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The main purpose of this paper is to identify topologies on the closed subsets C (X) of a Hausdorff space
X that are sequentially equivalent to classical Kuratowski-Painlevé convergence K. This reduces to a
study of upper topologies sequentially equivalent to upper Kuratowski-Painlevé convergence K+, where
we are of course led to consider the sequential modification of upper Kuratowski-Painlevé convergence.
We characterize those miss topologies induced by a cobase of closed sets that are sequentially equivalent
to K+, with special attention given to X first countable. Separately in the final section, we revisit
Mrowka’s theorem on the compactness of Kuratowski-Painlevé convergence.
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1. Introduction

Given a Hausdorff topological space 〈X,T 〉 we denote by C (X) the family of all closed
subsets of X. We recall that given a net 〈Aλ〉λ∈Λ in C (X), the upper closed limit and
the lower closed limit of the net are defined as

Ls Aλ := {x ∈ X : Ux ∩ Aλ 6= ? cofinally for every neighborhood Ux of x};

Li Aλ := {x ∈ X : Ux ∩ Aλ 6= ? residually for every neighborhood Ux of x}.

Befitting their names, both are closed subsets of X (see, e.g., [6, Proposition 5.2.2]).
The net 〈Aλ〉λ∈Λ is said to be:

• K+-convergent or upper Kuratowski-Painlevé convergent to A if Ls Aλ ⊆ A;
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• K−-convergent or lower Kuratowski-Painlevé convergent to A if A ⊆ Li Aλ;

• K-convergent or Kuratowski-Painlevé convergent to A if it is K+-convergent and
K−-convergent to A, i.e. Ls Aλ = Li Aλ = A.

This kind of convergence for sequences of sets was introduced by Painlevé and Haus-
dorff, later receiving broad dissemination in this context through the monograph of
Kuratowski [36]. It resurfaced again for filtered families of closed sets in the seminal
article of Choquet [15], followed by the monograph of Berge [10], and it is from this
perspective that it is often studied (see, e.g., [25, 38]). One important fact about
K-convergence is its compactness without restriction [6, 37]. It has been applied to
lower semicontinuous extended real-valued functions as associated with their (closed)
epigraphs, especially to convex functions (see, e.g., [5, 6, 26, 42, 43]).

In general, Kuratowski-Painlevé convergence is not topological, i.e. we cannot find a
topology on C (X) such that the convergence of nets in this topology is equivalent to
their Kuratowski-Painlevé convergence [25, 35]. Nevertheless, there is a finest topology
whose convergence is weaker than the Kuratowski-Painlevé convergence. This topology
has been historically called the convergence topology and will be denoted by τK. In a
similar way, the upper Kuratowski topology τK+ is the finest topology coarser than the
upper Kuratowski-Painlevé convergence.

It can be proved that the finest hit-and-miss topology coarser than τK is the Fell
topology (see Remark 4.3) and this topology coincides with the Kuratowski-Painlevé
convergence in a Hausdorff space if and only if it is locally compact ([35]).

It is well-known that convergence in the lower Vietoris topology is equivalent to lower
Kuratowski-Painlevé convergence. Dolecki, Greco and Lechicki [25] were perhaps the
first to investigate when the co-compact topology (the upper Fell topology) is equal
to the upper Kuratowski topology τK+. The topological spaces for which this equality
is verified are called consonant. Examples of consonant topological spaces are: Čech-
complete spaces, Hausdorff kω-spaces, etc. (see [1, 2, 11, 12, 13, 14, 19, 31, 38, 40]).

In this paper, we obtain some new results on the sequential modification of the up-
per Kuratowski-Painlevé convergence, that is, the strongest sequential topology that
is sequentially coarser than the convergence. We are also interested in those miss
topologies that have the same convergent sequences as the upper Kuratowski-Painlevé
convergence. The spaces where this coincidence is true for the co-compact topology
are called sequentially consonant [16], but it seems to us more natural to focus at-
tention on the miss topologies generated by cobases of closed countably compact sets,
as in an arbitrary Hausdorff space, the miss topology generated by the cobase of all
closed countably compact sets is the finest miss topology sequentially coarser than
the upper Kuratowski convergence. We completely characterize those miss topolo-
gies generated by a cobase which have the same convergent sequences as the upper
Kuratowski-Painlevé convergence (see Theorem 4.4). We look more carefully at such
miss topologies when the underlying topology of the space is first countable, where
we introduce the notion of subsequential selector for the convergent sequences on the
space. We also obtain some two-sided results, e.g., we characterize in the context of
a metric space the sequentiality of the Fell topology TF and the convergence topol-
ogy τK, and we revisit Mrowka’s Theorem on the compactness of Kuratowski-Painlevé
convergence for nets of closed sets.
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2. Preliminaries

All topological spaces will be assumed to be Hausdorff and to consist of at least two
points. We denote the closure, set of limit points and interior of a subset A of a Haus-
dorff space X by cl(A), A′ and int(A), respectively. Let C0(X) denote the nonempty
closed subsets of X. We define idempotent operators Σ, ⇓ and ⇑ on subfamilies of
C (X) as follows:

(1) Σ(A ) := {E : E is a finite union of elements of A };

(2) ⇓ A := {E : E is a closed subset of some element of A };

(3) ⇑ A := {E : E is a closed superset of some element of A }.

Let 〈X, d〉 be a metric space. For x ∈ X and ε > 0, we write Sε(x) for the open
ball of radius ε with center x. If A is a nonempty subset of X and x ∈ X, we put
d(x,A) := inf {d(x, a) : a ∈ A}. We agree to the convention d(x,?) = ∞. With this
in mind, the Wijsman topology TWd

determined by the metric d is the weak topology
on C (X) induced by the family of distance functions {d(x, ·) : x ∈ X} [6, 17].

By a cobase for a topological space 〈X,T 〉, we mean a family of nonempty closed sets
∆ which contains the singletons and such that Σ(∆) = ∆ [39]. Evidently, the largest
cobase is C0(X) and the smallest is the set of nonempty finite subsets F0(X). Given
a family B of closed subsets the smallest cobase containing them is Σ(B ∪ F0(X)).
We call this the cobase generated by B. We call a cobase compact (resp. countably
compact) if its members are all compact subsets (resp. countably compact subsets) of
X.

We list some important cobases in a Hausdorff space; the last two are particular to a
metric space 〈X, d〉:

(1) K0(X) := {F ∈ C0(X) : F is compact};

(2) {F ∈ C0(X) : g(F ) is bounded} where g is a real-valued function on X;

(3) ∆seq := Σ({α̂ : α ∈ seq(X)}), where seq(X) is the set of all convergent sequences
in X and α̂ is the range of α ∈ seq(X) along with its unique limit point;

(4) {F ∈ C0(X) : F is countably compact};

(5) {F ∈ C0(X) : F is bounded};

(6) {F ∈ C0(X) : 〈F, d〉 is complete}.

We call a cobase ∆ Urysohn [6, 20] if whenever V is open and D ∈ ∆ with D ⊆ V ,
there exists D1 ∈ ∆ such that D ⊆ int(D1) ⊆ D1 ⊆ V. A weaker condition is that the
cobase be local : ∀x ∈ X, whenever V is a neighborhood of x, there exists D1 ∈ ∆
with x ∈ int(D1) ⊆ D1 ⊆ V. In a Hausdorff space, C0(X) is local if and only if the
topology is regular, and in a regular Hausdorff space, C0(X) is Urysohn if and only if
the topology is normal.

