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For a closed subset C of a Hilbert space (H, ‖·‖) and for a sublinear functional ρ : H → R+,
which is equivalent to the norm ‖·‖, we give conditions guaranteeing existence and uniqueness of the
nearest points to C in the sense of the semidistance generated by ρ. This permits us to construct a
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modulus of ρ and the measure of nonconvexity of the set C at each point.
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1. Introduction

Let H be a Hilbert space with the inner product 〈·, ·〉 and the norm ‖·‖. As well
known, for any convex closed set C ⊂ H each x ∈ H admits the unique near-
est point (so called metric projection) πC (x) ∈ C, i.e., such that ‖x− πC (x)‖ =
dC (x) := inf {‖x− y‖ : y ∈ C} (Chebyshev property of convex sets), and, moreover,
the mapping x 7→ πC (x) is continuous (even Lipschitzean with the Lipschitz constant
1). On the other hand, the class of sets admitting such type continuous retraction
πC : H → C consists just of convex closed sets (see [1, 5]).

The further natural question is to describe the class of sets for which the continuous
projection is well defined not on the whole space H but on some neighbourhood U
of C. Such sets were studied by many authors starting from the pioneer work by H.
Federer [19] (see, e.g., [27, 7, 26, 10, 25, 12, 13, 3] and the bibliography therein). They
appear in the literature under various names such as the sets with positive reach [19],
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p-convex [7] or ϕ-convex [12, 13] sets, proximally smooth sets [10], O (2)-convex sets
[26] and so on. Roughly speaking, these sets could be characterized by the following
geometric property: given x̄ ∈ ∂C for any x, y ∈ C near x̄ a convex combination
λx + (1− λ) y (not necessarily belonging to C) is distant from C not more than of
the order O

(
‖x− y‖2

)
. An exact (analytic) definition will be given in sequel. Here

and further on ∂C stands for the boundary of the set C. Notice that ϕ-convexity is
equivalent to a series of other properties such as smoothness of the distance function
dC (·) in the open domain U \ C, and the choice of name depends on which of them
one wishes to emphasize.

Observe that the distance dC (x) can be seen as the minimum time necessary to reach
the boundary ∂C starting from the point x /∈ C by trajectories of the control system

·
x (t) = v (t) , ‖v (t)‖ ≤ 1, (1)

and the projection πC (x) is nothing else than the point on the target set attainable
for this time. As already said, the well-posedness of x 7→ πC (x) is equivalent to
the regularity of the minimum time function x 7→ dC (x) whose gradient is equal to
(x− πC (x)) / ‖x− πC (x)‖. Moreover, dC (·) is the (unique) viscosity solution of the
Hamilton-Jacobi equation

‖∇u (x)‖ = 1, u |∂C = 0, (2)

in the sense of M. Crandall and P.-L. Lions [16] (see also [4]).

Slightly extending this problem (see [14, 15]) we can consider instead of the closed
unit ball in (1) (denoted further by B) an arbitrary closed convex bounded subset
F ⊂ H, containing the origin in its interior (we need the last condition in order to
guarantee controllability). So that, given a point x ∈ H we are led to study the
following time optimal control problem:

min
{
T > 0 : ∃x (·) , x (T ) ∈ C, x (0) = x,

and
·
x (t) ∈ F a.e. in [0, T ]

}
. (3)

The set of terminal points x (T ) for all functions x (·), which are minimizers in (3)
(if any), is called further the time-minimum projection of x onto C (with respect to
F ) and is denoted by πFC (x). We keep the same name and notation for the unique
element of πFC (x) in the case when it is a singleton. Taking into account the fact that
each terminal point can be achieved by an affine trajectory (due to convexity of F ),
we represent the minimum time function (value function in (3)) as

TF
C (x) = inf

y∈C
ρF (y − x) ,

where ρF (·) is the Minkowski functional of the set F ,

ρF (ξ) := inf {λ > 0 : ξ ∈ λF} . (4)

Therefore,
πFC (x) =

{
y ∈ C : ρF (y − x) = TF

C (x)
}
.
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Earlier some generic properties of this best approximation problem were studied (see
[17, 8]), while in [9] a relationship between the local well-posedness of the time-
-minimum projection and the directional derivatives of the function TF

C (·) (slightly
different from the respective relationship in the case of usual metric projection) was
proved. The later papers [14, 15, 28] instead were devoted to characterization of
various kinds of subdifferentials of x 7→ TF

C (x) in terms of the normal cones to the set
C (in [28] this problem was considered in an arbitrary Banach space). Furthermore, in
[15] some conditions guaranteeing the well-posedness of the time-minimum projection
were obtained (see Theorem 5.6). They are suitable also for the regularity of the
value function TF

C (·), which, similarly to the case F = B, can be interepreted as the
(unique) viscosity solution of the boundary value problem

ρF 0 (−∇u (x)) = 1, u |∂C = 0

(compare with (2)). Under these conditions, requiring ϕ-convexity of the target set
C (with ϕ = const) and some type of uniform strict convexity of F controllable
with a parameter γ > 0, the mapping x 7→ πFC (x) is defined and single-valued on
a neighbourhood of C given by some relation between ϕ and γ. However, these
hypotheses are not so sharp as for the usual metric projections and can be essentially
refined.

In our paper we propose some way to generalize the well-posedness result of [15].
Namely, under certain assumptions we wish to construct an open neighbourhood
of the closed set C basing on a balance between the "scaled" curvatures of C and
F , where the existence, the uniqueness (and the continuity as well) of the time-
-minimum projection πFC (·) take place. To this end we introduce first (in Sections
3 and 4) some concepts concerning the local structure of a convex body F (and of
its polar set F 0) such as moduli of strict convexity (local uniform rotundity) and of
uniform smoothness taken essentially from the geometry of Banach spaces (see, e.g.,
[22, Ch. 5]) and adapted to the case of "asymmetric" norms. Here some concepts of
curvature naturally appear. We study their properties and prove a local asymmetric
version of the Lindenstrauss duality theorem, which permits, in particular, to obtain
a characterization of the curvatures in terms of the second derivative of the dual
Minkowski functional.

The main results follow from the fact that under suitable assumptions each min-
imizing sequence of the functional x 7→ ρF (x− z) on the set C (z belongs to a
neighbourhood of C) is a Cauchy sequence. The proof is based on an important
property obtained in Section 5 by using the Ekeland’s variational principle. Namely,
we show, roughly speaking, that given an arbitrary minimizing sequence {xn} one
may find sequences {x′n} and {x′′n}, which are close to {xn} and such that the differ-
ence between some outward normal vector to the set C at the point x′n ∈ C and an
inward normal to a suitable homothetic transformation of F at x′′n tends to zero.

