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Let f be a real valued function with the domain dom(f) in some vector space X and let C be the
collection of convex subsets of X. The following two questions are investigated; 1. Do there exist
maximal convex restrictions g of f with dom(g) ∈ C? 2. If f is convex with dom(f) ∈ C, do there exist
maximal convex extension g of f with dom(g) ∈ C? We will show that the answer to both questions
is positive under a certain condition on C.
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1. Introduction

Convex functions play an important role in many fields of mathematics and its applica-
tions, e. g., convex and global optimization, differential inclusion theory, and mathemat-
ical economic and risk analysis. In this paper, we will address two questions associated
with convex functions. Firstly, given an arbitrary real-valued function, find and char-
acterize maximal convex restrictions. Secondly, what can be said about extensions and
maximal extensions of convex functions?

The first question arises when one considers non-convex functions but wants to take
advantage of properties of convex functions and therefore restricts the function to a
domain on which it will be convex. One might also want to restrict the domains to
certain classes of convex sets, such as closed or open convex sets. It turns out that an
additional condition is needed to guarantee the existence of maximal convex restrictions
under such general conditions.

Conditions for extensions of convex functions have been discussed by few other au-
thors, and below we make mention of the few in different context and also identify the
difference between previous publications and our results on such conditions. In [1], the
authors consider set-valued functions V : [t0, θ] → comp(Rn), the collection of non-
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empty compact subsets in Rn, whose graphs are convex. The authors give necessary
and sufficent conditions for the existence of extensions of V to larger compact intervals
in terms of upper and lower derivatives.

On the other hand, we will be concerned with convex functions in the usual sense, i. e.,
functions whose epigraphs are convex. This corresponds to convex set-valued functions
mapping to semi-infinite intervals, and consequently, the results in [1] are disjoint to
the results on convex extensions obtained in this paper.

In [4] an explicit necessary and sufficient condition is given such that a real-valued
function from the boundary of a nonempty bounded open convex set Ω ⊂ Rn has a
Lipschitz continuous extension to a function on Rn.

In [5] the authors consider a condition which is necessary and sufficient for the con-
struction of a convex extension. This construction is related to global optimisation
theory in that, the condition asserts and imposes upper bounds for the images of the
constructible convex extension.

Another extension theorem was obtained in [3, Theorem 1], in which functions on
non-convex domains in a vector space V are considered and the existence of convex
extensions to all of V are discussed. Here the definition of convexity allows convex
functions to take the values ±∞. The authors proclaim that it is worthwhile to define
convexity of a function also on non-convex domains since these may occur in economics
in a natural way, in particular in risk aversion problems.

Our main results in Section 3 prove that the existence of a maximal epigraph extension
happens under certain conditions, namely, CUP and the pseudo-arbsorbing condition.
For convex functions defined on intervals in R, this maximal epigraph extension is
unique.

Henceforth X denotes a real vector space, f : dom f ⊆ X → R denotes a real valued
function with non-empty domain in X, and

C ⊆ {C ⊆ A : ∅ 6= C is convex}

denotes a non-empty class of convex non-empty subsets of A, for some fixed non-empty
subset A in X.

Definition 1.1. A continuous real valued function f : A ⊆ X → R is convex if A is
convex and for any x, y ∈ A and λ ∈ [0, 1] we have f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y).

Definition 1.2. Let A be a non-empty subset of a vector space X.

1. A real function f : A ⊆ X → R is C-convex if there is C ∈ C such that f |C is a
convex restriction of f .

2. Let f : A ⊆ X → R be a C-convex function. Then a non-empty subset M ∈ C

satisfying
(a) f is convex on M , and
(b) there exists no convex set P ∈ C such that M ⊂ P ⊆ A and f is convex on

P ,
is called a C-maximal domain of convexity (C-MDC) for f .

If C contains a singleton, then every function f : A ⊆ X → R is C-convex. Our
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objective is to discuss non-trivial C-convex functions, hence we make the following
assumption:

Assumption 1.3. ∅ 6= C ⊆ {C ⊆ A : ∅ 6= C is convex and infinite} = C0.