Given a cobase ∆ for 〈X,T 〉, the hit-and-miss topology T∆ on C (X) [6, 39] is the
supremum TLV ∨ T

+
∆ where TLV is the lower Vietoris topology having as a subbase

C (X) plus all sets of the form

{F ∈ C (X) : F ∩ V 6= ?} (V is open),

and the miss topology T
+
∆ has as a base all sets of the form

{F ∈ C (X) : F ⊆ X\D} (D ∈ ∆ ∪ {?}).
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When ∆ = K0(X), T
+
∆ is called the co-compact topology and T∆ is called the Fell

topology which we denote by TC and TF respectively. We define the co-countably
compact topology TCC as the topology T

+
∆ when ∆ is the family of all closed and

countably compact sets. When ∆ = C0(X), we obtain the classical Vietoris topology
TV . The following important fact is left as an exercise for the reader.

Theorem 2.1. Let ∆1 and ∆2 be cobases for a Hausdorff space 〈X,T 〉. Then T
+
∆1

⊆
T

+
∆2

if and only if whenever A ∈ C (X) and B1 ∈ ∆1 with A ∩ B1 = ?, there exists
B2 ∈ ∆2 with B1 ⊆ B2 and A ∩B2 = ?.

Example 2.2. Let ∆1 be the cobase in R generated by all closed and bounded intervals
with rational endpoints, and let ∆2 be the cobase in R generated by all closed and
bounded intervals with irrational endpoints. While the cobases are different, by virtue
of the last result, they generate the same miss topologies.

Letting A = ? in the last theorem, we see that a necessary condition for T
+
∆1

⊆ T
+
∆2

is
that ∆1 ⊆⇓ ∆2. This immediately implies that when ∆2 is a compact (resp. countably
compact) cobase and T∆1

⊆ T∆2
, then also ∆1 is a compact (resp. countably compact)

cobase. The condition is not sufficient: again in R, let ∆1 = K0(X) and let ∆2 be the
cobase generated by {[r,∞) : r ∈ R}.

Seemingly more generally, we could define the miss topology determined by a closed
cover B of X containing the singletons, but since no stronger topology results by
replacing B by Σ(B), we have elected to make this part of our definition.

The point of view of [25] leads to a useful expression of the closed subsets of an arbitrary
miss topology on C (X). Let us denote by F ♯ the grill of a family of subsets F , i.e.
F ♯ = {A ⊆ X : A ∩ F 6= ? for all F ∈ F} [10, 25]. Let ∆ be a cobase of closed sets.
Evidently, a base for the closed sets with respect to T

+
∆ is the family

{C ∈ C (X) : C ∩D 6= ?} (D ∈ ∆ ∪ {?}).

Consequently, a nonempty family of closed subsets F is T
+
∆ -closed if there exists

∆1 ⊆ ∆ such that F = ∆♯
1 ∩ C (X). From this, we can prove the following result.

Proposition 2.3. Let ∆ be a cobase in a topological space 〈X,T 〉, and let F be a
nonempty family of closed subsets. Then F is closed with respect to T

+
∆ if and only if

F =⇑ F and whenever G is an open set such that G ∈ F ♯ then there exists DG ∈ ∆
such that DG ⊆ G and DG ∈ F ♯.

Proof. Of course, F is closed if and only if there exists ∆1 ⊆ ∆ such that F =
∆♯

1∩C (X). If this occurs, then it obvious that F =⇑ F . Now suppose G is open with
G ∈ F ♯, yet ∀D ∈ ∆1, D fails to be a subset of G. Clearly, X\G ∈ ∆♯

1 ∩ C (X) = F ,
which contradicts G ∩ F 6= ? for each F ∈ F . Thus there exists some D ∈ ∆1 with
D ⊆ G, and we can put DG = D.

For sufficiency, for each open setG in the grill of F , pickDG with the required property.
We claim that F = {DG : G open and G ∈ F ♯}♯ ∩ C (X). As one inclusion is trivial,
we just verify F ⊇ {DG : G open and G ∈ F ♯}♯ ∩ C (X). To this end, suppose
E ∈ {DG : G open and G ∈ F ♯}♯ ∩ C (X) and E /∈ F . Since no closed subset of E
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can belong to F , for each F ∈ F , we have F ∩ (X\E) 6= ?. As a result, X\E ∈ F ♯,
but E ∩DX\E = ?.

By a convergence Q on a set X (see [23, 24]), we mean a function that assigns to each
net 〈xλ〉λ∈Λ in X a possibly empty subset of X, called the Q-limits of the net. When
a ∈ X is a Q-limit of 〈xλ〉λ∈Λ, we will write

〈xλ〉λ∈Λ
Q
→ a.

We will assume here that all convergences are isotone, that is the set of limits for a
subnet of a net includes those of the original net, and that constant nets are convergent
to the repeated value.

We say that a convergence Q is stronger or finer than another convergence P and write
Q ≥ P if

〈xλ〉λ∈Λ
Q
→ a ⇒ 〈xλ〉λ∈Λ

P
→ a.

With respect to this partial order, the set of convergences on X becomes a complete
lattice. A topology T on X induces an isotone convergence in an unambiguous way,
and with this in mind, the symbols Q ≤ T , T ≤ Q and T = Q make sense where Q is
a convergence. If a convergence is induced by a topology, it will be called a topological
convergence.

It is important to note that while the topologies on X also form a complete lattice
with respect to inclusion, they do not form a complete sublattice of the lattice of con-
vergences. More precisely, while the lattice of topologies is a complete join semilattice
of the lattice of convergences (whence we can write

∨
i∈I Ti unambiguously), the inter-

section of a family of topologies can produce a convergence strictly coarser than the
meet of the convergences determined by the topologies. While a convergence Q may
not be induced by a topology, there is always a finest topology τQ whose convergence
is coarser than Q, which we call here the modification of Q. A subset A of X is closed
in this modification topology if and only if A is stable under Q-limits of nets in A
[17, Lemma 2.1]. When τQ = Q or equivalently τQ ≥ Q, then the convergence is
topological. We note that the word topologization seems to be used interchangeably
with modification in the literature. We have chosen the usage we have as it is a lot
easier to say. In the special case of Kuratowski-Painlevé convergence, the modification
is nothing but the convergence topology alluded to above, while in the case of upper
Kuratowski-Painlevé convergence, it coincides with the upper Kuratowski topology.

The following fact, which allows us under certain conditions to obtain the modification
of a convergence from above, is crucial in a fundamental paper on hyperspace topologies
of Costantini, Levi and Pelant [17].

Proposition 2.4 (cf. [17, Proposition 2.2]). Let Q be a convergence on a set X.
Suppose in the lattice of convergences we have Q =

∧
{T : T is a topology on X and

Q ≤ T }. Then τQ =
⋂
{T : Q ≤ T }.

Proof. First since the discrete topology is the supremum of all convergences, the set
{T : Q ≤ T } is nonempty. Let T0 be a topology coarser than Q; if Q ≤ T1, then
T0 ≤ T1 and so T0 ⊆ T1. Thus T0 ⊆

⋂
{T : Q ≤ T }. But for any family A of
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topologies, we always have
⋂

A ≤
∧

A. In particular,
⋂
{T : Q ≤ T } is coarser than

Q.

Sequences, that is functions defined on the positive integers N, are special types of
nets. Given two convergences Q and P on a set X, we will write Q ≥seq P provided
whenever 〈xn〉n∈N is a sequence in X and a ∈ X, then

〈xn〉n∈N
Q
→ a ⇒ 〈xn〉n∈N

P
→ a.