In Section 6 we prove the general retraction theorem (Theorem 6.1), presenting two
types of sufficient conditions. One of them does not use neither ϕ-convexity of the
set C (its boundary can even have "inward corner" points) nor some kind of uniform
rotundity of F , and the other essentially generalizes the known hypotheses. Next
(Theorem 6.2) we give an explicit formula for the neighbourhood of C where the
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retraction is defined. These results are then concretized for the case of a target
set with smooth boundary (Theorems 7.1–7.4) as well as under the second order
differentiability hypothesis for the polar set F 0 (Theorem 7.5). Finally, in the last
section we join some examples illustrating the obtained results.

2. Basic notations and definitions

We consider a convex closed bounded set F ⊂ H such that 0 ∈ intF ("int" stands
for the interior of F ), and denote by F 0 its polar set, i.e.,

F 0 := {ξ∗ ∈ H : 〈ξ, ξ∗〉 ≤ 1 ∀ξ ∈ F} .

Together with theMinkowski functional ρF (ξ) defined by (4) we introduce the support
function σF : H → R+, σF (ξ∗) := sup {〈ξ, ξ∗〉 : ξ ∈ F}, and observe that

ρF (ξ) = σF 0 (ξ) , (5)

and, consequently,

1

‖F‖ ‖ξ‖ ≤ ρF (ξ) ≤
∥∥F 0

∥∥ ‖ξ‖ , ξ ∈ H, (6)

where ‖F‖ := sup {‖ξ‖ : ξ ∈ F}. The inequalities (6) mean that ρF (·) is a sublinear
functional "equivalent" to the norm ‖·‖. It is not a norm since −F 6= F in general.
As a consequence of (5) and (6) we have the Lipschitz property

|ρF (ξ1)− ρF (ξ2)| ≤
∥∥F 0

∥∥ ‖ξ1 − ξ2‖ . (7)

In what follows we use the so-called duality mapping JF : ∂F 0 → ∂F that associates
with each ξ∗ ∈ ∂F 0 the set

JF (ξ∗) := {ξ ∈ ∂F : 〈ξ, ξ∗〉 = 1} .

If there is no ambiguity (the set F is fixed) then we denote the duality mapping simply
by J (·). We say also that (ξ, ξ∗) is the dual pair when ξ∗ ∈ ∂F 0 and ξ ∈ JF (ξ∗).

Let us denote by NF (ξ) the normal cone to F at the point ξ ∈ F and by ∂ρF (ξ)
the subdifferential of the function ρF (·) in the sense of Convex Analysis. Notice
that for each ξ∗ ∈ ∂F 0 the set JF (ξ∗) is nothing else than ∂ρF 0 (ξ∗), and J−1

F (ξ) =
NF (ξ) ∩ ∂F 0, ξ ∈ ∂F . As well known, the mapping v 7→ σ∂ρF (ξ) (v) coincides with
the directional derivative of ρF (·) at ξ ∈ H defined by

DρF (ξ) (v) := lim
λ→0+

ρF (ξ + λv)− ρF (ξ)

λ
, v ∈ H. (8)

If DρF (ξ) (−v) = −DρF (ξ) (v), and the convergence in (8) is uniform with respect
to v from each bounded subset of H, then the function ρF (·) is Fréchet differentiable
at the point ξ. In this case ∂ρF (ξ) = {∇ρF (ξ)} where the Fréchet derivative (or
gradient) ∇ρF (ξ) is the unique vector such that DρF (ξ) (v) = 〈∇ρF (ξ) , v〉, v ∈ H.
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On the other hand, a target set C ⊂ H is assumed only to be nonempty and closed.
Various concepts of normal (and tangent) cones to C at a point x ∈ C can be found,
e.g., in [11, 23]. However, in sequel we use mainly the proximal normal cone

N
p
C (x) :=

{
v : ∃σ > 0 such that 〈v, y − x〉 ≤ σ ‖y − x‖2 for all y ∈ C

}
. (9)

Denote also by Nl
C (x) the so-called Mordukhovich (or limiting) normal cone, which

in the case of Hilbert space consists of all weak limits of the sequences vn ∈ N
p
C (xn)

such that xn → x, xn ∈ C (see [23, p. 240]).

For each v ∈ N
p
C (x), v 6= 0, let us define

ψC (x, v) :=
1

‖v‖ sup
y∈C\{x}

〈v, y − x〉
‖y − x‖2

< +∞

that measures degree of "prominence" (or "cavity") of the set C at the point x with
respect to the direction v. In particular, if ψC (x, v) > 0 then we have another
representation:

1

2 ‖v‖ψC (x, v)
= sup {λ > 0 : dC (x+ λv) = λ ‖v‖} ,

i.e., each sphere centred on the half-line {x+ λv : λ > 0} and touching the boundary
∂C at x only has a radius r ≤ 1

2ψC(x,v)
. Otherwise (ψC (x, v) ≤ 0) such sphere can

have a radius arbitrarily large. Setting

ψC (x, v) :=
1

‖v‖ lim sup
C∋y→x

〈v, y − x〉
‖y − x‖2

we get a local characteristic of the set C. Observe that C is "concave" at x with
respect to the direction v whenever ψC (x, v) > 0, and 1

2ψC(x,v)
is the "concavity

radius". For some purposes (compare, for instance, with the definitions of Section
3) the number −ψC (x, v) can be interpreted as exterior (negative) curvature of the
(nonconvex) set C. It is convenient to set also ψC (x, 0) = ψC (x, 0) = 0. Since
ψC (x, v) < +∞ iff ψC (x, v) < +∞ (see [11, p. 25]), we have

N
p
C (x) =

{
v ∈ H : ψC (x, v) < +∞

}
.

Let us define the "reduced" boundary

∂∗C := {x ∈ ∂C : Np
C (x) 6= {0}} ,

which is dense in ∂C (see [11, p. 49]).

If ψC (x, v) is majorized by some continuous nonnegative function (say ϕ (·)) uni-
formly in v ∈ N

p
C (x) (i.e., ψC (x, v) ≤ ϕ (x) for all x ∈ ∂C and v ∈ N

p
C (x)) then the

set C is said to be ϕ-convex (or proximally smooth). Another definition in terms of
"almost monotonicity" of the normal cone can be given. Namely, a closed set C ⊂ H
is ϕ-convex iff for some continuous function ϕ : C → R+ the inequality

〈v − w, x− y〉 ≥ − (ϕ (x) ‖v‖+ ϕ (y) ‖w‖) ‖x− y‖2
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holds whenever x, y ∈ C, v ∈ N
p
C (x) and w ∈ N

p
C (y). If C is convex then we clearly

set ϕ (x) ≡ 0. Since all basic normal cones to a ϕ-convex set coincide (see, e.g., [13,
Proposition 6.2]), there is no ambiguity to write NC (x) in the place of Np

C (x).

