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We consider the nonconvex problem of minimizing the ratio of two quadratic functions over finitely
many nonconvex quadratic inequalities. Relying on the homogenization technique we establish a
sufficient condition that warrants the attainment of an optimal solution. Our result allows to extend
and recover known conditions for some interesting special instances of the problem and to derive
further results on its algorithmic and modeling aspects.

1. Introduction

In this paper we consider the general problem of minimizing a ratio of two quadratic
functions subject to a constraint set defined by finitely many quadratic inequality
constraints:

(QCRQ) inf
x∈Rn

{

f1(x)

f2(x)
: gi(x) ≤ 0, i = 1, . . .m

}

,

where all the data functions are quadratic functions on R
n, see Section 2 for a precise

formulation. Note that even if we assume the convexity of the constraints, with no fur-
ther assumptions on fi, the problem remains a nonconvex one. Problem (QCRQ)
encompasses a variety of fundamental problems arising in both optimization the-
ory/algorithmic development itself, and in many important scientific applications that
will be discussed below. Optimization problems involving ratio in the objective func-
tion are commonly called fractional programs, and provide an important sub-class of
global optimization which has attracted intensive research activities, see [19], and the
large bibliography therein. Despite these extensive studies, the specific generic model
(QCRQ) has received limited attention.

For any given optimization problem, a key question is to characterize and warrant
the existence and infimum attainment of an optimal solution. This issue is not only
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theoretical. It has a major impact on both the ability to determine/identify the condi-
tion(s) under which a given nonconvex problem can be adequately transformed (e.g.,
as a convex one), as well as on the algorithmic design, see for instance [1]. This pa-
per focuses on this question and its potential implications for (QCRQ). A common
approach to tackle this question is via techniques of asymptotic cones and functions in
nonconvex analysis, [2]. Here, we depart from this approach and tackle the problem by
following an elementary and well known homogenization technique. This is developed
in Section 3 where we derive a sufficient condition under which the optimal solution of
the problem (QCRQ) is attained. In addition, we show that this condition ensures the
equivalence of the original problem to a nonconvex but homogenous quadratic problem.
Our result allows to extend and recover known conditions for some interesting special
instances of the QCRQ problem and to provide new algorithmic and practical insights
in the analysis of (QCRQ). Using the homogenous formulation of the problem, we con-
struct in Section 4 a semidefinite relaxation (SDR) of the problem and we show by
simulations that for random problems, the SDR has a high probability to produce the
global optimal solution. Finally, we address the question of representation of two-sided
linear constraints and prove that it is always better to represent this kind of constraints
by a quadratic constraint.

Notation. Vectors are denoted by boldface lowercase letters, e.g., y, and matrices are
denoted by boldface uppercase letters e.g., A. For any symmetric matrix A and sym-
metric positive definite matrix B we denote the corresponding minimum generalized
eigenvalue by λmin(A,B); the minimum generalized eigenvalue has several equivalent
formulations (see e.g., [18]):

λmin(A,B) = max{λ : A− λB � 0} = min{xTAx : xTBx = 1}

= min
x6=0

xTAx

xTBx
= λmin(B

−1/2AB−1/2),

where we use the notation A � 0 (A ≻ 0) for a positive semidefinite (positive definite)
matrix A. The value of the optimal objective function of an optimization problem:

(P) : inf{f(x) : x ∈ C}

is denoted by val(P), and with the usual notation "min" in place of "inf", whenever
attained.

2. Motivation, Problem Formulation and Examples

2.1. Motivation

Many problems in data fitting and estimation give rise to an overdetermined system
of linear equations Ax ≈ b, where both the matrix A ∈ R

m×n and the vector b ∈ R
m

are contaminated by noise. The Total Least Squares (TLS) approach to this problem
[12, 13, 20] is to seek a perturbation matrixE ∈ R

m×n and a perturbation vector r ∈ R
m

that minimize ‖E‖2 + ‖r‖2 subject to the consistency equation (A + E)x = b + r. It
is well known that for ill posed problems the TLS solution might give rise to a poor
quality solution, usually with a huge norm. For that reason, several regularization
techniques were devised in order to stabilize the solution including truncation methods
[10, 16] and Tikhonov regularization [4]. Another standard technique to regularize the
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solution is to incorporate some a priori knowledge on the unknown vector x. Therefore,
assuming that the "true" vector x belongs to some set X, the regularized TLS (RTLS)
vector is the solution of the problem:

inf
E,r,x

‖E‖2 + ‖r‖2

s.t. (A+E)x = b+ r,
x ∈ X.