We will write Q ≈seq P to mean that Q and P have the same convergent sequences to
the same limits. In this case, the convergences are deemed sequentially equivalent. As
one or both of the convergences may arise from a topology T , we will freely employ
formulas such as Q ≤seq T or T1 ≈seq T2 in the sequel. For example, it is well known
[6, Theorem 5.2.10], [33, Theorem 9] that, in the context of first-countable spaces, we
may write TF ≈seq K with respect to closed subsets.

Recall that a topology T on a set X is called sequential provided A is closed whenever
A is stable under taking limits of sequences [27, 28, 29]. Intrinsic to sequential spaces is
the sequential modification sQ of a convergence Q that yields the (sequential) topology
on X whose closed sets consist of all subsets A of X such that whenever 〈an〉n∈N is a
sequence in A which is Q-convergent to x ∈ X, then x ∈ A. It is obvious that τQ ≤ sQ,
and the two coincide if and only if sQ ≤ Q.

While Q-convergence of sequences forces sQ-convergence [18], the reverse implication
may fail.

Example 2.5. A real-valued net defined on a directed set 〈Λ,�〉 is said to be ul-
timately increasing (resp. ultimately decreasing) [9] if ∀λ0 ∈ Λ, ∃λ1 ∈ Λ such that
λ � λ1 ⇒ f(λ) ≥ f(λ0) (resp. f(λ) ≤ f(λ0)). Generically such functions are of course
called ultimately monotone. While a subnet of a monotone net defined on a directed
set need not be monotone, even if both directed sets are N, ultimate monotonicity is
preserved under passing to subnets.

We now declare a net 〈aλ〉λ∈Λ in R Q-convergent provided 〈aλ〉λ∈Λ is ultimately mono-
tone and convergent in the usual topology. By the above remark, convergence so defined
is a bona fide convergence. We claim that A is a closed set as determined by sQ if
and only if A is closed with respect to the usual topology. Clearly, if A is closed in the
usual sense, it is stable with respect to limits of ultimately monotone sequences in A.
Conversely, suppose A is stable with respect to taking limits of ultimately monotone
sequences in A. Let 〈an〉n∈N be a sequence in A convergent to p in the usual sense.
Then ∀n ∈ N, sn := sup{ak : k ≥ n} belongs to A, as sn can be retrieved as a limit of
an increasing sequence taken from {ak : k ≥ n}, and thus p = limn→∞sn ∈ A because
〈sn〉n∈N is decreasing. Of course, there are convergent sequences in the usual topology

that are not ultimately monotone, e.g., 〈 (−1)n

n
〉n∈N.

The last example shows that if sQ = sP, we cannot conclude that Q ≈seq P (but see
bullet three immediately below). The following facts can be found at least implicitly
in [18, 24]:

• A topology T is sequential if and only T = sT .
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• For convergences P1 and P2, P1 ≤seq P2 ⇒ sP1 ⊆ sP2.

• For topologies, T1 ≈seq T2 if and only if sT1 = sT2.

• The operator P 7→ sP on convergences is idempotent; as a result, for a convergence
P, sP is the finest topology that is sequentially coarser than P.

• If {Ti : i ∈ I} is a family of sequential topologies, then ∩i∈ITi is sequential.

3. On the sequential modification of upper Kuratowski-Painlevé conver-
gence

In their seminal paper [25, Corollary 3.2], Dolecki, Greco, and Lechicki characterized
the closed subsets F of τK+ by the conjunction of the following two conditions: (1)
F =⇑ F , and (2) for every family of open sets {Gi}i∈I such that ∪i∈IGi ∈ F ♯ there
exists a finite subset N of I such that ∪i∈NGi ∈ F ♯. We begin by providing a parallel
description of the closed sets of the sequential modification of the upper Kuratowski-
Painlevé convergence.

Theorem 3.1 (cf. [25, Corollary 3.2]). Let 〈X,T 〉 be a Hausdorff space. Then a
family of closed sets F is closed in sK+ if and only if F verifies the following condi-
tions:

(1) F =⇑ F ;

(2) for every countable family of open sets {Gn}n∈N such that ∪n∈NGn ∈ F ♯ there
exists a finite subset N of N such that ∪n∈NGn ∈ F ♯.

Proof. Suppose that F is closed in sK+. Given F ∈ F and F1 ∈ C (X) with F ⊆ F1

then it is clear that F1 ∈ F , since the constant sequence 〈Fn〉n∈N where for each
n, Fn = F , satisfies Ls Fn = F ⊆ F1.

Now suppose that {Gn}n∈N is a countable family of open sets such that ∪n∈NGn ∈ F ♯.
This obviously implies that A = X\ ∪n∈N Gn /∈ F . Furthermore, if ∪n∈NGn /∈ F ♯ for
every finite subset N of N then we deduce that An = X\ ∪n

i=1 Gi ∈ F . It is clear that
〈An〉n∈N is K+-convergent to A, but A /∈ F which contradicts the closedness of F in
the sequential modification.

Conversely, let F be a family which verifies the two aforementioned properties. Let
〈An〉n∈N be a sequence in F which is K+-convergent to A. We can suppose without loss
of generality that 〈An〉n∈N is a decreasing sequence (otherwise construct the sequence
〈Bn〉n∈N where Bn = cl(∪∞

i=nAi) for all n ∈ N). If ∪n∈NX\An 6∈ F ♯ then we can find
F ∈ F such that ∪n∈NX\An∩F = ? so F ⊆ An for all n ∈ N. Hence, F ⊆ Ls An ⊆ A
so by (1 ) A ∈ F .

Alternatively we have ∪n∈NX\An ∈ F ♯. By (2), there exists a finite subset N of N
such that ∪n∈NX\An ∈ F ♯. If n0 = maxN , then X\An0

= ∪n∈NX\An ∈ F ♯, i.e.
An0

6∈ F , which is a contradiction.

Corollary 3.2 (cf. [25, Theorem 3.1], [40, Lemma 2.2]). Let 〈X,T 〉 be a Haus-
dorff space. Then a family of closed sets G is open in sK+ if and only if G verifies the
following conditions:

(1) G =⇓ G ;
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(2) for every countable family of closed sets {Fn}n∈N such that ∩n∈NFn ∈ G there
exists a finite subset N of N such that ∩n∈NFn ∈ G .

The next example shows that, in general, sK+ 6= τK+.

Example 3.3. Let us consider the interval X = [0, 1] endowed with the discrete topol-
ogy. Direct I := {I ⊆ [0, 1] : |I| ≤ ℵ0} by inclusion, and ∀I ∈ I put FI := X\I.
It is easy to prove that Ls FI = ? so 〈FI〉I∈I is τK+-convergent to ?. We claim
G := {A ⊆ [0, 1] : X\A is not countable} is sK+-open. Clearly, G =⇓ G , and if
{Fn}n∈N is a family of closed sets such that ∩n∈NFn ∈ G then X\ ∩n∈N Fn is not
countable. It is immediate to see that X\ ∩k

n=1 Fn is not countable for some k ∈ N.
Consequently, we deduce from the above corollary that G is sK+-open. Of course,
? ∈ G but FI 6∈ G for all I ∈ I .

Coincidence of sK+ and τK+ on C (X) has been implicitly characterized by Mynard [38]
(see Condition 3 of Theorem 0.3 therein). We find it worthwhile to give a self-contained
proof, based on Theorem 3.1 supra.

Theorem 3.4 (cf. [38, Theorem 0.3]). Let 〈X,T 〉 be a Hausdorff space. Then
sK+ = τK+ if and only if X is hereditarily Lindelöf.