Finally, we say that a closed set C ⊂ H has smooth (or C1) boundary at the point
x0 ∈ ∂C if there exist ε > 0 and a continuous mapping n: ∂C ∩

(
x0 + εB

)
→ ∂B

such that n (x) is a unique vector from Nl
C (x) with ‖n (x)‖ = 1. If this property is

satisfied globally (i.e., Nl
C (x)∩∂B is a singleton continuously depending on x ∈ ∂C)

then the boundary of C is said to be smooth.

3. Moduli of local strict convexity and curvatures

Let us recall first the modulus of local uniform rotundity (or local uniform convexity)
well known in the geometry of Banach spaces [22, p. 460] but applied here to convex
sets and to their Minkowski functionals (see also [17, 8]).

Definition 3.1. Given a convex closed bounded set F ⊂ H with 0 ∈ intF , ξ ∈ ∂F
and r > 0 we put

δF (r, ξ) := inf {ρF (ξ) + ρF (η)− ρF (ξ + η) : η ∈ F, ρF (η − ξ) ≥ r} . (10)

Taking into account the agreement inf? := +∞, we can assume that r in this
definition admits any positive value.

The modulus δF (·, ξ) shows, in fact, how far the sublinear functional ρF (·) is from a
linear one in a neighbourhood of the point ξ ∈ ∂F . It is clear that always δF (r, ξ) ≥ 0,
and, following the tradition (see [21]), the set F is said to be uniformly rotund (or
uniformly strictly convex) at the point ξ if δF (r, ξ) > 0 for all r > 0.

However, as we’ll see later, the moduli suggested below are more suitable for the
asymmetric case than (10).

Definition 3.2. Let ξ ∈ ∂F and ξ∗ ∈ ∂F 0 be points such that 〈ξ, ξ∗〉 = 1 (or, in
other words, ξ ∈ J (ξ∗)). We define three moduli of strict convexity of the set F at
the point ξ with respect to (w.r.t.) the direction ξ∗ by the formulas:

C+
F (r, ξ, ξ∗) := inf {〈ξ − η, ξ∗〉 : η ∈ F, ρF (η − ξ) ≥ r} ;

C−
F (r, ξ, ξ∗) := inf {〈ξ − η, ξ∗〉 : η ∈ F, ρF (ξ − η) ≥ r} ;

ĈF (r, ξ, ξ∗) := inf {〈ξ − η, ξ∗〉 : η ∈ F, ‖ξ − η‖ ≥ r} , (11)

r > 0.

Observe that for all r > 0 the inequality C+
F (r, ξ, ξ∗) ≥ δF (r, ξ) holds. Indeed, for

each η ∈ F with ρF (η − ξ) ≥ r by (5) we have

δF (r, ξ) ≤ 2− ρF (ξ + η) ≤ 2 〈ξ, ξ∗〉 − 〈ξ + η, ξ∗〉 = 〈ξ − η, ξ∗〉 .

But the opposite inequality is violated even in the simplest cases. For example, if
F = B, ‖ξ‖ = 1 and ξ∗ = ξ (J−1 (ξ) = {ξ} is singleton) then the direct calculations

give δF (r, ξ) = r2

2+
√
4−r2 while C±

F (r, ξ, ξ∗) = ĈF (r, ξ, ξ∗) = r2/2, 0 < r ≤ 2.
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Due to (6) we also have the following inequalities:

C±
F

(
r

‖F‖ , ξ, ξ
∗
)

≤ ĈF (r, ξ, ξ∗) ≤ C±
F

(∥∥F 0
∥∥ r, ξ, ξ∗

)
, r > 0. (12)

Definition 3.2 suggests another concept of strict convexity. Namely, the set F is said to
be (locally) strictly convex at the point ξ ∈ ∂F w.r.t. ξ∗ ∈ J−1 (ξ) if ĈF (r, ξ, ξ∗) > 0 for

all r > 0. The modulus ĈF (r, ξ, ξ∗) here can be, certainly, substituted by C±
F (r, ξ, ξ∗)

(see (12)). This, obviously, implies that ξ is an exposed point of F , and the vector ξ∗

exposes ξ in the sense that the hyperplane {η ∈ H : 〈η, ξ∗〉 = σF (ξ∗)} touches F at
the point ξ only, or, in other words, that J (ξ∗) = {ξ}. Therefore, we could speak just
about the (local ) strict convexity w.r.t. the vector ξ∗ (do not refering to the unique
ξ ∈ J (ξ∗)).

From Definition 3.2 we get also a "strict monotonicity" inequality:

〈η − ξ, η∗ − ξ∗〉 ≥ ĈF (r, ξ, ξ∗) + ĈF (r, η, η∗) (13)

whenever ξ ∈ J (ξ∗) and η ∈ J (η∗) with ‖ξ − η‖ ≥ r, which permits to characterize
the local strict convexity in terms of the duality mapping (and in terms of the dual
Minkowski functional as well).

Proposition 3.3. The set F is strictly convex w.r.t. ξ∗ ∈ ∂F 0 if and only if one of
the following assertions holds:

(i) ξ is a strongly exposed point of F w.r.t. ξ∗, i.e., J (ξ∗) = {ξ} is a singleton, and
each sequence {ξn} ⊂ F such that 〈ξn, ξ∗〉 → 〈ξ, ξ∗〉 = 1, n→ ∞, converges to
ξ strongly (‖ξn − ξ‖ → 0 as n→ ∞);

(ii) the duality mapping J : ∂F 0 → ∂F is Hausdorff continuous at ξ∗ with J (ξ∗) =
{ξ}, which in this case means

sup
η∈J(η∗)

‖η − ξ‖ → 0 as η∗ → ξ∗, η∗ ∈ ∂F 0;

(iii) the function ρF 0 (·) is Fréchet differentiable at ξ∗, and ∇ρF 0 (ξ∗) = ξ.