(1)

Fixing x and minimizing the above problem with respect to E and w, the problem
transforms to (for details see [13, 5])

(RTLS) inf
x

‖Ax−b‖2

‖x‖2+1

s.t. x ∈ X.
(2)

The case in which X is given by a single convex quadratic and homogenous constraint,
i.e., X1 = {x ∈ R

n : ‖Lx‖2 ≤ ρ} was extensively studied in [23, 14, 11, 6, 5]. In
particular, a fixed point iteration based on quadratic eigenvalue solvers was devised in
[23]. A proof of superlinear global rate of convergence for the fixed point scheme can
be found in [6]. Another globally convergent algorithm, proposed in [5], relies on a
combination of Dinklbach’s observation for fractional programming [9] and the hidden
convexity result of [8]. This algorithm is also capable of handling two sided constraints
of the form η ≤ ‖Lx‖2 ≤ ρ. Finally, it was shown in [6] that the RTLS problem with
X = X1 can be recast as a semidefinite programming (SDP) problem; therefore, the
RTLS problem is essentially equivalent to a convex optimization problem. This latter
result gives rise to yet another method for solving the RTLS problem with X = X1.

In contrast to the relatively large amount of works dealing with the RTLS problem with
a single quadratic constraint (i.e., X = X1), it seems that more involved choices of the
set of admissible vectors X are not treated in the literature. The main reason for that
is probably the fact that the objective function is not convex and therefore this problem
does not render itself to the powerful algorithms/theory of convex optimization.

2.2. Problem Formulation

In our analysis we consider the more general problem of minimizing a ratio of two
general quadratic functions over multiple quadratic inequalities. This problem will be
called the quadratically constrained ratio quadratic (QCRQ) problem:

(QCRQ) : inf
x

f1(x)
f2(x)

s.t. x ∈ X.
(3)

Here fi(x) = xTAix+ 2bT
i x+ ci and Ai = AT

i ∈ R
n×n, bi ∈ R

n, ci ∈ R, i = 1, 2 and
where the set of admissible vectors X is chosen as the intersection of several level sets
of quadratic functions, i.e.,

X = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . ,m}, (4)

where
gi(x) = xTBix+ 2dT

i x+ αi (5)



792 A. Beck, M. Teboulle / On Minimizing Quadratically Constrained Ratio of ...

with Bi = BT
i ∈ R

n×n, di ∈ R
n, αi ∈ R. This form of X is quite general and

encompasses a wide variety of structures.

Throughout the paper we assume that:

(i) the feasible set X is nonempty,

(ii)
(

A2 b2

bT
2 c2

)

≻ 0, (6)

which implies that f2(x) > 0 for every x ∈ R
n, and in particular that the problem is

well defined with an objective function bounded below.

Note that A1 is not assumed to be positive semidefinite so that the function f1 is not
necessarily convex (as in the case of the RTLS problem (2)).

2.3. Examples

The general model QCQR includes interesting particular instances of the RTLS prob-
lem:

1. Single constrained RTLS

inf

{‖Ax− b‖2
‖x‖2 + 1

: ‖Lx‖2 ≤ ρ

}

, (7)

where L ∈ R
d×n and ρ > 0. As noted in the introduction, this is the RTLS

problem considered in [23, 14, 11, 6, 5]. The matrix L is usually chosen as an
approximation of the first or second order derivative [11, 15, 17].

2. Box constrained RTLS

min

{‖Ax− b‖2
‖x‖2 + 1

: l ≤ xi ≤ u, i = 1, . . . , n

}

,

where l < u. We note that in some situations box constraints are more suitable
than a single weighted constraint of the form ‖Lx‖2 ≤ ρ. For example, if the
unknown vector x stands for an image in a BMP format, then each component
(or pixel) xi is bounded below and above by 0 and 255 respectively; therefore, in
this case l = 0, u = 255.

The above two RTLS problems will also serve as guiding prototype models that will
be used to illustrate our results. The corresponding sets of admissible vectors for the
two prototype problems are denoted by

X1 = {x ∈ R
n : ‖Lx‖2 ≤ ρ},

X∞ = {x ∈ R
n : l ≤ xi ≤ u}.