Proof. Suppose that sK+ = τK+. If X fails to be hereditarily Lindelöf, then there
exists a family {Gi : i ∈ I} of open subsets in X such that whenever J ⊆ I is
countable, ∪j∈JGj 6= ∪i∈IGi. Whenever J ⊆ I with |J | ≤ ℵ0, put FJ = X\ ∪j∈J Gj

and consider the family of closed subsets F of X defined by

F :=⇑ {FJ : J ⊆ I and |J | ≤ ℵ0}.

We first show using Theorem 3.1 that F is sK+-closed. Suppose {Vn : n ∈ N} is a
countable family of open subsets where for each n ∈ N,∪n

i=1Vi /∈ F ♯. For each n choose
a countable Jn ⊆ I with ∪n

i=1Vn ⊆ ∪j∈JnGjn . Then with J∞ = ∪n∈NJn, we have

∪∞
n=1Vn ∩ FJ∞ = ?,

which shows that ∪∞
n=1Vn fails to be in the grill of F , as required. On the other hand,

it is obvious that ∪i∈IGi ∈ F ♯ while ∪n∈NGn 6∈ F ♯ for every finite subset N of I since
X\ ∪n∈N Gn ∈ F . From [25, Cor. 3.2], we deduce that F is not τK+-closed, which
contradicts our assumption.

The converse is a direct consequence of Theorem 3.1 and [25, Cor. 3.2].

Coincidence of the modification with the sequential modification of course implies that
the modification is sequential. That the hereditarily Lindelöf condition is both nec-
essary and sufficient for τK+ to be sequential was discovered by Costantini, Holá,
and Vitolo [16]. For completeness, we include a result characterizing when the upper
Kuratowski-Painlevé convergence is sequentially topological.

Theorem 3.5. Let 〈X,T 〉 be a Hausdorff space. Then K+ is compatible with a se-
quential topology if and only if X is locally compact and hereditarily Lindelöf.
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Proof. If X is hereditarily Lindelöf then τK+ is sequential by Theorem 3.4. But if
X is locally compact then, by [25, Theorem 1.1], K+ is topological so it is compatible
with τK+ which is sequential.

Conversely, if K+ is topological then X must be locally compact by [25, Theorem 1.1].
As this topology must be the modification topology, τK+ is sequential and the result
follows from [16, Prop. 3.6].

Proposition 3.6. Let 〈X,T 〉 be a Hausdorff space. Then TCC ⊆ sK+.

Proof. Let F be nonempty and closed with respect to TCC . Suppose 〈Gn〉n∈N is a
sequence of open sets such that ∪∞

n=1Gn ∈ F ♯. Choose by Proposition 2.3 C countably
compact within ∪∞

n=1Gn such that C ∈ F ♯. By countable compactness ∃k ∈ N with
C ⊆ ∪k

n=1Gn and clearly ∪k
n=1Gn ∈ F ♯, too. Apply Theorem 3.1.

Definition 3.7. Let 〈X,T 〉 be a topological space. We say that a subset A of X
is σ-countably compact if A is the union of a countably family of countably compact
closed sets.

Proposition 3.8. Let 〈X,T 〉 be a Hausdorff space such that the family of all closed
countably compact sets is Urysohn. Then TCC = sK+ if and only if every open set is
σ-countably compact.

Proof. Let G be an open set which is not σ-countably compact. Let C be the family
of all the countably compact closed sets contained in G. For each C ∈ C, pick by the
Urysohn condition DC ∈ C with C ⊆ int(DC). Next put

F := {X\ ∪i∈I int(DCi
) : Ci ∈ C and |I| ≤ ℵ0}.

Since ∪i∈I int(DCi
) ⊆ ∪i∈IDCi

, each member of F hits G. Arguing as in the proof of
Theorem 3.4, the family ⇑ F is easily seen to verify the conditions of Theorem 3.1
so it is sK+-closed. However, G ∈ F ♯ = (⇑ F )♯ but if C is a countably compact
closed subset of G, then X\int(DC) ∈⇑ F while (X\int(DC))∩C = ?. Therefore, by
Proposition 2.3, ⇑ F is not TCC-closed, and so TCC 6= sK+.

Conversely, assume each open subset is σ-countably compact. Suppose that F is
closed in sK+ and let G be an open set such that G ∈ F ♯. Since G is σ-countably
compact G = ∪n∈NCn where Cn is a countably compact closed set. By the Urysohn
condition, we can find for each n,Dn both closed and countably compact such that
Cn ⊆ int(Dn) ⊆ Dn ⊆ G. Therefore, ∪n∈Nint(Dn) ∈ F ♯ so by Theorem 3.1 there exists
k ∈ N such that ∪k

i=1Di ∈ F ♯ and the result follows from Proposition 2.3.

The last theorem can fail in both directions without the Urysohn condition, as the next
two examples show.

Example 3.9. Consider the rationals Q as a metric subspace of the real line R. Since
each subset of Q is countable, each (open) subset is σ-countably compact. But TC =
TCC is properly coarser than sK+; in fact, TC is properly coarser than τK+, i.e., Q is
dissonant [19].
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Example 3.10. Now consider the irrationals R\Q as a metric subspace of the real
line R. Since R\Q is second countable, it is hereditarily Lindelöf, and since the space
is Polish, it is consonant [19]. Thus we get

TCC = TC = τK+ = sK+.

But the set of irrationals itself fails to be σ-countably compact, as each compact subset
must have empty interior, and so by Baire’s theorem, R\Q cannot be a countable union
of (countably) compact sets.

For completeness, we briefly look at τK+ versus TCC . These topologies on C (X) are
in general noncomparable: in the dissonant space Q, we have TCC = TC ( τK+, while
in the ordinal space [0, ω1) where ω1 is the first uncountable ordinal, we have by local
compactness TC = τK+ whereas TC ( TCC , as the space is countably compact but
not compact (see, e.g., [41, pp. 68–70] and Theorem 2.1 supra).

Proposition 3.11. Let X be Hausdorff. Suppose the family of closed countably com-
pact sets is local. Then τK+ ⊆ TCC .

Proof. Let F be a closed set with respect to τK+, and let G be open in X which
belongs to the grill of F . For each x ∈ X choose an open neighborhood Vx of x such
that cl(Vx) is countably compact and cl(Vx) ⊆ G. As ∪x∈GVx = G, by [25, Corollary
3.2], there exists {x1, x2, . . . , xn} with ∪n

j=1Vxj
∈ F ♯. Then ∪n

j=1cl(Vxj
) is a countably

compact subset of G in the grill of F .

In particular, we see that with the Urysohn condition, τK+ ⊆ TCC holds, whereas
sK+ ⊆ TCC can fail. Unfortunately, localness is not necessary for even τK+ = TCC ;
consider again R\Q.

In the following, we obtain analogues for the convergence K = K−∨K+ of some results
for the convergence K+ obtained by Costantini and Vitolo [18] in the context of a
metrizable space (see more generally [16, 38]).

As is well-known, in a first countable space and thus in a metrizable space, K agrees
with the TF -convergence for sequences, so sK = sTF . In unpublished notes, Fremlin
[30] proved in the context of metrizable spaces that τK = TF if and only if X has
at most one point that has no compact neighborhood (see more generally [2]). In an
arbitrary Hausdorff space, the property τK = TF is called hyperconsonance [1, 2, 3, 12],
adapted from the terminology consonance [1, 12, 13, 19, 25, 40] used to describe when
τK+ agrees with the co-compact topology. Of course, τK− = TLV and it would be
natural to guess, assuming the modification operator distributes over join in the space
of convergences on C (X), that

τK = τ(K− ∨K+) = τK− ∨ τK+ = TLV ∨ τK+.