There is one additional and vital condition we impose on C and we define it as follows:

Definition 1.4. If for any chain B ⊂ C we have
⋃

B∈B
B ∈ C, then we say C satisfies

the Chain Union Property (CUP).

Note that C satisfying the CUP means that C is chain-complete with every least upper
bound of a chain being the union of the sets in the chain.

Let f : A ⊆ X → R be C-convex. Then we denote by Cf = {F ∈ C : f |F is convex}
the collection of C-domains in X on which f is convex. Clearly Cf is a subset of C, and
since f is C-convex, Cf 6= ∅.

Since C0 6= ∅, A contains at least one non-trivial convex set C. It will become clear that
the CUP for the collection Cf is important in order to obtain the maximal elements in
Cf .

2. Maximal Domains of Convexity

In this section we consider real not necessarily convex functions on subsets of a vector
space X and discuss their maximal convex restrictions.

For any x, y ∈ A, denote by [x, y] the line segment connecting x and y, that is, [x, y] =
{λx + (1 − λ)y : λ ∈ [0, 1]}. Recall that a chain B in C is a family of sets in C such
that B1 ⊆ B2 or B2 ⊆ B1 whenever B1, B2 ∈ B. Furthermore, an element F ∈ C is
called an upper bound for B if B ⊆ F for each B ∈ B. Henceforth we shall denote by
max{B1, B2} the larger of the two elements B1, B2 ∈ B.

Note that for every chain B in C it follows that D =
⋃

B∈B
B is also a convex subset of

A. The CUP therefore requires that the convex set D must belong to C. This condition
is satisfied for a large class of collections C. As the most important example we have:

Example 2.1.

1) The collection C0 = {C ⊆ A : C convex and infinite} satisfies the CUP.

2) Let X be a Banach space, and consider the collection C′ = {C ∈ C0 : C open}.
Clearly C′ 6= ∅ if and only if int(A) 6= ∅, and then C′ satisfies the CUP.

Remark 2.2. Henceforth we consider C′ only if int(A) is non-empty, and thus C′

satisfies Assumption 1.3.

Not all collections C satisfy the CUP, hence we subsequently give examples of those
collections C with, and those lacking, this property:

Example 2.3. Let A = R, C = {(a, b) : a, b ∈ Q, a < b} be a collection of convex
subsets in R, and define f : R → R by f(x) = sinx.

(a) Let Bn = (an, bn) ∈ C with an, bn ∈ Q (n ∈ N) be such that an ց π and
bn ր 2π. Consequently B = {Bn : n ∈ N} is a chain in C. It follows that
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⋃
n∈N Bn = (π, 2π), and that (π, 2π) /∈ C since π /∈ Q. Hence C does not satisfy

the CUP.

(b) Observe that C0 is the collection of non-trivial intervals I in R. It follows that
[(2k − 1)π, 2kπ], k ∈ Z are maximal elements in C0,f .

(c) Cf contains no maximal element and fails the CUP.

(d) Let Cint be the collection of open intervals. Then A = R satisfies Assumption 1.3,
and Cint has the CUP. Moreover ((2k− 1)π, 2kπ), k ∈ Z are maximal elements in
Cint,f .

The above example shows that, in general, C-maximal domains of convexity may or
may not exist. Below we will show that the CUP will guarantee the existence of
C-MDC.

Proposition 2.4. For any C-convex function f : A ⊆ X → R, if C satisfies the CUP,
so does Cf .

Proof. Let B be a chain in Cf . Then, since C satisfies the CUP, D =
⋃

B∈B
B ∈ C.

Since f |B is convex for each B ∈ B, also f |D is convex and therefore D ∈ Cf . It follows
that Cf satisfies the CUP.

Proposition 2.5. If C satisfies the CUP, then C contains a maximal element.

Proof. Let B be a chain in C. It follows that
⋃

B∈B
B is an element of C, and thus

each chain B in C has an upper bound
⋃

B∈B
B. Appealing to Zorn’s lemma, it follows

that C contains a maximal element.

Propositions 2.4 and 2.5 immediately lead to

Theorem 2.6. Assume C satisfies the CUP and let f : A ⊆ X → R be a C-convex

real function. Then Cf contains a maximal element, that is, f has a C-MDC.