Modeling of the box constraints

There are two approaches for modeling the box constraints within the general structure
(4) of X. Specifically, we can describe X∞ with m = 2n linear constraints where
g2i−1(x) = xi − u, g2i(x) = −xi + l, i = 1, . . . , n. The second option is to model X∞

via n quadratic constraints: gi(x) = (xi − u)(xi − l) ≤ 0, i = 1, . . . , n. A natural
question that arises is whether one approach is "better" than the other. The answer
to the latter question is affirmative and and will be considered in Section 4.2.
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3. Homogenization and Attainment of an Optimal Solution

The attainment of the solution of the QCRQ problem is not always guaranteed. Of
course, when the feasible set X is compact, attainability is ensured, but here X is
not compact. For some special cases, sufficient conditions for attainment have been
obtained. Specifically, for the unconstrained TLS problem (problem (2) with X = R

n),
the condition

λmin

(

ATA −ATb
−bTA ‖b‖2

)

< λmin(A
TA) (8)

is enough to guarantee the attainability of the TLS solution [12, 20]. Moreover, in [6]
it was shown that (QCRQ) with X = X1 attains its optimal solution if

λmin(N1,N2) < λmin(F
TA1F,F

TA2F), (9)

where

N1 =

(

FTA1F FTb1

bT
1F c1

)

,

N2 =

(

FTA2F FTb2

bT
2F c2

)

and F is a matrix whose columns form an orthonormal basis for the null space of L. This
result was established in [6] by using techniques of asymptotic cones and functions in
nonconvex analysis, [2]. Here, we depart from this approach and tackle the problem via
an elementary homogenization approach to derive a sufficient condition under which the
optimal solution of the QCRQ problem is attained. The condition is expressed via the
optimal values of two nonconvex homogenous quadratic problems. We will show that
the sufficient condition also guarantees that the problem is equivalent to a nonconvex
homogenous quadratic problem. This fact will be important in Section 4 where a
semidefinite relaxation will be constructed based on the homogenized problem. As an
application of Theorem 3.2, we obtain explicit conditions which are generalizations of
conditions (8) and (9).

3.1. Homogenization of (QCRQ)

We use the following notation: for any quadratic function f : R
n → R given by

f(x) = xTAx+2bTx+c, the homogenized version of f is the function fH : Rn×R → R

given by fH(y, t) = yTAy+ 2bTyt+ ct2 which is, of course, a homogenous quadratic
function.

Substituting x = y/t with y ∈ R
n, t 6= 0, problem (3) becomes

inf
y,t

fH
1
(y,t)

fH
2
(y,t)

s.t. gHi (y, t) ≤ 0, i = 1, . . . ,m,
t 6= 0.

(10)

We will first consider a slightly different problem, namely

inf
y,t

fH
1
(y,t)

fH
2
(y,t)

s.t. gHi (y, t) ≤ 0, i = 1, . . . ,m,
(y, t) 6= (0n, 0).

(11)



794 A. Beck, M. Teboulle / On Minimizing Quadratically Constrained Ratio of ...

Problem (11) is different from problem (10) in the sense that a feasible vector (y, t)
of (11) can not be identically equal to the all-zeros vector, but it can satisfy t = 0.
In contrast, a feasible solution (y, t) of (10) must satisfy t 6= 0. Our motivation for
considering the "mutated" problem (11) is that it can be proven to be equivalent to
the following nonconvex homogeneous quadratic problem:

(H): minz,s fH
1 (z, s)

s.t. fH
2 (z, s) = 1,
gHi (z, s) ≤ 0, i = 1, . . . ,m.

(12)

Note that by assumption (6), the feasible set of (12) is compact; therefore, the optimal
solution of (12) is attained. Lemma 3.1 below proves the equivalence between problems
(11) and (12).

Lemma 3.1. Let v1 and v2 be the optimal values of problems (11) and (12) respec-
tively. Then,

(i) v1 = v2.

(ii) The solution of problem (11) is attained.

(iii) If (z∗, s∗) is an optimal solution of (12), then it is also an optimal solution of
(11).

(iv) If (y∗, t∗) is an optimal solution of (11), then (z∗, s∗) = 1√
fH
2
(y∗,t∗)

(y∗, t∗) is an

optimal solution of (12).

Proof. Let (z∗, s∗) be an optimal solution of (12). For every (y, t) in the feasible set
of (11) we have that (z, s) = (y,t)√

f2(y,t)
is feasible for (12); thus, by the optimality of

(z∗, s∗), we have

v2 = fH
1 (z∗, s∗) ≤ fH

1 (z, s) =
fH
1 (y, t)

fH
2 (y, t)

.