But this distributivity fails: it has been proved [17, 25] that for completely metrizable
spaces, τK+ = TC , so that in this case, TLV ∨τK

+ reduces to Fell topology, independent
of local compactness considerations (see also [17, Example 4.4]).

Theorem 3.12. Let 〈X,T 〉 be a metrizable space. The following conditions are equiv-
alent:
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(1) X is separable;

(2) τK is sequential.

Proof. (1 ) ⇒ (2 ). Costantini, Levi and Pelant [17] have shown that

K =
∧

{TWd
: d is a metric compatible with T },

and by Proposition 2.4, we get τK =
⋂
{TWd

: d is a metric compatible with T }.
As is well-known (see, e.g., [6]), each Wijsman topology is metrizable for a separable
metrizable space and is thus sequential. Since the intersection of a family of sequential
topologies is sequential [18], (2) follows from (1 ).

(2 ) ⇒ (1 ). Suppose (1 ) fails; let d be a fixed compatible metric. Then we can find
for some δ > 0 an uncountable subset E of X such that x 6= y in E ⇒ d(x, y) > δ.
So by passing to a subset we can write E = {xα : α < ω1} where ω1 is the first
uncountable ordinal. Note that by the uniform discreteness of E, for a net of (closed)
subsets 〈Aλ〉λ∈Λ in E, we have A = K − lim Aλ ⇒ A = ∩µ∈Λ ∪λ�µ Aλ. Clearly,
A := {A ⊆ E : A is countable} is closed under taking K-limits of sequences, because
if each An is countable, so is ∩∞

n=1 ∪
∞
k=n Ak. On the other hand, if for each ordinal

α < ω1 we put Bα := {xβ : β < α} ∈ A , then E = K − lim Bα. Since E /∈ A , it
follows that τK is not sequential.

Theorem 3.13. Let 〈X,T 〉 be a metrizable space. Then TF is sequential if and only
if X is separable and X has at most one point having no compact neighborhood.

Proof. For sufficiency, by Fremlin’s theorem, the condition regarding points of non-
local compactness is equivalent to τK = TF , so by the last theorem, separability of X
ensures that TF is sequential.

Conversely, if TF is sequential, then sTF = TF . Using the fact that a sequence in a
first countable space is K-convergent if and only if it is TF -convergent, and that τK is
the strongest topology coarser than K-convergence, we obtain

sτK ≤ sK = sTF = TF ≤ τK.

As in general sτK ≥ τK, all inequalities become equalities. In particular, τK is se-
quential, whence X is separable, and TF = τK, whence at most one point of X fails
to have a compact neighborhood.

Example 3.14. Our favorite nontrivial example of a metric space for which TF is
sequential is the following metric subspace of the sequence space ℓ2:

{
1

j
en : j ∈ N, n ∈ N

}
∪ {θ},

where θ is the origin of the space and e1, e2, e3, . . . is the standard orthonormal basis.
This space is also an example of a nonlocally compact space on which each continuous
function with values in an arbitrary metric space is uniformly continuous [6].

We next give a curious characterization of those regular Hausdorff spaces 〈X,T 〉 that
satisfy the conditions of the last theorem.
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Theorem 3.15. Let 〈X,T 〉 be a regular Hausdorff space. The following conditions
are equivalent:

(1) X is separable and metrizable and X has at most one point having no compact
neighborhood;

(2) for some point p ∈ X, C (X\{p}) equipped with the Fell topology is metrizable
and T has a countable local base at p.

Proof. (1 ) ⇒ (2 ). Assume (1 ) holds. Choose p ∈ X such that ∀x ∈ X\{p}, x has
a compact neighborhood in X. Clearly, each point of X\{p} must have a compact
neighborhood in the relative topology. Also, the relative topology is second countable.
It is well-known that the Fell topology for such a space is compact, Hausdorff, and
second countable and thus is metrizable [6, 35].

(2 ) ⇒ (1 ). Assume (2) holds. Since the Fell topology for C (X\{p}) is metrizable, as
it is always compact, it must be second countable [5, 6]. Now x → {x} is an embedding
of X\{p} with the relative topology into 〈C (X\{p}),TF 〉. As a result, 〈X\{p},T 〉
is second countable and Tychonoff, and so by the Urysohn Metrization Theorem [44],
it is metrizable. But any one-point regular extension of a metrizable space where
the ideal point has a countable local base is metrizable (see, e.g., [8, Theorem 4]),
and since X\{p} is separable, so is the extension. Finally, since the Fell topology on
C (X\{p}) being assumed metrizable is Hausdorff, X\{p} is locally compact in the
relative topology, and thus each point of X\{p} has a compact neighborhood with
respect to 〈X,T 〉 because {p} is closed.

We note that any space that satisfies these conditions must also be Polish, as any
one-point metrizable extension of a Polish space space is Polish [7], and each locally
compact separable metrizable space is Polish (in fact, there is a compatible metric for
which closed and bounded sets are compact).

4. Hit-and-miss topologies compatible with sequential K-convergence

It is the purpose of this section to display miss topologies that are compatible with
upper Kuratowski-Painlevé convergence for sequences of closed sets. Taking the supre-
mum of such a topology with the lower Vietoris topology yields topologies that are
sequentially equivalent with Kuratowski-Painlevé convergence. We begin giving the
largest topology sequentially coarser than K+.

Proposition 4.1. Let 〈X,T 〉 be a Hausdorff topological space. Then the co-countably
compact topology TCC is the finest miss topology sequentially coarser than K+.

Proof. From Proposition 3.6 and sK+ ≤seq K+, we have TCC ≤seq K+. By Theorem
2.1 each miss topology determined by a co-countably compact cobase will be coarser
than TCC , and thus sequentially coarser than K+. We show that if ∆ is a cobase that
contains a non-countably compact closed set F , then it fails to be sequentially coarser
than K+. Let 〈xn〉n∈N be a sequence of distinct points in F with no accumulation point
(see, e.g., [44, p. 125]). It is obvious that 〈{xn}〉n∈N is K+-convergent to ? but it is
not T

+
∆ -convergent to ?.
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Remark 4.2. The proof of the last proposition apparently shows something more,
namely that TCC is the finest miss topology sequentially coarser than sK+. But we
know of no example showing that sK+ can be properly sequentially coarser than K+.

Remark 4.3. In the same manner we can see that the co-compact topology TC is the
finest miss topology coarser than τK.

The above result shows that if T
+
∆ ≈seq K+, then the sets of the cobase ∆ must be

countably compact. Since TCC ≤seq K+, if ∆ is a countably compact cobase then
T

+
∆ ≈seq K

+ if and only if K+ ≤seq T
+
∆ .

Theorem 4.4 (cf. [16, Theorem 1.8]). Let 〈X,T 〉 be a Hausdorff topological space
and ∆ a cobase. The following conditions are equivalent:

(1) K+ ≈seq T
+
∆ ;

(2) ∆ is a countably compact cobase, and whenever 〈An〉n∈N is a sequence of closed
sets with x ∈ Ls An, every neighbourhood G of x contains some D ∈ ∆ that
intersects infinitely many An.

Proof. (2 ) ⇒ (1 ). Suppose 〈An〉n∈N converges to A in T
+
∆ . We must show that

Ls An ⊆ A. Suppose to the contrary x ∈ Ls An\A. By assumption, X\A must
contain D ∈ ∆ that hits infinitely many An. Then {F ∈ C (X) : F ⊆ X\D} is a T

+
∆ -

neighborhood of A that fails to contain An eventually, and we have a contradiction.