Proof. Let us show that the strict convexity of F w.r.t. ξ∗ is equivalent to the
property (i). Assuming that a unique point ξ ∈ J (ξ∗) (here and further on we write
ξ = J (ξ∗)) is not strongly exposed for F (w.r.t. ξ∗) we can choose ε > 0 and a
sequence {ξn} ⊂ F with ‖ξn − ξ‖ ≥ ε such that 〈ξ − ξn, ξ

∗〉 → 0 as n → ∞. Hence,

ĈF (ε, ξ, ξ∗) ≤ 〈ξ − ξn, ξ
∗〉 → 0, and the strict convexity is violated. On the other

hand, if ĈF (r, ξ, ξ∗) = 0 for some r > 0 then by Definition 3.2 there exists a sequence
{ξn} ⊂ F such that ‖ξn − ξ‖ ≥ r and 〈ξ − ξn, ξ

∗〉 → 0 as n → ∞. But this is
impossible if ξ∗ strongly exposes ξ ∈ ∂F .

Equivalence of the conditions (ii) and (iii) follows from Corollary 2 [2, p. 460], while
(iii) ⇐⇒ (i) was proved in [24, Proposition 5.11].

We will need sometimes uniformity in the assumption of the local strict convexity.
Namely, given U ⊂ ∂F 0 let us call the set F uniformly strictly convex w.r.t. the set
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U if
βU (r) := inf

{
ĈF (r, ξ, ξ∗) : ξ∗ ∈ U

}
> 0

for all r > 0. Here as usual ξ denotes the point J (ξ∗) for respective ξ∗ ∈ U . If in
the definition above U is a neighbourhood of a point ξ∗0 ∈ ∂F 0 then we say that F
is uniformly strictly convex w.r.t. ξ∗0. This property makes sense mainly in infinite
dimensional spaces, where it is stronger than the strict convexity w.r.t. all the vectors
near ξ∗0. By arguing as in Proposition 3.3 we obtain

Proposition 3.4. If the set F is uniformly strictly convex w.r.t. U ⊂ ∂F 0 then the
duality mapping JF (·) is single-valued and uniformly continuous on U .

Proof. Assuming that the uniform continuity on U does not hold, we find ε >
0 and two sequences {ξ∗n}, {η∗n} ⊂ U such that ‖ξ∗n − η∗n‖ → 0 as n → ∞ but
‖J (ξ∗n)− J (η∗n)‖ ≥ ε, n = 1, 2, ... . Denoting by ξn := J (ξ∗n) and ηn := J (η∗n), it
follows from (13) that

〈ηn − ξn, η
∗
n − ξ∗n〉 ≥ ĈF (ε, ξn, ξ

∗
n) + ĈF (ε, ηn, η

∗
n) ≥ 2βU (ε) > 0,

which is a contradiction.

Let us give now a stronger concept of (local) strict convexity.

Definition 3.5. Fix ξ∗ ∈ ∂F 0, and let ξ be the unique element of J (ξ∗). The set F
is said to be strictly convex of the order α > 0 (at the point ξ) with respect to ξ∗ if

γF,α (ξ, ξ
∗) := lim inf

(r,η,η∗)→(0+,ξ,ξ∗)
η∈J(η∗), η∗∈∂F 0

ĈF (r, η, η∗)

rα
> 0. (14)

Remark 3.6. The condition (14) means that for some θ > 0 and δ > 0 the inequality

ĈF (r, η, η∗) ≥ θrα (15)

takes place whenever ‖η∗ − ξ∗‖ ≤ δ, ‖η − ξ‖ ≤ δ, η ∈ J (η∗), η∗ ∈ ∂F 0 and 0 < r ≤ δ.

By the monotonicity of the function r 7→ ĈF (r, η, η∗), diminishing if necessary the
constant θ > 0, we may suppose that (15) is valid for all positive r. Hence, F is
uniformly strictly convex w.r.t. ξ∗, and by Proposition 3.4 the duality mapping is
single-valued and uniformly continuous in a neighbourhood of ξ∗. In particular, the
condition η → ξ in (14) is superfluous.

The numbers (14) possess the following invariantness property (we do not assume
here that 0 ∈ intF ).

Proposition 3.7. Let y1, y2 ∈ intF , ξ ∈ ∂F and ξ∗1 ∈ J−1
F−y1 (ξ − y1). Then there

exists a unique ξ∗2 ∈ J−1
F−y2 (ξ − y2) colinear with ξ∗1 and such that

1

‖ξ∗1‖
γF−y1,α (ξ − y1, ξ

∗
1) =

1

‖ξ∗2‖
γF−y2,α (ξ − y2, ξ

∗
2) (16)

for each α > 0.
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Proof. Setting ξ∗2 := ξ∗1
1+〈y1−y2,ξ∗1〉

we see that ξ∗2 has the same direction as ξ∗1, ξ∗2 ∈
∂ (F − y2)

0 and 〈ξ − y2, ξ
∗
2〉 = 1, i.e., ξ∗2 ∈ J−1

F−y2 (ξ − y2). Given η ∈ ∂F close to ξ

and η∗1 ∈ J−1
F−y1 (η − y1) close to ξ∗1 directly from Definition 3.2 we obtain

1

‖η∗1‖
ĈF−y1 (r, η − y1, η

∗
1) =

1

‖η∗2‖
ĈF−y2 (r, η − y2, η

∗
2) , (17)

r > 0, where η∗2 :=
η∗
1

1+〈y1−y2,η∗1〉
belongs, obviously, to some neghbourhood of ξ∗2.

Dividing both parts of (17) by rα and passing to lim inf as r → 0+, η → ξ, η∗1 → ξ∗1
(and, consequently, η∗2 → ξ∗2) we easily come to (16) (see (14)).

Observing that the common direction of the vectors ξ∗1 and ξ∗2 from Proposition 3.7
is normal to the set F at the point ξ, we may extend the concept of strict convexity
for the case of a closed convex bounded body (do not assuming that 0 ∈ intF ).
Indeed, given ξ ∈ ∂F and ν ∈ NF (ξ), ‖ν‖ = 1, we say that F is strictly convex
of the order α > 0 (at the point ξ) w.r.t. the vector ν if the translated set F − y is
strictly convex of the order α (at the point ξ−y) w.r.t. the same direction ν (or w.r.t.
ν/ρ(F−y)0 (ν) ∈ ∂ (F − y)0, see Definition 3.5), where y is an arbitrary element from
intF . We use such generalization in Section 7 (see Proposition 7.7(i)). Furthermore,
since this is a local property, it can be extended also for the case of an unbounded
set.