Minimizing over all feasible solutions (y, t) of (11), the latter inequality implies v2 ≤ v1.
On the other hand,

v1 ≤
fH
1 (z∗, s∗)

fH
2 (z∗, s∗)

= fH
1 (z∗, s∗).

Thus, combining the latter inequality with v2 ≤ v1, we obtain

v1 ≤ fH
1 (z∗, s∗) = v2 ≤ v1.

Therefore, (z∗, s∗) is an optimal solution of problem (11) and v1 = v2, proving parts
(i), (ii) and (iii) of the lemma. To prove part (iv), let (y∗, t∗) be an optimal solution
of (11). Then (z∗, s∗) = 1√

fH
2
(y∗,t∗)

(y∗, t∗) is feasible for (12) and satisfies

fH
1 (z∗, s∗) =

fH
1 (y∗, t∗)

fH
2 (y∗, t∗)

= v1 = v2,

establishing the optimality of (z∗, s∗).



A. Beck, M. Teboulle / On Minimizing Quadratically Constrained Ratio of ... 795

3.2. Attainment of the Optimal Solution of (QCRQ)

We now return to the original problem (10). While the solution of the closely related
problem (11) is attained, the solution of (10) is not necessarily attained. Theorem
3.2 below establishes a sufficient condition for the attainability of the solution of (10).
This condition is expressed in terms of the optimal values of (H) and of the following
problem constructed from (H) by restricting s to be zero:

(H0) : min fH
1 (z, 0)

s.t. fH
2 (z, 0) = 1,
gHi (z, 0) ≤ 0, i = 1, . . . ,m,
z ∈ R

n.

(13)

Theorem 3.2. Suppose that

val (H) < val (H0). (14)

Let (z∗, s∗) be an optimal solution of (H) (problem (12)). Then s∗ 6= 0 and x∗ = 1
s∗
z∗

is an optimal solution of (QCRQ). In particular, the optimal solution of (QCRQ) is
attained.

Proof. Suppose in contradiction that s∗ = 0. Then

fH
1 (z∗, 0) = val (H). (15)

On the other hand,

f1(z
∗, 0) ≥ min

z
{fH

1 (z, 0) : fH
2 (z, 0) = 1, gHi (z, 0) ≤ 0} = val (H0).

Combining the latter inequality with (15) we obtain that val (H) ≥ val (H0), which
is a contradiction to (14). Thus, s∗ 6= 0. By Lemma 3.1(iii), (z∗, s∗) is an optimal
solution of (11) and since s∗ 6= 0 we also have that (z∗, s∗) is an optimal solution of (10).
Finally, by the construction of (10) it follows that x∗ = 1

s∗
z∗ is an optimal solution of

(QCRQ).

Remark 3.3. Since (H0) is constructed from (H) by restricting s to be zero, weak
inequality val (H) ≤ val (H0) is always satisfied.

The following corollary is a direct consequence of Theorem 3.2.

Corollary 3.4. Consider the QCRQ problem (3) and assume that

∃γ1, . . . , γm > 0 :
∑m

i=1 γiBi ≻ 0. (16)

Then condition (14) is satisfied.

Proof. By condition (16), the feasible set of (H0) is empty which implies that val (H0)=
∞, proving the validity of (14).

The condition (16) is satisfied for example in the case of box constraints of the form
(xi − l)(xi − u) ≤ 0, i = 1, . . . , n.



796 A. Beck, M. Teboulle / On Minimizing Quadratically Constrained Ratio of ...

Remark 3.5. Note that under condition (16), the feasible set of (QCRQ) is compact
so attainment of the optimal solution is not really an issue. It is still important to
note that in this case condition (14) is satisfied since it also guarantees that the QCRQ
problem is equivalent to the homogenized problem (H).

In order to validate condition (14), one requires to solve two nonconvex homogeneous
quadratic problems, which seems to be a difficult task. However, in some important
cases, the values of the corresponding problems ((H) and (H0)) can be either computed
exactly or bounded. Specifically, suppose that the constraint set is of the form

XB = {x ∈ R
n : ℓi ≤ ‖Lix‖2 ≤ ui, i = 1, . . . , p}, (17)

where 0 ≤ ℓi ≤ ui < ∞ for i = 1, . . . , p and Li ∈ R
ni×n (n1, . . . , np are positive

integers). We assume that XB is nonempty – (an assumption that is automatically
satisfied when ℓi = 0 for all i). Then, an application of Theorem 3.2, allows us to
write an explicit condition for the attainment of the optimal solution, as stated in the
following theorem.