If C satisfies the CUP and C ∈ C, then also the set CC = {B ∈ C : C ⊆ B} satisfies
the CUP. Clearly, any maximal element in CC is also a maximal element in C. Hemce
the following two results:

Theorem 2.7. Assume C satisfies the CUP. Then the following hold.

(a) If C is an element of C, then there exists a maximal element, say M , in C such

that C ⊆ M .

(b) If C is an element of Cf for some C-convex function f : A ⊆ X → R, then there

exists a maximal element, say M , in Cf such that C ⊆ M .

Remark 2.8. Let C ∈ Cf be fixed for some C-convex real function f : A ⊆ X → R.
Then there may exist a maximal element M in Cf such that C may not be contained
in M .
For instance, if C = {I ⊆ R : I an interval}, f(x) = sinx, and we choose C ⊆ (π, 2π),
then f |C is convex, C ⊂ M = [π, 2π] and M is maximal in Cf . Furthermore, M0 =
[−π, 0] is also a maximal element in Cf with C * M0.
On the other hand if f : A ⊆ X → R is convex and A ∈ C, A is a unique maximal
domain of f in Cf and f is also C-convex. Observe that

⋃
C∈Cf

C = A ∈ Cf .



M. Möller, Thabang M. J. Nthebe / Maximal domains for C-convex functions 655

Suppose conversely that f is C-convex and has a unique maximal domain of convexity
M . Then every C ∈ Cf is contained in M , hence M =

⋃
C∈Cf

C if C satisfies the CUP.

We therefore have:

Proposition 2.9. Suppose C satisfies the CUP.

(a) C has a unique maximal element if and only if
⋃

C∈C
C ∈ C.

(b) If f : A ⊆ X → R is C-convex, then Cf has a unique maximal element if and

only if
⋃

C∈Cf
C ∈ Cf .

3. Convex Extensions

In this section we consider convex functions on subsets of a vector space X and discuss
their maximal convex extensions with respect to two different orderings on the set of
all convex extensions.

Definition 3.1. Let g, h be real functions with dom(g), dom(h) ⊆ X. Then g is an

extension of h, denoted by g �ext h, if dom(h) ⊆ dom(g) and g|dom(h) = h. Moreover,
if f : Y ⊆ X → R is convex, then the set

Xf = {g : dom(g) ⊆ X → R, g �ext f, g convex}

is the collection of convex extensions of f .

Obviously, Xf 6= ∅ since f ∈ Xf . Our aim is to prove the existence of maximal
extensions for any given convex f . If dom(f) ∈ C, we also consider Xf,C = {g ∈ Xf :
dom(g) ∈ C}.

Theorem 3.2. Let C satisfy the CUP. For any convex function f : Y ⊆ X → R
with dom(f) ∈ C, there exists a maximal convex extension in Xf,C with respect to the

ordering �ext.

Proof. Let B be a chain in Xf,C. Hence for each pair g, h ∈ B such that h �ext g we
have dom(f) ⊆ dom(g) ⊆ dom(h). It follows that for each chain B in Xf there exists a
chain Dom(B) of domains of functions in B. By the definition of Xf,C we have B ∈ C for
all B ∈ Dom(B), and thus Dom(B) is a chain in C. Moreover

⋃
B∈Dom(Xf )

B = D ∈ C

by the CUP, and is also an upper bound for Dom(B) in X.

We define g∗ : D → R as follows:
Let x ∈ D. Then there is g ∈ B such that x ∈ dom(g) and we let g∗(x) = g(x).
Clearly, since B is a chain, g∗ is well defined and convex, and g∗ �ext g �ext f for all
g ∈ B. Therefore g∗ ∈ Xf,C is an upper bound of B.

Since Xf,C is partially ordered and each chain B in Xf,C has an upper bound g∗ in Xf,C,
it follows from Zorn’s lemma that Xf,C has a maximal element.

Convex functions and convex epigraphs coincide and since we have been discussing
extensions of convex function, we subsequently discuss their convex epigraphs and
how to extend them and still preserve their convexity. Recall that for a function
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f : A ⊆ X → R its epigraph is defined and denoted by

epi(f) = {(x, λ) ∈ A× R : f(x) ≤ λ}.