In what follows we use the strict convexity of order α = 2 only denoting γF,2 (ξ, ξ
∗)

simply by γF (ξ, ξ∗). Let us define (square) curvature

{F (ξ, ξ∗) :=
1

‖ξ∗‖γF (ξ, ξ∗)

of the set F at the point ξ ∈ ∂F w.r.t. ξ∗ (or with respect to the normal direction
ν = ξ∗/ ‖ξ∗‖ ∈ NF (ξ) ∩ ∂B), which shows how rotund the boundary ∂F is in a
neighbourhood of ξ. As follows from Proposition 3.7 the curvature does not depend
on position of the origin in intF and can be defined also when 0 /∈ intF . Another
characterization of the curvature can be given via radius of the smallest ball centred
on the half-line opposite to the vector ξ∗, which touches the boundary ∂F at ξ and
contains a part of the set F near this point. Exactly, denoting by

R̂F (ξ, ξ∗) :=
1

2{F (ξ, ξ∗)

(the so-called curvature radius of F ) we have

Proposition 3.8. Given ξ∗ ∈ ∂F 0 and ξ ∈ J (ξ∗),

R̂F (ξ, ξ∗)

‖ξ∗‖ = lim sup
(ε,η,η∗)→(0+,ξ,ξ∗)
η∈J(η∗), η∗∈∂F 0

inf
{
r > 0 : F ∩

(
η + εB

)
⊂ η − rη∗ + r ‖η∗‖B

}
. (18)
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Proof. Let us prove the inequality "≤" in (18) assuming without loss of generality
that the right-hand side (further denoted by R) is finite. Taking an arbitrary ρ > R
we can afirm that for each ε > 0 small enough and for each dual pair (η, η∗) from a
neighbourhood of (ξ, ξ∗) the relation

F ∩
(
η + εB

)
⊂ η − ρη∗ + ρ ‖η∗‖B

holds. In particular,
‖ζ − η + ρη∗‖2 ≤ ρ2 ‖η∗‖2

whenever ζ ∈ F with ‖ζ − η‖ = ε, or, in another form,

〈η − ζ, η∗〉 ≥ ε2

2ρ
. (19)

If w ∈ F is an arbitrary point with ‖w − η‖ ≥ ε then setting ζ := λw+(1− λ) η ∈ F ,
where λ := ε/ ‖w − η‖ ≤ 1, we have ‖ζ − η‖ = ε and 〈η − ζ, η∗〉 = λ 〈η − w, η∗〉.
Comparing with (19) we obtain that (see Definition 3.2)

1

2ρ
≤ ĈF (ε, η, η∗)

ε2
.

Hence, passing to lim inf as ε → 0+, (η, η∗) → (ξ, ξ∗) and ρ → R+ we conclude the
fist part of the proof.

In order to show the opposite inequality let us assume that R > 0 (in the case
R = 0 it is trivial). If now 0 < ρ < R then by the definition of lim sup there
exist an arbitrarily small ε > 0 and a dual pair (η, η∗) arbitrarily near (ξ, ξ∗) such
that the relation F ∩

(
η + εB

)
⊂ η − rη∗ + r ‖η∗‖B implies ρ < r. In particular,

‖ζ − η + ρη∗‖2 > ρ2 ‖η∗‖2 for some ζ ∈ F with ‖ζ − η‖ ≤ ε, and, consequently,
setting r := ‖ζ − η‖ ≤ ε we have

ĈF (r, η, η∗)

r2
<

1

2ρ
. (20)

Passing in (20) to lim inf as r → 0+, (η, η∗) → (ξ, ξ∗) and to limit as ρ → R− we
prove the inequality "≥" in (18).

Besides of γF (ξ, ξ∗) in what follows we use also one-sided characteristics γ+F (ξ, ξ∗) and

γ−F (ξ, ξ∗) defined by the same way as (14), α = 2, but with the modulus ĈF (r, η, η∗)
substituted by C±

F (r, η, η∗), respectively. However, they do not satisfy the invariant-
ness property given by Proposition 3.7 (see Example 4.5), being connected with the
"true" curvature through the inequalities

1

‖F 0‖2
{F (ξ, ξ∗) ≤ γ±F (ξ, ξ∗)

‖ξ∗‖ ≤ ‖F‖2 {F (ξ, ξ∗) , (21)

(see (12)).
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According to Remark 3.6 it makes sense to define

γF (ξ, ξ∗) := sup
{
θ > 0 : ∃ε > 0 such that ĈF (r, η, η∗) ≥ θr2

whenever ‖η − ξ‖ ≤ ε, ‖η∗ − ξ∗‖ ≤ ε,

η ∈ J (η∗) , η∗ ∈ ∂F 0 and r > 0
}
, (22)

or, in a compact form,

γF (ξ, ξ∗) = lim inf
(η,η∗)→(ξ,ξ∗)

η∈J(η∗), η∗∈∂F 0

inf
r>0

ĈF (r, η, η∗)

r2
. (23)

We see directly from the definition that the function (ξ, ξ∗) 7→ γF (ξ, ξ∗) is lower semi-
continuous (and (ξ, ξ∗) 7→ γF (ξ, ξ∗) as well). Furthermore, arguing as in Proposition
3.8 we have

1

2γF (ξ, ξ∗)
= lim sup

(η,η∗)→(ξ,ξ∗)
η∈J(η∗), η∗∈∂F 0

inf
{
r > 0 : F ⊂ η − rη∗ + r ‖η∗‖B

}
. (24)

It follows readily from (17) that {F (ξ, ξ∗) := γF (ξ, ξ∗) / ‖ξ∗‖ is invariant with respect
to translations similarly to the curvature {F (ξ, ξ∗). On the other hand, {F (ξ, ξ∗)
and RF (ξ, ξ∗) := 1

2{F (ξ,ξ∗)
are not only local characteristics of the boundary at the

point ξ but depend also on the size of the set F . In particular, RF (ξ, ξ∗) can not be
too small, namely (see (24)),

RF (ξ, ξ∗) ≥ rF , (25)

where rF > 0 is the Chebyshev radius of the convex set F . This distinguishes it
from the "true" curvature radius R̂F (ξ, ξ∗). In what follows we call {F (ξ, ξ∗) and
RF (ξ, ξ∗) scaled curvature and scaled curvature radius, respectively.

4. Modulus of local smoothness. Dual statements

As well-known (see [2], [21]−[24] and others) the strict convexity of a convex closed
bounded set F with 0 ∈ intF is strongly related to smoothness of its polar set F 0.
We are interested now in quantitative aspect of such connection. In particular, we
would like to find some relationships between the functions γ±F (ξ, ξ∗) introduced in
the previous section and the local characteristics of F 0.

