0

cos(θ(t)) dt,

∫ T

0

sin(θ(t)) dt

)
, 0 < T ≤ l ≤ 1,

from the second inequality in (8) it follows that γ(T ) cannot belong to the interior of
D.

Finally, (6) reveals that |γ(l)−γ(0)|2 = |γ(l)|2 ≥ 2(1−cos l), hence γ(l) 6= γ(0). But the
same argument can be applied to the restriction of γ to any subinterval [t1, t2] ⊆ [0, l],
hence γ is injective.

Remark 2.5. The assumption that l ≤ πR is optimal. Indeed, for fixed ε > 0 and
R > 0, let γ be the path in Figure 2.1, obtained by glueing together (with a C1 link)
a segment of length εR from a point P1 to a point P2, and a circular arc of radius R
and angular width π + ε from P2 to P3.

Note that γ has total length (π + 2ε)R, and it admits a natural C1,1 parameterization
by arclength, with curvature bounded by 1/R.

However, one can easily check that the endpoint P3 is interior to a disk of radius R,
which is tangent to γ at P1 (the tangent disk is represented as a dashed circle in Figure
2.1).

3. Proof of the main results

Remark 3.1 (level sets of the distance function). If γ is a non empty set in R
2,

then the level sets of the distance function dγ satisfy

meas
({

x ∈ R
2 | dγ(x) = s

})
= 0 for every s ∈ R (15)

(note that if we require this to hold only for almost every s, then the claim would be
trivial since it holds true for any measurable function). Indeed, it is well known that
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P3

P1 P2

π + ε

εR

Figure 2.1: A curve with length (π+ 2ε)R and curvature bounded by 1/R, which gets
inside a tangent disk of radius R.

dγ is 1-Lipschitzian and moreover |∇dγ(x)| = 1 for almost every x. On the other hand,
we also have that ∇dγ = 0 almost everywhere on any given level set of dγ (this is a
well known property of functions in W 1,1

loc
). Combining these two facts, we obtain that

on any given level set of dγ, both |∇dγ(x)| = 1 and |∇dγ(x)| = 0 are satisfied almost
everywhere, and hence every level set of dγ has zero Lebesgue measure.

As a consequence of (15), we have that

meas
({

x ∈ R
2 | dγ(x) < s

})
= meas

({
x ∈ R

2 | dγ(x) ≤ s
})

for every s ∈ R.

We will implicitly use this fact in the sequel, without further reference. Note that this
holds true, more generally, in R

d.

Proof of Theorem 1.3. We have by the slicing formula

∫

Ω

dγ(x) dx =

∫
∞

0

meas ({x ∈ Ω | dγ(x) > s}) ds. (16)

On the other hand, as Ω has finite measure, one has for s > 0

meas ({x ∈ Ω | dγ(x) > s}) = meas (Ω)−meas ({x ∈ Ω | dγ(x) ≤ s}) ,

and using (5) we obtain

meas ({x ∈ Ω | dγ(x) > s}) ≥ meas (Ω)−min
{
meas(Ω), 2ls+ πs2

}
(17)

=
(
meas (Ω)− 2ls− πs2

)+
= p(s), s > 0

where the last equality defines the function p(s). It is easy to check that p(s) = 0 for
s > λ, whereas p(s) = meas (Ω)− 2ls−πs2 for s ∈ [0, λ]. Therefore, plugging (17) into
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(16), we finally obtain

∫

Ω

dγ(x) dx ≥

∫
∞

0

p(s) ds =

∫ λ

0

p(s) ds =

∫ λ

0

(
meas (Ω)− 2ls− πs2

)
ds

= λmeas (Ω)− lλ2 −
π

3
λ3 = λ

(
meas (Ω)− lλ−

π

3
λ2

)
.

On the other hand, λ satisfies πλ2 = meas (Ω) − 2lλ, which can be used to eliminate
πλ2 within the last brackets, thus obtaining

∫

Ω

dγ(x) dx ≥ λ

(
2

3
meas (Ω)−

lλ

3

)
=

2

3
λmeas (Ω)−

lλ2

3
.

Finally, on eliminating λ2 once more, one obtains (4).

Proof of Theorem 1.2. The optimality of γ follows if we show that equality occurs
in (4). Indeed, by a direct inspection of the previous proof, it is clear that the inequality
sign in (4) is only due to the inequality sign in (17), which in turn is a consequence of
(5).

But the assumptions of Theorem 1.2 (and the choice Ω = Aλ) guarantee that equality
occurs in (5) for all s ∈ [0, λ], which reflects into equality in (17) and hence in (4) as
well.

Proof of Theorem 1.1. From Proposition 3.2 below, it follows immediately that the
curve γ satisfies the assumptions of Theorem 1.2, for every λ ∈ (0, R).