It is well known and easily seen that the function f : A ⊆ X → R is convex if and only
if its epigraph is a convex subset of X × R.

Considering the collection of convex extensions of f as in Definition 3.1 above, we
define the epigraph ordering ⊒epi on Xf as follows:

Definition 3.3. For any g, h ∈ Xf,C, g ⊒epi h if and only if epi(h) ⊆ epi(g). Equiva-
lently, dom(h) ⊆ dom(g) and g(x) ≤ h(x), x ∈ dom(h).

Clearly Xf,C is partially ordered by ⊒epi, and g ⊒epi f for all g ∈ Xf,C. We denote by
Epi(Xf,C) = {epi(g) : g ∈ Xf,C} the collection of convex epigraphs epi(g) containing (or
which are extensions of) epi(f).

There is one additional condition we deem important in our subsequent discussion, and
that is stated as follows:

Definition 3.4. A subset A of X is said to be a pseudo-absorbing subset of X if for
each x ∈ X there exist a, b ∈ A and α ∈ R such that x = a+ α(b− a).

Clearly, every absorbing subset of X is pseudo-absorbing.

Theorem 3.5. Let f : A ⊆ X → R be C-convex and suppose that C satisfy the CUP
and that A is pseudo-absorbing in X. Then there exists a maximal epigraph extension

of epi(f) in X × R, equivalently, Epi(Xf,C) has a maximal element.

Proof. Let B be any chain in Epi(Xf,C). Then epi(f) ⊆ B̂ =
⋃

B∈B
B ∈ X × R.

Moreover, for each B ∈ B there exists g ∈ Xf,C such that B = epi(g), g ⊒epi f and
dom(f) ⊆ dom(g) ∈ C. Then K = {dom(g) : epi(g) ∈ B} is a chain in C, and it follows
that D =

⋃
K∈K

K ∈ C since C satisfies the CUP.

Obviously, B̂ is a convex subset of X × R. We are going to show that it is contained
in the epigraph of some real convex function g∗ in Xf,C. Indeed, we define the function
g∗ : D → R as

g∗(x) = inf{g(x) ∈ R : epi(g) ∈ B, x ∈ dom(g)} (x ∈ D).

In order to show that g∗(x) ∈ R for all x ∈ D, we first observe that g∗(x) = f(x) if
x ∈ dom(f). Now fix x ∈ D \ dom(f). Appealing to the pseudo-absorbing property of
A, it follows that there exist a, b ∈ A = dom(f) and α ∈ R such that x = a+α(b− a).
Since A is convex, x 6∈ [a, b], and therefore we may assume without loss of generality
that a ∈ [x, b]. Thus there exists λ ∈ (0, 1) such that a = λx+ (1− λ)b and hence

g(a) = g(λx+ (1− λ)b) ≤ λg(x) + (1− λ)g(b)

for each g ∈ Xf,C with epi(g) ∈ B and x ∈ dom(g), which leads to

g(x) ≥
1

λ
(g(a)− (1− λ)g(b)) =

1

λ
(f(a)− (1− λ)f(b)).
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It follows that g∗(x) ≥ 1
λ
(g(a) − (1 − λ)g(b)) for each g ∈ Xf,C with epi(g) ∈ B and

x ∈ dom(g). Consequently, g∗(x) > −∞ for each x ∈ D.

Now we are going to show that g∗ is convex. Let x, y ∈ D and λ ∈ [0, 1]. By definition
of g∗, for any ε > 0 there exist g1, g2 ∈ Xf,C such that epi(g1), epi(g2) ∈ B, x ∈ dom(g1),
y ∈ dom(g2), g1(x) ≤ g∗(x) + ε and g2(y) ≤ g∗(y) + ε. Since B is a chain, g1 ⊒epi g2
or g2 ⊒epi g1, and we denote by g the maximum of g1 and g2. Then g(x) ≤ g1(x) and
g(y) ≤ g2(y). Therefore,

g∗(λx+ (1− λ)y) ≤ g(λx+ (1− λ)y)

≤ λg(x) + (1− λ)g(y)

≤ λ(g∗(x) + ε) + (1− λ)(g∗(y) + ε).

