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In 1977, Baillon and Haddad proved that if the gradient of a convex and continuously differentiable
function is nonexpansive, then it is actually firmly nonexpansive. This result, which has become
known as the Baillon-Haddad theorem, has found many applications in optimization and numerical
functional analysis. In this note, we propose short alternative proofs of this result and strengthen its
conclusion.
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1. Introduction

Throughout, H is a real Hilbert space with scalar product 〈· | ·〉 and induced norm ‖·‖.
Let C be a nonempty subset of H, let T : C → H, and let β ∈ ]0,+∞[. Then T is
1/β-cocoercive if (this property is also known as the Dunn property or inverse strong
monotonicity)

(∀x ∈ C)(∀y ∈ C) β 〈x− y | Tx− Tx〉 ≥ ‖Tx− Ty‖2, (1)

and T is β-Lipschitz continuous if

(∀x ∈ C)(∀y ∈ C) ‖Tx− Tx‖ ≤ β‖x− y‖2. (2)

When β = 1, (1) means that T is firmly nonexpansive and (2) that T is nonexpansive.
Cocoercivity arises in various areas of optimization and nonlinear analysis, e.g., [2, 5, 6,
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9, 14, 15, 20, 23]. It follows from the Cauchy-Schwarz inequality that 1/β-cocoercivity
implies β-Lipschitz continuity. However, the converse fails; take for instance T = − Id,
which is nonexpansive but not firmly nonexpansive. In 1977, Baillon and Haddad
showed that, if C = H and T is the gradient of a convex function, then (1) and (2)
coincide. This remarkable result, which has important applications in optimization
(see for instance [7, 21]), has become known as the Baillon-Haddad theorem.

Theorem 1.1 (Baillon-Haddad, [3, Corollaire 10]). Let f : H → R be convex,
Fréchet differentiable on H, and such that ∇f is β-Lipschitz continuous for some
β ∈ ]0,+∞[. Then ∇f is 1/β-cocoercive.

In [3], Theorem 1.1 was derived from a more general result concerning n-cyclically
monotone operators in normed vector spaces. Since then, direct proofs have been
proposed, such as [11, Lemma 6.7], [12, Theorem X.4.2.2], and [18, Proposition 12.60]
for Euclidean spaces. These approaches rely on convex analytical and integration
arguments. An infinite dimensional proof can be found in [22, Remark 3.5.2], as a
corollary to results on the properties of uniformly smooth convex functions.

The goal of our paper is to provide new insights into the Baillon-Haddad theorem.
In Section 2, we propose a short new proof of Theorem 1.1 and present additional
equivalent conditions, thus making a connection with lesser known parts of Moreau’s
classical paper [16]. In Section 3, we provide a second order variant of the Baillon-
Haddad theorem that partially extends work by Dunn [9].

Notation and background. Our notation is standard: Γ0(H) is the class of proper
lower semicontinuous convex functions from H to ]−∞,+∞] and � denotes infimal
convolution. The conjugate of a function f : H → ]−∞,+∞] is denoted by f ∗, and
its subdifferential by ∂f . For background on convex analysis, we refer the reader to
[12, 17, 22].

2. An enhanced Baillon-Haddad theorem

Let us start with some standard facts on Moreau envelopes and proximity operators;
we refer the reader to Moreau’s original paper [16] and to [1, 7, 18] for details and
complements. Let ϕ ∈ Γ0(H) and let γ ∈ ]0,+∞[. The Moreau envelope of ϕ of index
γ is the finite continuous convex function

envγ(ϕ) = ϕ�

(

q/γ
)

, where q =
1

2
‖ · ‖2. (3)

Moreau’s decomposition asserts that

env1/γ(ϕ) + envγ(ϕ
∗) ◦ (γ Id) = γq. (4)

The proximity operator (or proximal mapping) of f is the operator Proxϕ = (Id+∂ϕ)−1;
it maps each x ∈ H to the unique minimizer of the function y 7→ ϕ(y) + q(x− y). The
Moreau envelope env1(ϕ) is Fréchet differentiable with gradient ∇env1(ϕ) = Proxϕ∗ .
Hence, (4) yields

∇ env1/γ(ϕ) = Proxγϕ∗ ◦ (γ Id) = γ(Id−Proxϕ/γ). (5)
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Moreover,
Proxϕ : H → H is firmly nonexpansive. (6)

We are now ready to present the main result of this section, which strengthens the
conclusion of Theorem 1.1 by providing four additional equivalent conditions and a
short new proof.