Theorem 3.6. Consider problem (QCRQ) (problem (3)) with a nonempty feasible set
X = XB given in (17). Suppose that

λmin(M1,M2) < λmin(F
TA1F,F

TA2F), (18)

where

M1 =

(

FTA1F FT (A1x0 + b1)
(A1x0 + b1)

TF xT
0A1x0 + 2bT

1 x0 + c1

)

, (19)

M2 =

(

FTA2F FT (A2x0 + b2)
(A2x0 + b2)

TF xT
0A2x0 + 2bT

2 x0 + c2

)

(20)

and F ∈ R
n×k is a matrix whose columns form an orthonormal basis for

⋂p
i=1 Null(Li)

(k being the dimension of the intersection of the null spaces), and x0 is an arbitrary
point in XB. Then the optimal solution of problem (QCRQ) is attained.

Proof. Problem (H0) corresponding to the constraint set XB can be written as

min{zTA1z : zTA2z = 1, ‖Liz‖2 = 0, i = 1, . . . , p},

which is the same as
min{zTA1z : zTA2z = 1, z ∈ V }, (21)

where V =
⋂p

i=1 Null(Li). Making the change of variables z = Fw, (21) becomes:

min
w

{wTFTA1Fw : wTFTA2Fw = 1},

and we thus conclude that val (H0) = λmin(F
TA1F,F

TA2F).
Denote:

Y = {(z, s) : fH
2 (z, s) = 1, ℓis

2 ≤ ‖Liz‖2 ≤ uis
2},

Z = {(z, s) : fH
2 (z, s) = 1, ℓis

2 ≤ ‖Liz‖2 ≤ uis
2, z = sx0 + Fw for some w ∈ R

k},
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where x0 is some vector in XB as defined in the premise of the theorem. Evidently
Z ⊆ Y and as a result

val (HMP) = min
z,s

{fH
1 (z, s) : (z, s) ∈ Y }

≤ min
z,s

{fH
1 (z, s) : (z, s) ∈ Z}. (22)

Note that by x0 ∈ XB, every z of the form z = sx0+Fw readily satisfies the constraints
ℓis

2 ≤ ‖Liz‖2 ≤ uis
2 and as a result these constraints can be omitted in problem (22).

Thus, problem (22) reduces to

min
w,s

{fH
1 (sx0 + Fw, s) : f2(sx0 + Fw, s) = 1},

whose optimal solution is equal to λmin(M1,M2), where M1 and M2 are defined in
(19) and (20) respectively. Therefore,

val (H) ≤ min
z,s

{fH
1 (z, s) : (z, s) ∈ Z} = λmin(M1,M2)

< λmin(F
TA1F,F

TA2F) = val (H0),

where the strict inequality follows from (18). Finally, invoking Theorem 3.2, we con-
clude that the minimum of problem (QCRQ) is attained.

Remark 3.7. Weak inequality is always satisfied in (18): the matrix in the right-hand
side of (18) is a principal submatrix of the one in the left-hand side. Hence, by the
interlacing theorem of eigenvalues [26, Theorem 7.8], weak inequality holds.

Remark 3.8. It can be shown that the expression in the left-hand side of (18) does
not depend on the specific choice of the feasible vector x0 ∈ XB.

Example 3.9. If ℓi = 0 for i = 1, . . . , p, then x0 can be chosen to be 0 and condition
(18) reduces to λmin(M1,M2) < λmin(F

TAF,FTA2F) where

M1 =

(

FTA1F FTb1

bT
1F c1

)

, M2 =

(

FTA2F FTb2

bT
2F c2

)

,

which is a generalization of the condition (9) derived in [6] for problem (QCRQ) with
X = X1.

Example 3.10. The unconstrained TLS problem is the QCRQ problem with X = XB

and
p = 1, u1 = 1, ℓ1 = 0, L = 0,

A1 = ATA, b1 = −ATb, c1 = ‖b‖2, A2 = I, b2 = 0, c2 = 1.

In this case the condition (18) reduces to the well known condition (8) for attainability
of the TLS solution.

4. Algorithmic and Modeling Applications

4.1. A Convex Semidefinite Relaxation of QCRQ

In the previous section, Theorem 3.2 warrants that under condition (14) the QCRQ
problem can be written as the nonconvex quadratic optimization problem (H) (prob-
lem (12)). Generally speaking, nonconvex quadratic problems are difficult to solve.
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However, they can be approximated by their semidefinite relaxation (SDR) [7, 25]. For
the sake of completeness we first briefly describe the well-known construction of the
SDR. First, we make the change of variables w = (zT , s)T and represent (12) as

minw wTM(f1)w
s.t. wTM(f2)w = 1,

wTM(gi)w ≤ 0, i = 1, . . . ,m,
(23)

where for a given quadratic function f(x) = xTAx+ 2bTx+ c, the associated matrix
is defined by

M(f) ≡
(

A b
bT c

)

.