Definition 4.1. Let us fix ξ∗ ∈ ∂F 0 and ξ ∈ JF (ξ∗) ⊂ ∂F . For t ∈ R we define a
modulus of (uniform) smoothness of the set F 0 at the point ξ∗ w.r.t. ξ by

SF 0 (t, ξ∗, ξ) := sup
{
ρF 0 (ξ∗ + tη∗)− ρF 0 (ξ∗)− t 〈ξ, η∗〉 : η∗ ∈ F 0

}
. (26)

Since ξ ∈ ∂ρF 0 (ξ∗), we always have SF 0 (t, ξ∗, ξ) ≥ 0. By Proposition 3.3(iii), if F
is strictly convex w.r.t. ξ∗ then

lim
t→0

SF 0 (t, ξ∗, ξ)

t
= 0, (27)
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where ξ is the unique element of JF (ξ∗). Moreover, there is a relationship between
the modulus of uniform smoothness and the modulus of strict convexity given by the
following statement, which is nothing else than a one-sided local version of Linden-
strauss duality theorem (see [20, Theorem 1]).

Proposition 4.2. Let ξ ∈ ∂F and ξ∗ ∈ ∂F 0 be such that 〈ξ, ξ∗〉 = 1. Then for each
t > 0 the equalities

SF 0 (±t, ξ∗, ξ) = sup
{
tr − C±

F (r, ξ, ξ∗) : r > 0
}

(28)

hold.

Proof. Let us prove the equality (28) for C+
F (r, ξ, ξ∗) only. The other one can be

proved similarly.

Given ε > 0, from (26) we choose η∗ ∈ F 0 and η ∈ F such that

SF 0 (t, ξ∗, ξ) ≤ 〈η, ξ∗ + tη∗〉 − 〈ξ, ξ∗〉 − t 〈ξ, η∗〉+ ε

≤ 〈η − ξ, ξ∗〉+ tρF (η − ξ) + ε

≤ sup
η∈F

{tρF (η − ξ)− 〈ξ − η, ξ∗〉}+ ε

≤ sup
r>0

{
tr − C+

F (r, ξ, ξ∗)
}
+ ε,

and the inequality "≤" in (28) follows.

In order to prove the opposite inequality let us fix ε > 0 and choose first r > 0, η ∈ F
with ρF (η − ξ) ≥ r and then η∗ ∈ F 0 such that

sup
r>0

{
tr − C+

F (r, ξ, ξ∗)
}
≤ tρF (η − ξ)− 〈ξ − η, ξ∗〉+ ε

≤ 〈η, tη∗〉 − 〈ξ, tη∗〉+ 〈η, ξ∗〉 − ρF 0 (ξ∗) + ε

≤ σF (ξ∗ + tη∗)− t 〈ξ, η∗〉 − ρF 0 (ξ∗) + ε

≤ SF 0 (t, ξ∗, ξ) + ε,

and the proof is concluded.

If we put

CF (r, ξ, ξ∗) :=






C+
F (r, ξ, ξ∗) if r > 0;

0 if r = 0;

C−
F (−r, ξ, ξ∗) if r < 0

then (28) can be written in a more symmetric form

SF 0 (·, ξ∗, ξ) = C
F

F (·, ξ, ξ∗) , (29)

where "⋆" means the Legendre-Fenchel transform.

Now, by using Proposition 4.2, we obtain a dual characterization of the second order
strict convexity, which makes more precise the equality (27).
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Proposition 4.3. Let (ξ, ξ∗) be a dual pair of elements: ξ ∈ ∂F , ξ∗ ∈ ∂F 0, ξ ∈
J (ξ∗). Then

1

4γ±F (ξ, ξ∗)
= lim sup

(t,η,η∗)→(0±,ξ,ξ∗)
η∈J(η∗), η∗∈∂F 0

SF 0 (t, η∗, η)

t2
. (30)

Proof. We prove the formula (30) for γ+F (ξ, ξ∗). The respective proof for γ−F (ξ, ξ∗)
is similar.

While proving the inequality "≥" in (30) we can assume without loss of generality
that γ+F (ξ, ξ∗) > 0 (i.e., F is strictly convex of the second order w.r.t. ξ∗). Then the
mapping J (·) is single-valued and continuous in a neighbourhood of ξ∗ (see Remark
3.6), and taking an arbitrary 0 < β < γ+F (ξ, ξ∗) one can choose ε > 0 such that

C+
F (r, J (η∗) , η∗) > βr2

for all 0 < r ≤ ε and η∗ ∈ ∂F 0 with ‖η∗ − ξ∗‖ ≤ ε. As it is easy to see,

sup
{
tr − βr2 : 0 < r ≤ ε

}
=

t2

4β
(31)

for all 0 < t ≤ 2εβ. On the other hand, observing that C+
F (r, J (η∗) , η∗) = +∞

whenever r > D := 2 ‖F 0‖ ‖F‖, by the monotonicity of C+
F (·, J (η∗) , η∗), we have

sup
{
tr − C+

F (r, J (η∗) , η∗) : r > ε
}
≤ tD − βε2 ≤ t2

4β
(32)

for all 0 < t ≤ 2β
(
D −

√
D2 − ε2

)
. Thus, applying the duality formula (28), we

obtain from (31) and (32)

SF 0 (t, η∗, J (η∗))

t2
≤ 1

4β
.

Hence, passing to lim sup as t → 0+, η∗ → ξ∗ and to limit as β → γ+F (ξ, ξ∗)− we
conclude the first part of the proof.

In order to prove the converse inequality let us suppose that the right-hand side of
(30) (further denoted by L) is finite. Then, taking any β > L we can find ε > 0 such
that

SF 0 (t, η∗, η) < βt2 (33)

for all 0 < t ≤ ε and for each dual pair (η, η∗) such that ‖η − ξ‖ ≤ ε, ‖η∗ − ξ∗‖ ≤ ε.
Applying the Legendre-Fenchel transform to (33) we have

S
F

F 0 (r, η
∗, η) ≥ sup

{
tr − βt2 : 0 < t ≤ ε

}
=
r2

4β
, (34)

0 < r ≤ 2εβ. Since the double conjugate function is always below the original one,
it follows from (34) and (29) that

C+
F (r, η, η∗) ≥ r2

4β
.

Dividing by r2 and passing to lim inf we obtain now the desired inequality.
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Let us concretize now the formula (30) in the case when F 0 has the second order
smooth boundary.