Proposition 3.2. Let γ : [0, l] 7→ R
2 be a curve of class C1,1, parameterized by arc

length, satisfying for some constant R > 0 the curvature bound

|γ′′(t)| ≤ 1/R for a.e. t ∈ [0, l] (18)

and the length bound

l ≤ πR. (19)

Then the sublevel sets of the distance function dγ are such that

meas
({

x ∈ R
2 | dγ(x) < s

})
= 2ls+ πs2 ∀s ∈ (0, R). (20)

Proof. If l = 0 the claim is trivial, hence suppose that l > 0. Take s ∈ (0, R), consider
the sublevel set

As =
{
x ∈ R

2 | dγ(x) < s
}

(21)

and define the map

F : (0, l)× (−s, s) 7→ R
2, F (t, z) = γ(t) + zν(t),

where ν(t) is the unit normal vector to γ at t, obtained by a π/2 counterclockwise
rotation of the velocity vector γ′(t). Clearly, we can regard t as a coordinate along γ
and z as a coordinate perpendicular to γ.



592 P. Tilli / Some Explicit Examples of Minimizers for the Irrigation Problem

We wish to show that F is injective. For, suppose there are two pairs (t1, z1) 6= (t2, z2)
such that

0 < t1 ≤ t2 < l, |z1| < s, |z2| < s

and
F (t1, z1) = F (t2, z2).

Seeking a contradiction, suppose first that t1 = t2. Then z1ν(t1) = z2ν(t1), hence
z1 = z2, thus violating the condition that (t1, z1) 6= (t2, z2).

Now suppose that t1 < t2, and let r := max{|z1|, |z2|}. If, say, r = |z1|, let Sr be
the circle of radius r centered at F (t1, z1) (which is tangent to the curve, at the point
γ(t1)). By Lemma 2.4, the curve cannot get into either of the two disks of radius R
which are tangent to the curve at γ(t1). Therefore, since R > r and Sr is internally
tangent to one of these two disks, the curve cannot get inside the smaller circle Sr, and
can touch it only at the point γ(t1). On the other hand, since t2 6= t1 and γ is injective
by Proposition 2.4, we deduce that γ(t2) is outside the circle Sr, that is,

|F (t1, z1)− γ(t2)| > r ≥ |z2|,

but this is a contradiction since the assumption F (t1, z1) = F (t2, z2) implies in partic-
ular that

|F (t1, z1)− γ(t2)| = |z2|.

Finally, the case where r = |z2| can be treated in a similar way.

Now let U =

(
0 −1
1 0

)
be the rotation matrix such that ν(t) = Uγ′(t). Then

F (t, z) = γ(t) + zUγ′(t), and the Jacobian of F is given by

∣∣∣∣det
(
∂F

∂t
,
∂F

∂z

)∣∣∣∣ =
∣∣det

(
γ′(t) + zUγ′′(t), Uγ′(t)

)∣∣

=
∣∣det

(
γ′(t), Uγ′(t)

)
+ z det(U) det

(
γ′′(t), γ′(t)

)∣∣

=
∣∣1 + z det

(
γ′′(t), γ′(t)

)∣∣

since |γ′(t)| = 1 and det(U) = 1. Note, however, that since |z| < R, and |γ′′(t)| ≤ 1/R,
we have ∣∣z det

(
γ′′(t), γ′(t)

)∣∣ < 1

and hence ∣∣∣∣det
(
∂F

∂t
,
∂F

∂z

)∣∣∣∣ = 1 + z det
(
γ′′(t), γ′(t)

)
.

Therefore, letting R ⊂ R
2 denote the rectangle (0, l) × (−s, s), we have by the area

formula

meas (F (R)) =

∫∫

R

∣∣∣∣det
(
∂F

∂t
,
∂F

∂z

)∣∣∣∣ dtdz

=

∫∫

R

(
1 + z det

(
γ′′(t), γ′(t)

))
dtdz = meas (R) = 2ls
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(note that the function z det
(
γ′′(t), γ′(t)

)
is odd in the variable z, hence its integral

over R is zero). Recalling (21), from |F (t, z)− γ(t)| = |z| < s it follows that

F (R) ⊆ As.

Now consider the two half disks of radius s

D1 =
{
γ(0) + v | v ∈ R

2, |v| < s, v · γ′(0) < 0
}
,

D2 =
{
γ(l) + v | v ∈ R

2, |v| < s, v · γ′(l) > 0
}
.

Since also D1 ⊂ As and D2 ⊂ As, the proof will be completed if we show that F (R),
D1 and D2 are mutually disjoint. Indeed, in this case we would have

meas (As) ≥ meas (F (R) ∪D1 ∪D2)

= meas (F (R)) + meas (D1) + meas (D2) = 2ls+ πs2,

whereas the opposite inequality follows from (5) with Ω = R
2.