Using the fact that a p× p positive semidefinite matrix W has rank one if and only if
W = wwT for some w ∈ R

p, we conclude that problem (23) can be rewritten as

minW Tr(M(f1)W)
s.t. Tr(M(f2)W) = 1,

Tr(M(gi)W) ≤ 0, i = 1, . . . ,m,
rank(W) = 1.

Dropping the rank-one constraint we obtain the semidefinite relaxation of the QCRQ
problem (3)

(SDR) : minW Tr(M(f1)W)
s.t. Tr(M(f2)W) = 1,

Tr(M(gi)W) ≤ 0, i = 1, . . . ,m,
W � 0.

(24)

The above problem is a convex relaxation of the QCRQ problem and its optimal value
provides a lower bound, i.e., val (SDR) ≤ val (QCRQ); however, as opposed to the
QCRQ problem (3), problem SDR is a well structured convex problem that can be
solved efficiently via e.g., interior point methods [7, 21].

As immediate consequence of Theorem 3.2 we obtain the following corollary which de-
scribes how to extract the optimal solution of (QCRQ) from the SDR problem whenever
the semidefinite relaxation is tight.

Corollary 4.1. Suppose that the semidefinite relaxation (SDR) has an optimal solu-
tion W with rank one and that the sufficient condition (14) holds. Then the exact
solution of the original QCRQ problem is v

t
where (vT , t)T ∈ R

n+1 is an eigenvector of
the matrix W associated with the maximum eigenvalue.

Motivated by the "tight case", we are now ready to define an algorithm for computing
an approximate solution of the QCRQ problem.

Algorithm QCRQ-SDR.

1. Solve the SDR problem (24) and obtain a solution W ∈ R
(n+1)×(n+1).

2. Compute the eigenvector

(

v
t

)

associated with the maximum eigenvalue of W.

3. The output of the algorithm is the vector v/t.
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In the next example we show that, at least for random instances of the RTLS problem
with box constraints, the semidefinite relaxation tends to be tight and consequently
the QCRQ-SDR algorithm provides an exact solution of the QCRQ problem.

Example 4.2. Consider randomly generated instances of the RTLS problem with box
constraints. The experiments were performed in MATLAB and the semidefinite pro-
grams were solved using SeDuMi [24]. The admissible set of vectors is given by1

X = {x ∈ R
n : x2

i ≤ 1, i = 1, . . . , n}.

By Corollary 3.4, the sufficient condition (14) is satisfied in this case. The exact random
linear system is

ATxT = bT, (25)

where AT,xT are generated by the MATLAB commands rand(m,n), rand(n,1) and bT

is defined by the relation (25). The observed matrix and vector A and b are generated
by adding white nose:

A = AT + σE, b = bT + σw,

with E=randn(m,n), w=randn(m,1) and σ being the standard deviation. We tested the
QCRQ-SDR algorithm for several sizes:

(m,n) = (10, 10), (15, 10), (50, 50), (75, 50), (100, 100), (150, 100)

and for three choices of noise level: σ = 10−1, 10−2, 10−3. In the following table each
entry is the number of runs out of 100 realizations in which the SDR was tight. Here
by "tight" we mean a run in which the sum of the eigenvalues excluding the maximum
eigenvalue is smaller than 10−10.

m n σ
10−3 10−2 10−1

10 10 100 96 86
50 50 99 97 54
100 100 96 96 29
10 15 100 100 100
50 75 100 100 100
100 150 100 100 100

Note that for the lower noise levels σ = 10−3, 10−2, the SDR was almost always tight
and it was always tight in the rectangular instances.
When the SDR is not tight the output of the SDR-QCQR algorithm can be used as a
good starting point for general-purpose optimization algorithms.

Remark 4.3 (Case m = 1). When m = 1 the SDR (24) always has an optimal rank-
one solution. This result follows from the rank reduction algorithm of Pataki [22]

1Note that here we used the quadratic representation x
2

i
≤ 1 rather than the linear representation

−1 ≤ xi ≤ 1. In Section 4.2 we will show that indeed the quadratic representation is better in some
sense.
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which shows in particular that an optimal solution of a semidefinite program with two
constraints can be transformed into a rank-one optimal solution, see also algorithm
RED in [3]. A related result was proven in [6] where it was shown that the QCRQ
problem with X = X1 can be solved using an associated SDP which is in fact the dual
problem of the SDR described in this section.