(1 ) ⇒ (2 ). We already know that the cobase must be countably compact. For the
other condition, we argue exactly as in [16]. If x ∈ Ls An and G is a neighborhood of
x, then 〈An〉n∈N is not K+-convergent and hence not T

+
∆ -convergent to X\G, and so

there must exist D ∈ ∆ disjoint from X\G but that hits infinitely many An.

Remark 4.5. The proof of the last proposition shows that the second part of (2) is
both necessary and sufficient for K+ ≤seq T

+
∆ for an arbitrary cobase ∆.

Example 4.6. In any (real) infinite dimensional Banach space X equipped with the
weak topology, the countably co-compact topology on C (X) fails to be sequentially
equivalent to K+. Thus, there can be no miss topology in this setting compatible
with upper Kuratowski-Painlevé convergence of sequences of sets. Of course, by the
Eberlein-S̆mulian Theorem, for a weakly closed subset, compactness, countable com-
pactness, and sequential compactness all agree (see, e.g. [32]), so TC = TCC .

We will employ the above characterization theorem to verify our claim.

Let W be a closed separable infinite dimensional linear subspace of X. By a theorem of
Kadets [34], we can find a sequence 〈xn〉n∈N having the origin θ as a weak cluster point
with respect to the weak topology of W , but such that limn→∞ ||xn|| = ∞ (in fact, by
recent results of Aron, Garćıa, and Maestre [4], we can construct the sequence to be
weakly dense in W !). By the Hahn-Banach Theorem, the weak topology of W is the
relative weak topology, so in the space X equipped with the weak topology, we have
θ ∈ Ls {xn}n∈N. But 〈xn〉n∈N eventually lies outside each (closed countably) compact
set, as by the uniform boundedness principle, each such set is norm bounded. Thus,
condition (2) of the above theorem fails.
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Our next goal is to show that in a first countable Hausdorff space, where the closed
countably compact subsets reduce to the sequentially compact subsets, there is in
general a rich supply of cobases satisfying the conditions of the last result.

Proposition 4.7. Let 〈X,T 〉 be a Hausdorff first countable topological space and ∆
a cobase. Then K+≤seqT

+
∆ if and only if whenever 〈xn〉n∈N is convergent to x and

x ∈ G ∈ T there exists F ∈ ∆ with F ⊆ G such that F contains a subsequence of
〈xn〉n∈N.

Proof. For necessity, suppose that the sequence 〈xn〉n∈N converges to x but we can
find x ∈ G ∈ T such that for all F ∈ ∆ with F ⊆ G then xn ∈ X\F residually.
This means that 〈{xn}〉n∈N is T

+
∆ -convergent to X\G. However Ls{xn} 6⊆ X\G since

x ∈ Ls{xn}.

For sufficiency, we can apply Remark 4.5, for if x ∈ Ls An, then ∃n1 < n2 < n3 < · · ·
and xnk

∈ Ank
with 〈xnk

〉k∈N convergent to x [6, Lemma 5.2.8].

Example 12 in [33] shows that the first countability assumption in the above theorem
is essential for proving the sufficiency. Combining Proposition 4.1 and the last result,
we get this refinement of Theorem 4.4.

Theorem 4.8. Let 〈X,T 〉 be a Hausdorff first countable topological space and ∆ a
cobase. Then T

+
∆ is sequentially equivalent to K+ if and only if ∆ is countably compact

and whenever 〈xn〉n∈N is convergent to x and x ∈ G ∈ T there exists F ∈ ∆ with
F ⊆ G such that F contains a subsequence of 〈xn〉n∈N.

The next result says that we can extend a cobase on a closed subset E of X that
induces a miss topology sequentially equivalent to K+ restricted to E to a cobase for
X with the same property by adding certain compact subsets and taking the generated
cobase.

Proposition 4.9. Let E be a nonempty closed subset of a Hausdorff first countable
topological space 〈X,T 〉, and suppose △E is a cobase of (closed countably compact)
subsets of E such that K+ ≈seq T

+
△E

on E. Let △ = Σ(△E ∪{α̂ : α ∈ seq(X) and ∀n ∈

N, α(n) /∈ E}). Then T
+
△ ≈seq K

+ on X.

Proof. Since the cobase for X consists of countably compact sets, we only need to
show that K+ ≤seq T

+
△ . To this end, suppose 〈xn〉n∈N is a sequence in X convergent

to x in X. We consider two cases: (i) 〈xn〉n∈N is frequently in E; (ii) 〈xn〉n∈N is
frequently in X\E. In the first case, x ∈ E, and if G is an open neighborhood of
x, then G ∩ E contains some element of △E containing some subsequence of 〈xn〉n∈N
because K+ ≤seq T

+
△E

. In the second case, if G is a open neighborhood of x, then G
contains some subsequence α of 〈xn〉n∈N lying in X\E and thus contains α̂.

Definition 4.10. Let 〈X,T 〉 be a Hausdorff space. By a subsequential selector for
seq(X), we mean a function f : seq(X) → seq(X) such that ∀α ∈ seq(X), f(α) is a
subsequence of α.
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Given a subsequential selector f in a Hausdorff topological space, put ∆f := Σ({[f(α) :
α ∈ seq(X)}). Since the complete range of a convergent sequence is compact and
constant sequences are convergent, we see that ∆f is a compact cobase. Note that if f
is the identity function on seq(X), then we get ∆f = ∆seq.

The next result is a direct consequence of Theorem 4.8.

Proposition 4.11. Let 〈X,T 〉 be a first countable Hausdorff topological space and let
f be a subsequential selector. Then T

+
∆f is sequentially equivalent to K+.

In view of Proposition 4.1, since ∆seq is a compact cobase, we get

Corollary 4.12. Let 〈X,T 〉 be a first countable Hausdorff topological space. Then
T∆seq , TC , TCC and K+ are all sequentially equivalent.

Theorem 4.13. Let 〈X,T 〉 be a first countable Hausdorff topological space and sup-
pose ∆ is a countably compact cobase such that ⇓ ∆ = ∆ ∪ {?}. Then T

+
∆ is sequen-

tially equivalent to K+ if and only if there exists a subsequential selector f for which
∆f ⊆⇓ ∆.

Proof. Suppose first that T
+
∆ ≈seq K+, and α ∈ seq(X) is convergent to x. By

Theorem 4.8, X itself contains some Dα ∈ ∆ that in turn contains a subsequence of α
which we denote by f(α). As

[f(α) ⊆ {x} ∪Dα ∈ ∆,

we have [f(α) ∈⇓ ∆. Since α ∈ seq(X) was arbitrary, this proves ∆f ⊆⇓ ∆.

Conversely, suppose for some subsequential selector that ∆f ⊆⇓ ∆. Then actually
∆f ⊆ ∆ and by Proposition 4.11,

T
+
∆f ≤seq T

+
∆ ≤seq K

+ ≈seq T
+
∆f ,

and so T
+
∆ ≈seq K

+.

The following example shows that in the previous theorem, we cannot delete the as-
sumption of considering a cobase stable under closed subsets.

Example 4.14. Consider X = [0, 1] × [0, 1], equipped with the cobase ∆ generated
by {[0, 1

2
]× [0, 1], [1

2
, 1]× [0, 1]}. Thus, a set B is in the cobase if and only if B satisfies

one of these four conditions: (i) B = X; (ii) B is a nonempty finite subset of X; (iii)
B = [0, 1

2
] × [0, 1] ∪ F where F is finite; (iv) B = [1

2
, 1] × [0, 1] ∪ F where F is finite.