Note that by time inversion (i.e. by considering the reparameterization t 7→ γ(l − t))
the two half disks play a symmetric role, hence it is enough to show that D1 ∩D2 = ∅,
and that D1∩F (R) = ∅. We end this proof by separately considering these two claims.
We preliminarly observe that, by scaling (i.e. by considering the curve t 7→ R−1γ(Rt)
for 0 ≤ t ≤ l/R) we can suppose that R = 1 and l ≤ π. Moreover, by a rigid motion
we can also assume that γ(0) = (0, 0) and γ′(0) = (1, 0), and we may write γ′(t) as
(cos θ(t), sin θ(t)) for a suitable 1-Lipschitz function θ such that θ(0) = 0, as in Lemma
2.3. We will tacitly do this in the rest of the proof.

Claim i): D1 ∩ D2 = ∅. Suppose, on the contrary, that this is not the case. By our
assumptions, this means that there is a vector w ∈ R

2 such that

|w| ≤ 1, w · γ′(l) ≥ 0, and γ(l) + w ∈ D1 (22)

(the first two conditions are equivalent to γ(l) + w ∈ D2). From (9) we obtain that

γ(l) · (1, 0) =

∫ l

0

cos θ(t) dt ≥ sin l ≥ 0,

hence γ(l) is in the closed right half plane (whereas D1 is in the open left half plane).
Since γ(l) + w ∈ D1 and |w| ≤ 1, it is clear that γ(l) must also belong to the tubular
neighbourhood of widht 1 of D1. Moreover, since γ′(0) = (1, 0), by Proposition 2.4
γ cannot enter the two open disks of radius one cantered at (0,±1). Putting these
conditions together, we obtain in particular that γ(l) ∈ T where

T =
{
(x, y) | x2 + (y − 1)2 ≥ 1, x2 + (y + 1)2 ≥ 1, 0 ≤ x ≤ 1, |y| ≤ 1

}
.

In particular, we must have |γ(l)|2 ≤ 2. This condition, recalling that γ′(t) = (cos θ(t),
sin θ(t)), can be written as

(∫ l

0

cos θ(t) dt

)2

+

(∫ l

0

sin θ(t) dt

)2

≤ 2.
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Combining with (6), we obtain 2(1 − cos l) ≤ 2, that is cos l ≥ 0, which reflects into
the stronger condition on l

l ≤
π

2
. (23)

Therefore, as θ(t) is 1-Lipschitzian and θ(0) = 0, we must have |θ(t)| ≤ π/2 and in
particular

γ′(l) · (1, 0) = cos θ(l) ≥ 0. (24)

Since γ′(l) = (cos θ(l), sin θ(l)), the first two conditions in (22) imply that we can write

w = (ρ cos (θ(l) + ϕ) , ρ sin (θ(l) + ϕ)) , 0 ≤ ρ ≤ 1, |ϕ| ≤
π

2
,

for suitable ρ and ϕ. The we can compute

(γ(l) + w) · (1, 0) =

∫ l

0

cos θ(t) dt+ ρ cos (θ(l) + ϕ)

=

∫ l

0

cos θ(t) dt+ ρ cosϕ cos θ(l)− ρ sinϕ sin θ(l).

From (24) and |ϕ| ≤ π/2 it follows that cosϕ cos θ(l) ≥ 0, hence using also (9) we find

(γ(l) + w) · (1, 0) ≥

∫ l

0

cos θ(t) dt− ρ sinϕ sin θ(l) ≥

∫ l

0

cos θ(t) dt− | sin θ(l)|

≥ sin l − | sin θ(l)| = sin l − sin |θ(l)|.

On the other hand, since θ(0) = 0 and θ is 1-Lipschitzian, |θ(l)| ≤ l: since sin t is
increasing in [0, π/2], from (23) it follows that the last expression is non negative.
Hence

(γ(l) + w) · (1, 0) ≥ 0

which is a contradiction since it is not compatible with the last condition in (22) (recall
that D1 is contained in the open left half plane). Therefore, the claim is proved.

Claim ii): D1 ∩ F (R) = ∅. In fact, this is a consequence of Claim i). For, suppose
that for some t0 ∈ (0, l) and for some z ∈ (−s, s) we have

F (t0, z) = γ(t0) + zν(t0) ∈ D1.

We can consider the curve γ̂(t) defined as the restriction of γ(t) to the interval [0, t0].

Clearly γ̂ has length l̂ = t0 < l, and satisfies the same assumptions as the original
curve γ. If we denote D̂1 and D̂2 the two half disks defined exactly as D1 and D2, but

relative to γ̂, it is clear that D̂1 = D1 and F (t0, z) ∈ D̂2. Hence, our claim i) applied
to γ̂ would yield a contradiction.
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