Theorem 2.1. Let f ∈ Γ0(H), let β ∈ ]0,+∞[, and set h = f ∗ − q/β. Then the
following are equivalent.

(i) f is Fréchet differentiable on H and ∇f is β-Lipschitz continuous.

(ii) βq − f is convex.

(iii) f ∗ − q/β is convex (i.e., f ∗ is 1/β-strongly convex).

(iv) h ∈ Γ0(H) and f = env1/β(h
∗) = βq − envβ(h) ◦ β Id.

(v) h ∈ Γ0(H) and ∇f = Proxβh ◦ β Id = β(Id−Proxh∗/β).

(vi) f is Fréchet differentiable on H and ∇f is 1/β-cocoercive.

Proof. (i) ⇒ (ii): By Cauchy-Schwarz, (∀x ∈ H)(∀y ∈ H) 〈x− y | βx−∇f(x)− βy
+∇f(y)〉 = β‖x − y‖2 − 〈x− y | ∇f(x)−∇f(y)〉 ≥ ‖x − y‖(β‖x − y‖ − ‖∇f(x) −
∇f(y)‖) ≥ 0. Hence, ∇(βq− f) = β Id−∇f is monotone and it follows that βq− f is
convex (see, e.g., [22, Theorem 2.1.11]).

(ii) ⇒ (iii): Set g = βq − f . Then g ∈ Γ0(H) and therefore g = g∗∗. Accordingly,

f = βq − g = βq − g∗∗ = βq − sup
u∈H

(

〈· | u〉 − g∗(u)
)

= inf
u∈H

(

βq − 〈· | u〉+ g∗(u)
)

. (7)

Hence

f ∗ = sup
u∈H

(

βq − 〈· | u〉+ g∗(u)
)∗

= sup
u∈H

((

βq − 〈· | u〉
)∗

− g∗(u)
)

= sup
u∈H

(

q(·+ u)/β − g∗(u)
)

= q/β + sup
u∈H

(

(〈· | u〉+ q(u))/β − g∗(u)
)

, (8)

where the last term is convex as a supremum of affine functions. Thus, h is convex.

(iii) ⇒ (iv): Since f ∈ Γ0(H) and h is convex, we have h ∈ Γ0(H), h∗ ∈ Γ0(H), and
f = f ∗∗ = (h + q/β)∗ = h∗

�βq = env1/β(h
∗) = βq − envβ(h) ◦ β Id, where the last

identity follows from (4).

(iv) ⇒ (v): Use (5).

(v) ⇒ (vi): By (6), Proxβh is firmly nonexpansive. Hence, it follows from (1) that
∇f = Proxβh ◦ β Id is 1/β-cocoercive.

(vi) ⇒ (i): Apply the Cauchy-Schwarz inequality.

Remark 2.2. Some comments regarding Theorem 2.1 are in order.

(a) The proof of the implication (i) ⇒ (vi), i.e., of the Baillon-Haddad theorem
(Theorem 1.1) appears to be new and shorter than those found in the literature.
In addition, Theorem 2.1 brings to light various characterizations of the Lipschitz
continuity of the gradient of a convex function. The equivalences (ii) ⇔ (iii) ⇔
(iv) are due to Moreau, who established them (for β = 1) in [16, Proposition 9.b]
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(see also [13, Corollary 3]). On the other hand, the equivalences (i) ⇔ (iii) ⇔
(iv) ⇔ (vi) are shown in Euclidean spaces in [18, Proposition 12.60] with different
techniques.

(b) Set β = 1. The conclusion of Theorem 1.1 is that∇f : H → H is firmly nonexpan-
sive. Hence, since the class of firmly nonexpansive operators with domain H co-
incides with that of resolvents of maximal monotone operators [10, Section 1.11],
we have ∇f = (Id+A)−1, for some maximal monotone operator A : H → 2H.
However, v more precisely reveals ∇f to be the proximity operator of h, i.e.,
A = ∂h = ∂f ∗ − Id.