4.2. Modeling of Linear Constraints

We now address the question of representation of the linear constraints. More specif-
ically, suppose that one of the constraints defining the set X are double-sided linear
constraints of the form

ℓ ≤ aTx ≤ u, (26)

where ℓ < u and a ∈ R
n is a nonzero vector. The two constraints (26) can be written

in the following quadratic form:
(

aTx− ℓ+ u

2

)2

≤ (u− ℓ)2

4
. (27)

The natural question that arises is whether or not one of the representations (26) or
(27) is better. We will show that using the quadratic representation (27) is preferable
in two senses:

(i) the sufficient condition (14) is more likely to be satisfied for the quadratic repre-
sentation and,

(ii) the SDR problem provides a tighter lower bound on the QCRQ problem.

Consider then the QCRQ problem (3) with the following set of admissible of vectors:

XL = {x ∈ R
n : gi(x) ≤ 0, ℓ ≤ aTx ≤ u, i = 1, . . . , p}, (28)

where gi are given by (5). The alternative representation of the above set is

XQ =

{

x ∈ R
n : gi(x) ≤ 0,

(

aTx− ℓ+ u

2

)2

≤ (u− ℓ)2

4
, i = 1, . . . , p

}

(29)

Of course, XL = XQ, but as we shall see the specific representation has great influence
on issues such as the validity of the sufficient condition and the optimal value of the
SDR.

We recall that our solution approach is to first homogenize the problem and then use
the semidefinite relaxation. In Section 3 we derived the sufficient condition (14) that
guarantees both the attainment of the solution and the equivalence of the problem
to a corresponding nonconvex homogenous problem. The sufficient condition for the
QCRQ problem with X = XL is

val(HL) < val(HL
0 ), (30)

where (HL) and (HL
0 ) are the problems

(HL) : minz,s fH
1 (z, s) (HL

0 ) : minz fH
1 (z, 0)

s.t. fH
2 (z, s) = 1, s.t. fH

2 (z, 0) = 1,
gHi (z, s) ≤ 0, gHi (z, 0) ≤ 0.
aTzs ≤ us2,
aTzs ≥ ℓs2.
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Similarly, the sufficient condition for the QCRQ problem with X = XQ is

val(HQ) < val(HQ
0 ), (31)

where (HQ) and (HQ
0 ) are the problems

(HQ) : minz,s fH
1 (z, s) (HQ

0 ) : minz fH
1 (z, 0)

s.t. fH
2 (z, s) = 1, s.t. fH

2 (z, 0) = 1,
gHi (z, s) ≤ 0, gHi (z, 0) ≤ 0,
(

aTz− u+ℓ
2
s
)2 ≤ u−ℓ

2
s2. aTz = 0.

The following result shows that if the sufficient condition is satisfied for the linear
representation, then it surely holds for the quadratic representation.

Theorem 4.4. Suppose that val(HL) < val(HL
0 ) holds. Then val(HQ) < val(HQ

0 ) is
also satisfied.

Proof. Suppose that condition val(HL) < val(HL
0 ) holds. Note that problem (HQ

0 ) is
essentially problem (HL

0 ), but with an additional constraint: aTz = 0, thus,

val(HL
0 ) ≤ val(HQ

0 ). (32)

On the other hand, a straightforward computation shows that the inequality (aTz−
u+ℓ
2
s
)2 ≤ u−ℓ

2
s2 follows from the pair of inequalities aTzs ≤ us2, aTzs ≥ ℓs2, showing

that the feasible set of (HL) is contained in the feasible set (HQ). Consequently,

val(HQ) ≤ val(HL). (33)

Finally, combining (32) and (33) along with (30) we obtain:

val(HQ) ≤ val(HL) < val(HL
0 ) ≤ val(HQ

0 ),

proving the validity of condition (31).

Example 4.7 at the end of the section demonstrates the fact that the reverse result does
not hold, i.e., it is possible that the sufficient condition is satisfied for the quadratic
representation but not for the linear representation.