Notice that ∆ is not stable under taking nonempty closed subsets of its members. Since
X ∈ ∆, we in fact have ∆seq ⊆⇓ ∆. Evidently the sequence of segments with nth term
An = {( n

2n+1
, y) : 0 ≤ y ≤ 1} is T

+
∆ -convergent to {(1

2
, 1
2
)} because if the singleton

failed to hit a member B of the cobase, then B must be a nonempty finite set. On the
other hand, it is clear that the sequence is only upper Kuratowski-Painlevé convergent
to supersets of {(1

2
, y) : 0 ≤ y ≤ 1}.

The next result shows that in the case that X has some convergent sequence with
distinct terms, there is no minimal topology of the form T

+
△f .
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Proposition 4.15. Let 〈X,T 〉 be a first countable Hausdorff topological space such
that X ′ is nonempty and let f be a subsequential selector. Then there exists a subse-
quential selector g such that T

+
△g is strictly coarser than T

+
△f .

Proof. There exists a sequence 〈xn〉n∈N in the range of f with distinct terms convergent
to some p ∈ X. To form our new subsequential selector g, we consider two cases for
f(α) where α ∈ seq(X):

(1) [f(α) ∩ {xn : n ∈ N} is finite;

(2) [f(α) ∩ {xn : n ∈ N} is infinite.

In the first case, put g(α) = f(α). In the second case, let α̃ be a subsequence of α
with distinct terms containing infinitely many xn yet for each n ∈ N at most one term
from {xk : 10n−1 ≤ k < 10n}. We then put g(α) = f(α̃). By construction, △g ⊆ △f

which ensures that T
+
△g is coarser than T

+
△f . That it is strictly coarser follows from

the fact that {p, x1, x2, x3, . . .} ∈ ∆f cannot be residually covered by a finite union of

completed ranges of the form ĝ(α) due to the sparseness of the sequences g(α) whose
terms overlap the terms of 〈xn〉n∈N cofinally. By Theorem 2.1, T

+
△g is a proper subset

of T
+
△f .

Theorem 4.16. Let 〈X,T 〉 be a first countable Hausdorff topological space. The fol-
lowing conditions are equivalent:

(1) X ′ 6= ?;

(2) there exists a miss topology strictly coarser than the co-countably compact topology
sequentially equivalent to K+-convergence;

(3) there is an infinite descending chain of miss topologies each sequentially equivalent
to K+-convergence.

Proof. (1 ) ⇒ (3 ). This is an immediate consequence of Propositions 4.11 and 4.15.

(3 ) ⇒ (2 ). This follows from the fact that each cobase that produces a miss topology
sequentially equivalent to K+-convergence must be countably compact (see Proposition
4.1 supra).

(2 ) ⇒ (1 ). Suppose that (1 ) fails, i.e., that X has no limit points. Then the only
closed countably compact sets are the finite sets, and thus the only countably compact
cobase is F0(X). Thus (2) fails.

Remark 4.17. From the above results, we can deduce that the family of all miss
topologies sequentially equivalent to the upper Kuratowski-Painlevé convergence which
are determined by a cobase ∆ satisfying ⇓ ∆ = ∆∪ {?} has a minimum if and only if
X ′ = ?. In this case, the minimum topology is T

+
F0(X).

The identity subsequential selector produces the cobase ∆seq which contains ∆f for any
subsequential selector f . As a result, T

+
∆seq is the largest topology of the form T

+
∆f . In

a metric space, TC = TCC as the countably compact sets reduce to the compact sets.
The next result in this setting answers the question: when does T

+
∆seq agree with the

co-compact topology?
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Theorem 4.18. Let 〈X, d〉 be a metric space. The following conditions are equivalent:

(1) There exists a compact subset C of X whose set of limit points C ′ is infinite;

(2) ∆seq 6= K0(X);

(3) T
+
∆seq 6= TC ;

(4) there exist uncountably many miss topologies between T
+
∆seq and TC each sequen-

tially equivalent to the upper Kuratowski-Painlevé convergence.

Proof. (1 ) ⇒ (4 ). Assuming (1 ), by the compactness of C ′, we can find a sequence
〈xn〉n∈N in C ′ with distinct terms convergent to some p /∈ {xn : n ∈ N}. Now for each
j ∈ N the set {xn : n 6= j} ∪ {p} is compact so we can find δj > 0 such that ∀j

S2δj(xj) ∩ ({xn : n 6= j} ∪ {p}) = ?.

Note that the balls Sδj(xj) we have constructed are pairwise disjoint and that by the
convergence of 〈xn〉n∈N we have limj→∞δj = 0.

Next, ∀j ∈ N, let α̂j be the complete range of a sequence in C with distinct terms inside
Sδj(xj) convergent to xj. Define an equivalence relation ≡ on the infinite subsets of N
as follows:

N ≡ M provided (N\M) ∪ (M\N) is a finite set.

As each equivalence class is countable, if {Ni : i in I} selects a representative from
each, then the index set I must be uncountable. For each index i ∈ I, put

Bi := {p} ∪ ∪k∈Ni
α̂k,

and then let ∆i be the compact cobase generated by ∆seq∪{Bi}. If i1 and i2 are distinct
indices in I, then it is clear that Bi1 /∈⇓ ∆i2 . By Theorem 2.1, they determine distinct
miss topologies on X. As each is trapped between T

+
∆seq and TC , each is sequentially

equivalent to upper Kuratowski-Painlevé convergence.

(4 ) ⇒ (3 ). This is trivial.

(3 ) ⇒ (2 ). This follows from TC := T
+

K0(X).

(2 ) ⇒ (1 ). Suppose (1 ) fails, that is, suppose each C ∈ K0(X) has at most finitely
many limit points. Let C be a nonempty compact subset of X. We intend to show
that C ∈ ∆seq.

If C has no limit points whatsoever, then C must be finite and is obviously the complete
range of a convergent sequence. Otherwise let {c1, c2, . . . , cn} be the limit points of C.
Choose ε > 0 such that {Sε(cj) : j = 1, 2, · · · , n} is a pairwise disjoint family of balls.
By the compactness of C\ ∪n

j=1 Sε(cj) and the location of the limit points of C, this
set must be finite. Now for each j ≤ n and k ∈ N, similar considerations ensure that
the annulus

Aj,k :=

{
x ∈ C :

1

k + 1
ε ≤ d(x, cj) <

1

k
ε

}

must be finite. As a result, ∀j ≤ n, {x ∈ C : 0 < d(x, cj) < ε} can be listed in a
manner to produce a sequence convergent to cj. As a result,

C =

(
C\

n⋃

j=1

Sε(cj)

)
∪

(
C ∩

n⋃

j=1

Sε(cj)

)
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belongs to ∆seq, and so ∆seq = K0(X).

5. On Mrowka’s Theorem

More than 30 years ago S. Mrowka [37] produced a short, elegant proof of compactness
of Kuratowski-Painlevé convergence in an arbitrary topological space 〈X,T 〉 as an
application of the Tychonoff Theorem. Since TF ≤ K [6], this of course yields as a
corollary compactness of the Fell topology, which can be proved directly by using the
Alexander subbase theorem [5, 6, 35]. That said, Mrowka’s construction is high-level
legerdemain: while it produces a convergent subnet of a given net of closed sets, the
limit of the subnet is nowhere to be found! In this section we modify his proof so
that the limit of the convergent subnet is explicit. Effectively this involves embedding
C (X) in a compact Hausdorff space producing a Tychonoff topology on C (X) that
is stronger than Kuratowski-Painlevé convergence. We show this topology is properly
stronger unless X is a finite set. In particular, it does not collapse to the Fell topology
when X is in addition locally compact. This product involves copies of {0, 1} equipped
with the discrete topology. Our index set Γ is the subset of T ×X defined as follows:

Γ := {(V, x) : x ∈ V ∈ T }.