(c) Let f1 ∈ Γ0(H), let f2 : H → R be convex and differentiable with a Lipschitz
continuous gradient, and consider the problem of minimizing f1 + f2. Without
loss of generality (rescale), we assume that the Lipschitz constant of∇f2 is β = 1.
A standard algorithm for solving this problem is the forward-backward algorithm
[7, 20]

x0 ∈ H and (∀n ∈ N) xn+1 = Proxγnf1
(

xn − γn∇f2(xn)
)

, 0 < γn < 2. (9)

Now set h2 = f ∗
2 − q. Then it follows from the implication (i) ⇒ (v) that

∇f2 = Id−Proxh∗

2
. Hence, we can rewrite (9) as

x0 ∈ H and

(∀n ∈ N) xn+1 = Proxγnf1
(

(1− γn)xn + γn Proxh∗

2
xn

)

, 0 < γn < 2.
(10)

This shows that the forward-backward algorithm (9) is actually a backward-
backward algorithm. In particular, for γn ≡ 1, we recover the basic backward-
backward iteration xn+1 = Proxf1 Proxh∗

2
xn.

We conclude this section with an alternative formulation of the Baillon-Haddad the-
orem that brings into play Bregman distances. Recall that if ϕ ∈ Γ0(H) is Gateaux
differentiable on int domϕ 6= ?, the associated Bregman distance Dϕ is defined by

Dϕ : H×H → [0,+∞] :

(x, y) 7→

{

ϕ(x)− ϕ(y)− 〈x− y | ∇ϕ(y)〉 , if y ∈ int domϕ;

+∞, otherwise.

(11)

Corollary 2.3. Let β ∈ ]0,+∞[, and let f : H → R be convex, Fréchet differentiable
on H, and such that f ∗ is Gateaux differentiable on int dom f ∗ 6= ?. Then the following
are equivalent.

(i) ∇f is β-Lipschitz continuous.

(ii) (∀x ∈ H)(∀y ∈ H) Df (x, y) ≤ βq(x− y).

(iii) (∀x∗ ∈ H)(∀y∗ ∈ H) βDf∗(x∗, y∗) ≥ q(x∗ − y∗).

Proof. (i) ⇔ (ii): Set g = βq − f . Then g is Fréchet differentiable on dom g = H
and ∇g = β Id−∇f . Hence, it follows from the equivalence (i) ⇔ (ii) in Theorem 2.1
and (11) that (i) ⇔ g ∈ Γ0(H) is Fréchet differentiable on int dom f = H ⇔ (∀x ∈
H)(∀y ∈ H) Dg(x, y) ≥ 0 ⇔ (∀x ∈ H)(∀y ∈ H) Df (x, y) ≤ βq(x− y).



H. H. Bauschke, P. L. Combettes / The Baillon-Haddad Theorem Revisited 785

(i) ⇔ (iii): Set h = f ∗ − q/β. Then h is Gateaux differentiable on int dom h =
int dom f ∗, with ∇h = ∇f ∗ − (1/β) Id. Hence, in view of the equivalence (i) ⇔ (iii)
in Theorem 2.1 and (11), (i) ⇔ h ∈ Γ0(H) is Gateaux differentiable on int dom h =
int dom f ∗ ⇔ (∀x∗ ∈ H)(∀y∗ ∈ H)Dh(x

∗, y∗)≥ 0⇔ (∀x∗ ∈ H)(∀y∗ ∈ H)Df∗(x∗, y∗)≥
q(x∗ − y∗)/β.

3. A second order Baillon-Haddad theorem

Under the more restrictive assumption that the underlying convex function is twice
continuously differentiable, we shall obtain in Theorem 3.3 a very short and transparent
proof inspired by the work of Dunn [9]. We require two preliminary propositions.

Proposition 3.1. Let C be a nonempty open convex subset of H, let B be a real
Banach space, and let G : C → B be continuously Fréchet differentiable on C. Then G
is nonexpansive if and only if (∀x ∈ C) ‖∇G(x)‖ ≤ 1.