The SDR associated with the linear representation (28) is

(SDR-L) : minW Tr(M(f1)W)
s.t. Tr(M(f2)W) = 1,

Tr(M(gi)W) ≤ 0, i = 1, . . . , p,
Tr(D1W) ≤ 0,
Tr(D2W) ≤ 0,
W � 0,

where

D1 =

(

0 1
2
a

1
2
aT −u

)

, D2 =

(

0 −1
2
a

−1
2
aT ℓ

)

,
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and the SDR associated with the quadratic representation (29) is

(SDR-Q) : minW Tr(M(f1)W)
s.t. Tr(M(f2)W) = 1,

Tr(M(gi)W) ≤ 0, i = 1, . . . , p,
Tr(DW) ≤ 0,
W � 0,

where D =

(

aaT − ℓ+u
2
a

− ℓ+u
2
aT uℓ

)

.

The optimal values of (SDR-L) and (SDR-Q) are both lower bounds on the optimal
value of the QCRQ problem. In the next result we show that (SDR-Q) consistently
provides a tighter lower bound.

Theorem 4.5. val (SDR-L) ≤ val (SDR-Q).

Proof. To prove the result, it suffice to show that the feasible set of (SDR-Q) is
contained in the feasible set of (SDR-L). Suppose that W is a feasible solution of
(SDR-Q). The first p + 1 constraints in (SDR-L) are satisfied since they are the same
as the first p+ 1 constraints of (SDR-Q). It is easy to show that

D � (u− ℓ)D1, D � (u− ℓ)D2. (34)

Combining (34) along with the last constraints in (SDR-Q): W � 0,Tr(DW) ≤ 0, we
have

Tr(DiW) ≤ 1

u− ℓ
Tr(DW) ≤ 0, i = 1, 2.

Therefore, W is a feasible solution of (SDR-L), proving the result.

Remark 4.6. In the presence of several double-sided linear constraints, repeated ap-
plication of Theorems 4.4 and 4.5 shows that it is best to represent all of them as
quadratic constraints in the sense that (i) the sufficient condition is more likely to be
satisfied and (ii) the SDR arising from the quadratic representation provides a tight
lower bound than the one associated with the linear representation.

Example 4.7 (Quadratic versus Linear: satisfiability of the sufficient condi-
tion. Consider the RTLS problem (2) with m = 3, n = 2 and

A =





1 2
3 4
5 6



 , b =





1
0
−4



 .

The set of admissible vectors is given by either

XL = {(x1, x2) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}

or
XQ =

{

(x1, x2) : x
2
1 ≤ 1, x2

2 ≤ 1
}

.

The sufficient condition is satisfied by Corollary 3.4. We solved the corresponding
SDR using SeDuMi and it turned out that it is tight. Therefore, algorithm QCRQ-
SDR produces the exact solution which is (−1, 0.4111)T .
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The sufficient condition is not satisfied for the linear representation. To see this, note
that problem (HL) is given by

min
{

‖Ax− sb‖2 : x2
1 + x2

2 + s2 = 1, −s2 ≤ xis ≤ s2, i = 1, 2
}

. (35)

The solution of the semidefinite relaxation of the above problem was solved and the
optimal solution of the SDR is the matrix (given with four digits of accuracy):





0.6161 −0.4863 0
−0.4863 0.3839 0

0 0 0



 ,

which is of rank one. Consequently, the optimal solution of (35) is the unit-norm maxi-
mum eigenvector of the above matrix: (−0.7849, 0.6196, 0)T . Since the last component
of the optimal solution of (HL) is zero, it follows that val(HL) = val(HL

0 ), showing that
the sufficient condition is not satisfied. We note that this example is extreme in the
sense that the quadratic representation provides us with the global optimal solution
while the linear representation is useless!

Example 4.7 (Quadratic versus Linear: quality of the SDR). Consider the
RTLS problem with the same matrix and vector as in Example 4.7. The set of admis-
sible vectors is given by either

XL =
{

(x1, x2) : x
2
1 + x2

2 ≤ 1.2, −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1
}

or
XQ =

{

(x1, x2) : x
2
1 + x2

2 ≤ 1.2, x2
1 ≤ 1, x2

2 ≤ 1
}

.

By Corollary 3.4, the sufficient condition holds for both representations. The optimal
solution of the SDR associated with the linear representation was computed and is not
of rank one. The corresponding optimal value is 2.4405, which is only a lower bound.
The output of algorithm QCRQ-SDR is (−1.0167, 0.4079)T . This is of course just an
approximation of the exact solution. The optimal solution of the SDR associated with
quadratic representation is of rank-one and its value is 2.4785 (this is the value of the
global optimal solution). The output of algorithm QCRQ-SDR is (−1, 0.411)T , which
is the exact solution of the RTLS problem.
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