For each closed subset A we define fA ∈ {0, 1}Γ by

fA(V, x) =

{
1 if A ∩ V 6= ?

0 if A ∩ V = ?.

It is easy to see that the assignment is one-to-one, for if A1 and A2 are closed sets and
x ∈ A1\A2, then fA1

(X\A2, x) = 1 while fA2
(X\A2, x) = 0.

Proposition 5.1. Let 〈X,T 〉 be an arbitrary topological space and let A be a closed
subset. Then A = {x ∈ X : whenever (V, x) ∈ Γ, fA(V, x) = 1}.

Proof. Suppose a ∈ A is arbitrary. Then for each open neighborhood V of a we have
A ∩ V 6= ? and so fA(V, a) = 1. For the reverse inclusion, suppose x /∈ A. Then
fA(X\A, x) = 0.

Theorem 5.2. Let 〈X,T 〉 be a topological space and let 〈Aλ〉 be a net of closed subsets
of X. Suppose that the associated net 〈fAλ

〉 converges in the product topology to f .
Then 〈Aλ〉 is K-convergent to {a ∈ X : whenever (V, a) ∈ Γ, f(V, a) = 1}.

Proof. First put A := {a ∈ X : whenever (V, a) ∈ Γ, f(V, a) = 1}, which could
be empty. We first show that A is closed. To this end, suppose x /∈ A. Choose
V ∈ T with f(V, x) = 0. Then eventually fAλ

(V, x) = 0 which means that eventually
∀v ∈ V, fAλ

(V, v) = 0, and so f(V, v) = 0. This shows that V ∩ A = ?, as required.

We next show that A ⊆ Li Aλ and Ls Aλ ⊆ A. For the first inclusion, let a ∈ A and let
V be an arbitrary open neighborhood of a. Since f(V, a) = 1, eventually fAλ

(V, a) = 1
which means eventually that Aλ∩V 6= ?. This shows a ∈ Li Aλ. On the other hand let
x ∈ Ls Aλ be arbitrary. We must show that whenever (V, x) ∈ Γ, we have f(V, x) = 1.
So suppose x ∈ V ∈ T . Since Aλ∩V 6= ? frequently, and since lim fAλ

(V, x) = f(V, x),
we conclude f(V, x) = 1. Thus, x ∈ A, completing the proof.
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Corollary 5.3. Let 〈X,T 〉 be a topological space and let 〈Aλ〉 be a net of closed subsets
of X. Then 〈Aλ〉 has a subnet Kuratowski-Painlevé convergent to a closed subset A.

Proof. This is immediate from the last theorem and the Tychonoff Theorem.

Applying Proposition 5.1 we obtain

Corollary 5.4. Let 〈X,T 〉 be a topological space and let 〈Aλ〉 be a net of closed subsets
of X. Suppose 〈Aλ〉 converges to A in the product topology under the identification
A ↔ fA. Then A = K− lim Aλ.

While the set A in the proof is determined by the limit function f for 〈fAλ
〉, it is not

in general true that f = fA. Put differently, C (X) need not be closed in {0, 1}Γ under
the identification A ↔ fA. We intend to show that if 〈X,T 〉 is a Hausdorff space
with infinitely many points, then there is a sequence 〈An〉 in C (X) for which 〈fAn

〉 is
convergent in the product to a limit that is not fA for any closed set A.

The next fact immediately follows from A ⊆ B ⇒ fA ≤ fB.

Lemma 5.5. Let 〈X,T 〉 be an arbitrary topological space and let 〈An〉 be a decreasing
sequence of closed subsets of X. Then 〈fAn

〉 is convergent in {0, 1}Γ.

Lemma 5.6. Let 〈X,T 〉 be a Hausdorff space with infinitely many points. Then there
is a strictly decreasing sequence 〈An〉 of nonempty closed subsets of X.

Proof. Let 〈xn〉 be a sequence in X with distinct terms. We consider two cases:
(i) 〈xn〉 has a convergent subsequence to a (unique) point p ∈ X; (ii) 〈xn〉 has no
convergent subsequence. In case (i), by passing to a subsequence, we can assume that
no term of the sequence is p and the sequence converges to p. For each n ∈ N, put
An := {p} ∪ {xk : k ≥ n}, a compact set. Since the topology is Hausdorff, each An

is closed, and the desired sequence is 〈An〉. In case (ii), put b1 = x1, and let V1 be
an open neighborhood of b1 for which X\V1 contains an infinite set of terms B1 of
the original sequence. Let b2 be that term of B1 of lowest index, and choose an open
neighborhood V2 of b2 such that B1\V2 is an infinite set B2. Producing additional bn
and then Vn in this manner, the desired strictly decreasing sequence of closed sets is
X\V1, X\(V1 ∪ V2), X\(V1 ∪ V2 ∪ V3), . . . .

We note that the assertion of last lemma can fail in a general T1 space: consider any
infinite set equipped with the cofinite topology.

Theorem 5.7. Let 〈X,T 〉 be a Hausdorff space. The following conditions are equiv-
alent:

(1) X is a finite set;

(2) The topology that C (X) inherits from {0, 1}Γ under the identification A ↔ fA
agrees with the Fell topology;

(3) Kuratowski-Painlevé convergence of each net 〈Aλ〉 in C (X) to a closed set A
ensures the convergence of 〈fAλ

〉 to fA in {0, 1}Γ;

(4) C (X) is closed in {0, 1}Γ under the identification A ↔ fA.
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Proof. (1 ) ⇒ (2 ). As the Fell topology is always coarser than the relative prod-
uct topology, we need only show that each subbasic open set in the relative product
topology is open in the Fell topology. Since {{0}, {1}} is a basis for the topology
of {0, 1}, a subbase for the relative product topology consists of all sets of the form
{fA : fA(V, x) = 1} and {fA : fA(V, x) = 0} where (V, x) runs over the index set Γ.
Evidently,

{A : fA(V, x) = 1} = {A : A ∩ V 6= ?}

and
{A : fA(V, x) = 0} = {A : A ∩ V = ?},

and since each open subset of X is compact, these both lie in the Fell topology.

(2 ) ⇒ (3 ). By (2), convergence in the Fell topology ensures convergence in the
product topology, and since K-convergence is of intermediate strength, condition (3 )
immediately follows.

(3 ) ⇒ (4 ). Suppose 〈fAλ
〉 is convergent in the product topology to some f . We know

that the net 〈Aλ〉 is Kuratowski-Painlevé convergent to A := {a ∈ X : whenever (V, a)
∈ Γ, f(V, a) = 1}. By (3 ), 〈fAλ

〉 is convergent in the product topology to fA. Since
the product topology is Hausdorff, limits are unique, and we get f = fA. This proves
that {fA : A ∈ C (X)} is closed in the product.

(4 ) ⇒ (1 ). If (1 ) fails, let 〈An〉 be a strictly decreasing sequence of nonempty closed
subsets of X. Then 〈fAn

〉 converges in the product topology to some f . Now if f = fA
for some closed A, then A = ∩∞

n=1 An must hold by Corollary 5.4 and uniqueness of K-
limits. Let p ∈ A1\A be arbitrary; then fA(X\A, p) = 0 while ∀n ∈ N, fAn

(X\A, p) =
1. Thus (4) fails.
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G. Beer, J. Rodŕıguez-López / Topologies Associated with Kuratowski-Painlevé ... 825
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826 G. Beer, J. Rodŕıguez-López / Topologies Associated with Kuratowski-Painlevé ...
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