Since ε > 0 is arbitrary, it follows that

g∗(λx+ (1− λ)y) ≤ lim
ε→0

λ(g∗(x) + ε) + (1− λ)(g∗(y) + ε)

= λg∗(x) + (1− λ)g∗(y).

Thus we have shown that g∗ is convex. Together with D ∈ C and g∗|dom(f) = f this
leads to g∗ ∈ Xf,C and hence epi(g∗) ∈ Epi(Xf,C).

Finally, we show that epi(g∗) is an upper bound of B. To this end take (x, α) ∈ B̂.
Then there exists g ∈ Xf,C such that epi(g) ∈ B and x ∈ dom(g). It follows that

α ≥ g(x) ≥ g∗(x) and hence (x, α) ∈ epi(g∗). Consequently B̂ ⊆ epi(g∗) ∈ Epi(Xf,C),
and hence epi(g∗) is an upper bound of B in Epi(Xf,C). By Zorn’s lemma, Epi(Xf,C)
has a maximal element.

To conclude this paper, we will briefly discuss the uniqueness of the maximal elements
in Xf,C.

We consider convex functions on intervals on the real line and first recall

Theorem 3.6 ([2, Theorem 1.3.3, p. 21]). Let f : A ⊆ R → R be convex. Then

f is continuous on the interior int(A) of A and has finite left and right derivatives at

each point of int(A). Moreover, x < y in int(A) implies

f ′

−
(x) ≤ f ′

+(x) ≤ f ′

−
(y) ≤ f ′

+(y).

Consequently f ′(x) ≤ f ′(y) provided they exist.

Conversely, we have

Proposition 3.7. Let f : A ⊆ R → R be a continuous function on an open interval

A, and assume that f has finite left and right derivatives at each point of A satisfying

f ′

−
(x) ≤ f ′

+(x) ≤ f ′

−
(y) ≤ f ′

+(y)

for all x < y in A. Then f is convex.

Although, in general, the existence proof for maximal elements is not constructive, for
dom(f) ⊂ R it is mathematical folklore, and relatively straightforward to show, that
there is a unique maximal element in Epi(Xf ), that is
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Proposition 3.8. Let f : A ⊆ R → R be convex and A = dom(f) be non-trivial.

Then Epi(Xf ) has a unique maximal element.

This maximal extension f ∗ can be constructed in two steps.

Step 1. Let a and b be the left and right endpoints of dom(f), respectively. Here
a = −∞ and b = ∞ are possible. If α ∈ {a, b}∩R, limx→α± f(x) denotes limx→a+ f(x)
if α = a and limx→b− f(x) if α = b. Putting

L =
{
α ∈ {a, b} : α ∈ R \ dom(f), lim

x→α±
f(x) exists

}
,

define the function f on dom(f) ∪ L by

f(x) =

{
f(x) if x ∈ dom(f),

limt→x± f(t) if x ∈ L.

Step 2. The function f ∗ is defined as follows:

f ∗(x) =






f(x) if x ∈ dom( f)

T f,a(x) if x < a, a ∈ dom( f), ( f)′+(a) exists,

T f,b(x) if x > b, b ∈ dom( f), ( f)′
−
(b) exists,

where T f,a(x) =
f(a)+(x−a)( f)′+(a) and T f,b(x) =

f(b)+(x−b)( f)′
−
(b) are the tangent

lines to f at the endpoints of dom( f). With the aid of Theorem 3.6 and Proposition
3.7 it can now be shown that epi(f ∗) is the unique maximal element in Epi(Xf ).

Remark 3.9. 1. Even for convex functions f : A ⊆ R → R it depends on C if Xf,C

has a unique maximal element. For example, if C is the collection of all finite intervals
(a, b) with 0 < b − a ≤ 10 and f(x) = x2 with dom(f) = (0, 1), then C satisfies the
CUP, and with f ∗ being the maximal extension of f in Xf , every function f ∗|(−c,10−c)

with 0 ≤ c ≤ 9 is a maximal element in Xf,C with respect to �.

2. We are not aware of any uniqueness result if f : A ⊆ X → R is convex with
dimX ≥ 2, and it may be the case that there are f such that there is more than one
maximal element in Epi(Xf ).
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