As we know (see Remark 3.6 and Proposition 3.3(iii)) if γ+F (ξ, ξ∗) > 0 then ρF 0 (·)
is Fréchet differentiable on ∂F 0 ∩

(
ξ∗ + εB

)
for some ε > 0, and, furthermore, the

Fréchet derivative ∇ρF 0 (·) is (uniformly) continuous on a neighbourhood of ξ∗. Re-
mind that the functional ρF 0 (·) is said to be (Fréchet) twice differentiable at ξ∗ ∈ ∂F 0

if there exists a (self-adjoint) linear bounded operator ∇2ρF 0 (ξ∗) : H → H (called
Fréchet second derivative) such that

∇ρF 0 (ξ∗ + tv∗)−∇ρF 0 (ξ∗)

t
→ ∇2ρF 0 (ξ∗) v∗ as t→ 0+

uniformly in v∗ ∈ F 0. Let us define the F 0-norm of the operator ∇2ρF 0 (ξ∗) by
∥∥∇2ρF 0 (ξ∗)

∥∥
F 0

:= sup
v∗∈F 0

〈
∇2ρF 0 (ξ∗) v∗, v∗

〉
. (35)

Finally, the boundary ∂F 0 is said to be of class C2 (second order smooth) at the point
ξ∗ ∈ ∂F 0 if ρF 0 (·) is twice differentiable at each point of a neighbourhood of ξ∗,
and the mapping η∗ 7→ ∇2ρF 0 (η∗) is continuous near ξ∗ with respect to the operator
topology. This is the same to require the continuous differentiability of the (unique)
unit normal vector to F 0 near the point ξ∗. Hence, in particular, the continuity of
the functional η∗ 7→

∥∥∇2ρF 0 (η∗)
∥∥
F 0

in a neighbourhood of ξ∗ follows.

Proposition 4.4. Assume that the boundary of the set F 0 is of class C2 at a point
ξ∗ ∈ ∂F 0, and ξ ∈ ∂F is the unique element of J (ξ∗) (in other words ξ = ∇ρF 0 (ξ∗)).
Then

γ+F (ξ, ξ∗) = γ−F (ξ, ξ∗) =
1

2
∥∥∇2ρF 0 (ξ∗)

∥∥
F 0

. (36)

Proof. Given η∗ ∈ ∂F 0 in a neghbourhood of the point ξ∗, by the Taylor formula
(see, e.g., [6, p. 75]) for each v∗ ∈ F 0 and t > 0 small enough we have

ρF 0 (η∗ + tv∗) = ρF 0 (η∗) + t 〈η, v∗〉+
t∫

0

〈
∇2ρF 0 (η∗ + τv∗) v∗, v∗

〉
(t− τ) dτ , (37)

where η := ∇ρF 0 (η∗) = J (η∗). Hence, by using the mean value theorem, given t > 0
and v∗ ∈ F 0 we find τ ∗ = τ (t, v∗), 0 < τ ∗ < t, such that (see (26))

SF 0 (t, η∗, η)

t2
=

1

2
sup
v∗∈F 0

〈
∇2ρF 0 (η∗ + τ ∗v∗) v∗, v∗

〉
. (38)

By continuity of the second derivative we have the convergence

∇2ρF 0 (η∗ + τ ∗v∗) → ∇2ρF 0 (ξ∗)

as η∗ → ξ∗, η∗ ∈ ∂F 0, and as t → 0+ in the operator topology, which is uniform
in v∗ ∈ F 0. Therefore, the right-hand side of (38) converges to 1

2

∥∥∇2ρF 0 (ξ∗)
∥∥
F 0
.

Remind now the formula (30) and obtain

1

4γ+F (ξ, ξ∗)
=

1

2

∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

.
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In order to find the same representation for γ−F (ξ, ξ∗) it is enough to apply the Taylor
formula (37) for the vector −v∗ instead of v∗, v∗ ∈ F 0.

Let us give a simple example illustrating the last proposition.

Example 4.5. Fix a ∈ H with ‖a‖ < 1 and consider the set

F := {ξ ∈ H : ‖ξ − a‖ ≤ 1} .

It is easy to see that

ρF 0 (ξ∗) = σF (ξ∗) = 〈ξ∗, a〉+ ‖ξ∗‖ , ξ∗ ∈ H.

This function is twice continuously differentiable at each ξ∗ 6= 0, and taking ξ∗ ∈ ∂F 0

we have

∇2ρF 0 (ξ∗) v∗ =
‖ξ∗‖2 v∗ − 〈ξ∗, v∗〉 ξ∗

‖ξ∗‖3
, v∗ ∈ H.

Applying Lagrange multipliers we find the ‖F 0‖-norm of this operator (see (35)):

∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

=
1

‖ξ∗‖3
sup

{
‖ξ∗‖2 ‖v∗‖2 − 〈ξ∗, v∗〉2 : 〈v∗, a〉+ ‖v∗‖ ≤ 1

}

=
1

(
1− ‖a‖2

)2 ‖ξ∗‖3

(
‖ξ∗‖2

(
1 + ‖a‖2

)
− 2 〈ξ∗, a〉2

+2
√(

‖ξ∗‖2 − 〈ξ∗, a〉2
) (

‖a‖2 ‖ξ∗‖2 − 〈ξ∗, a〉2
))

, (39)

and the rotundity characteristics γ±F (ξ, ξ∗) should be found from (36). Here as usual
ξ ∈ ∂F is the unique point with 〈ξ, ξ∗〉 = 1. In particular cases when ξ∗ is colinear
to a the square root in (39) vanishes, and we obtain

γ±F (ξ, ξ∗) =






1− ‖a‖
2

if ξ∗ =
a

‖a‖ (1 + ‖a‖) ;
1 + ‖a‖

2
if ξ∗ = − a

‖a‖ (1− ‖a‖) .

Thus, γ±F (ξ, ξ∗) depend essentially on a (on position of the origin inside the ball).
Namely, they tend either to 0 or to 1 as ‖a‖ → 1 whenever the origin is either more
distant from the point ξ or more close to ξ, respectively. This distinguishes γ±F (ξ, ξ∗)
from γF (ξ, ξ∗) (see Proposition 3.7). Observe that in the case a = 0 the formula (39)
gives

∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

= 1, and γ±F (ξ, ξ∗) = 1/2 for each ξ∗ ∈ H with ‖ξ∗‖ = 1 and
ξ = ξ∗ (see the remark after Definition 3.2).

5. A property of minimizing sequences

Let us return now to the minimum time problem (3), where the value function TF
C (z)

is always finite and strictly positive for all z /∈ C. We consider minimizing sequences
{xn} ⊂ C for the mapping x 7→ ρF (x− z) on C, i.e., such that ρF (xn − z) →
TF
C (z)+ as n → ∞. The following statement is crucial for proving of the main

theorems contained in the next sections.