Proof. Let x ∈ C and let y ∈ H. Suppose that G is nonexpansive. For every
t ∈ ]0,+∞[ sufficiently small, x+ty ∈ C and hence ‖G(x+ty)−G(x)‖/t ≤ ‖y‖. Letting
t ↓ 0, we deduce that ‖(∇G(x))y‖ ≤ ‖y‖. Since y was chosen arbitrarily, we conclude
that ‖∇G(x)‖ ≤ 1. Conversely, if y ∈ C, we derive from the mean value theorem
(see, e.g., [8, Theorem 5.1.12]) that ‖G(y) − G(x)‖ ≤ ‖y − x‖ supz∈[x,y] ‖∇G(z)‖ ≤
‖y − x‖.

Let A : H → H and B : H → H be self-adjoint bounded linear operators. Then A is
positive, written A � 0, if (∀x ∈ H) 〈x | Ax〉 ≥ 0. We write A � B if A−B � 0. The
following result is part of the folklore.

Proposition 3.2. Let A : H → H be a bounded self-adjoint linear operator. Then
‖A‖ ≤ 1 if and only if Id � A � − Id.

Proof. Assume that H 6= {0} and set S =
{

x ∈ H | ‖x‖ = 1
}

. Then Id � A ⇔
(∀x ∈ H) 〈x | x〉 ≥ 〈x | Ax〉 ⇔ (∀x ∈ S) 1 = 〈x | x〉 ≥ 〈x | Ax〉. Similarly, A � − Id
⇔ (∀x ∈ S) 〈x | Ax〉 ≥ −1. Hence Id � A � − Id ⇔ (∀x ∈ S) |〈x | Ax〉| ≤ 1 ⇔
‖A‖ = supx∈S |〈x | Ax〉| ≤ 1.

The main result of this section is a Baillon-Haddad theorem for twice continuously
Fréchet differentiable convex functions. It extends [9, Theorem 4], which assumed in
addition that f has full domain and uniformly bounded Hessians.

Theorem 3.3. Let C be a nonempty open convex subset of H, let f : C → R be convex
and twice continuously Fréchet differentiable on C, and let β ∈ ]0,+∞[. Then ∇f is
β-Lipschitz continuous if and only if it is 1/β-cocoercive.

Proof. Define two operators on C by G = (1/β)∇f and by H = ∇G = (1/β)∇2f .
Under our assumptions, the convexity of f is characterized by [22, Theorem 2.1.11]

(∀x ∈ H) H(x) � 0. (12)
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Hence,

∇f is β-Lipschitz continuous (13)

⇔ G is nonexpansive

⇔ (∀x ∈ C) ‖H(x)‖ ≤ 1 (by Proposition 3.1)

⇔ (∀x ∈ C) − Id � H(x) � Id (by Proposition 3.2)

⇔ (∀x ∈ C) 0 � H(x) � Id (by (12))

⇔ (∀x ∈ C) − Id � 2H(x)− Id � Id

⇔ (∀x ∈ C) ‖2H(x)− Id ‖ ≤ 1 (by Proposition 3.2)

⇔ 2G− Id is nonexpansive (by Proposition 3.1)

⇔ G is firmly nonexpansive (by [10, Lemma 1.11.1])

⇔ ∇f is 1/β-cocoercive, (by (1))

and we obtain the conclusion.

In linear functional analysis, the following property is usually obtained via spectral
theory.

Corollary 3.4. Let A : H → H be a positive self-adjoint bounded linear operator. Then
(∀x ∈ H) ‖A‖ 〈x | Ax〉 ≥ ‖Ax‖2.

Proof. This is an application of Theorem 3.3 with f : H → R : x 7→ 〈x | Ax〉 /2.
Indeed, f is twice continuously Fréchet differentiable on H with ∇f = A, which is
‖A‖-Lipschitz continuous.

Remark 3.5. It would be interesting to see whether Theorem 3.3 holds true when the
second-order assumption is replaced by Fréchet differentiability. However, the natural
approach by approximation does not appear to be applicable; see [4, Section 5] for
pertinent comments.

References

[1] H. Attouch: Variational Convergence for Functions and Operators, Pitman, Boston
(1984).

[2] H. Attouch, L. M. Briceño-Arias, P. L. Combettes: A parallel splitting method for
coupled monotone inclusions, SIAM J. Control Optim. 48 (2010) 3246–3270.

[3] J.-B. Baillon, G. Haddad: Quelques propriétés des opérateurs angle-bornés et n-
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