16 V. V. Goncharov, F. F. Pereira / Neighbourhood Retractions of Nonconvex ...

Lemma 5.1. Let C ⊂ H be a nonempty closed set, z ∈ H \ C, and {xn} ⊂ C be a
minimizing sequence for x 7→ ρF (x− z) on C. Then there exist another minimizing
sequence {x′n} ⊂ C and sequences {x′′n}, {vn}, {ξ∗n} such that vn ∈ N

p
C (x′n), ξ

∗
n ∈

∂ρF (x′′n − z) and

‖x′n − xn‖+ ‖x′′n − xn‖ → 0, (40)

‖vn + ρF (x′′n − z) ξ∗n‖ → 0, (41)

as n→ ∞.

Proof. Given an arbitrary sequence εn → 0+ with ρ2F (xn − z) ≤
(
TF
C (z)

)2
+ ε2n,

by the Ekeland’s variational principle (see [18, Corollary 11]) there exists {yn} ⊂ C
satisfying the conditions

ρ2F (yn − z) ≤
(
TF
C (z)

)2
+ ε2n; (42)

‖xn − yn‖ ≤ εn; (43)

ρ2F (yn − z) ≤ ρ2F (y − z) + εn ‖y − yn‖ ∀y ∈ C, (44)

n = 1, 2, ... . The inequality (44), in particular, means that yn minimizes the func-
tional

F (y) := ρ2F (y − z) + εn ‖y − yn‖+ IC (y) (45)

on H, where IC (·) is the indicator function of the set C (it is equal to zero on C
and to +∞ elsewhere). Denoting by ∂pF (y) the proximal subdifferential of (45) (see
[11, p. 29]) we obviously have 0 ∈ ∂pF (yn). According to the fuzzy sum rule (see
Theorem 8.3 [11, p. 56]),

0 ∈ N
p
C (x′n) + ∂

(
ρ2F (x′′n − z) + εn ‖x′′n − yn‖

)
+ εnB (46)

for some sequences {x′n} ⊂ C and {x′′n} ⊂ H, ‖x′n − yn‖ ≤ εn, ‖x′′n − yn‖ ≤ εn,
n = 1, 2, ... . Since the subdifferential in the right-hand side of (46) is contained
in 2ρF (x′′n − z) ∂ρF (x′′n − z) + εnB, one can find vectors vn ∈ N

p
C (x′n) and ξ∗n ∈

∂ρF (x′′n − z) with the property (41). It follows from (42) that {x′n} is a minimizing
sequence of x 7→ ρF (x− z) on C, and (40) also holds.

Remark 5.2. The relation (41), in particular, shows that x′n belong to ∂∗C for all n
large enough, since otherwise ξ∗n → 0. But this is impossible because ξ∗n ∈ ∂F 0 (see
[15, Corollary 2.3]).

Remark 5.3. The vectors vn in Lemma 5.1 can be chosen such that

ρF 0 (−vn) = ρF (x′′n − z) , (47)

n = 1, 2, ... . Indeed, setting v′n := vn
ρF (x′′n−z)
ρ
F0 (−vn) ∈ N

p
C (x′n) we have, by the Lipschitz

continuity of ρF 0 (·) (see (7)) and by (41),

‖vn − v′n‖ =
‖vn‖

ρF 0 (−vn)
|ρF (x′′n − z) ρF 0 (ξ∗n)− ρF 0 (−vn)|

≤ ‖F‖
∥∥F 0

∥∥ ‖ρF (x′′n − z) ξ∗n + vn‖ → 0,

and, therefore, vn can be substituted by v′n.
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Remark 5.4. In the case when all the basic normal cones to the set C coincide (e.g.,
if C is ϕ-convex), in the proof of Lemma 5.1 we may use the limiting subdifferential
([23, p. 82]) in the place of ∂pF (y), and apply the precise sum rule instead of the
fuzzy one (see [11, p. 62]). In this way we obtain a stronger statement of Lemma 5.1,
which gives x′n = x′′n.

6. Well-posedness of the time-minimum projection

Further on we always assume the dynamic set F ⊂ H to be nonempty closed convex
bounded with 0 ∈ intF and the target C ⊂ H to be an arbitrary nonempty closed
set. Let us introduce two local hypotheses.

We say that the pair of sets (F,C) satisfies the condition (A) at a point x0 ∈ ∂C if
there exists δ > 0 such that

(A1) the mapping x 7→ JF (−N
p
C (x) ∩ ∂F 0) is single-valued and Lipschitz continuous

on
Cδ (x0) := {x ∈ ∂∗C : ‖x− x0‖ ≤ δ} ;

(A2) F is uniformly strictly convex with respect to

Uδ,δ′ (x0) := ∂F 0 ∩
⋃

x∈Cδ(x0)

[
−N

p
C (x) ∩ ∂F 0 + δ′B

]
(48)

for some δ′ > 0.

Alternatively, we say that (F,C) satisfies the condition (B ) at x0 ∈ ∂C if for some
δ > 0

(B 1) the function ψC (x, v) is upper bounded on the set

{(x, v) : x ∈ Cδ (x0) , v ∈ N
p
C (x)}

(or, in other words, C is proximally smooth in a neighbourhood of the point x0);

(B 2) there exist δ′ > 0 and K > 0 such that

{F (JF (ξ∗) , ξ∗) ≥ K for all ξ∗ ∈ Uδ,δ′ (x0) ,

where
Uδ,δ′ (x0) := ∂F 0 ∩

⋃

x∈Cδ(x0)\{x0}

[
−N

p
C (x) ∩ ∂F 0 + δ′B

]
. (49)

We are ready now to formulate the main result.

Theorem 6.1. Assume that at each point x0 ∈ ∂C the pair of sets (F,C) satisfies
either the condition (A) or (B ). Then there exists an open set U ⊃ C such that
for each z ∈ U the time-minimum projection πFC (z) is a singleton, and the mapping
z 7→ πFC (z) is continuous on U .

Proof. We prove first that given x0 ∈ ∂C one can find an (open) neighbourhood
U (x0) such that for an arbitrary z ∈ U (x0) each minimizing sequence {xn} of x 7→
ρF (x− z) on the set C is a Cauchy sequence.



18 V. V. Goncharov, F. F. Pereira / Neighbourhood Retractions of Nonconvex ...

Case 1. The condition (A) holds at the point x0. Then we set

U (x0) :=

{
z ∈ H : ‖z − x0‖ <

δ

‖F‖ ‖F 0‖+ 1
, TF

C (z) <
1

L

}
, (50)

where L > 0 is the Lipschitz constant of x 7→ JF (−Np
C (x) ∩ ∂F 0) on Cδ (x0) (see

(A1)). Fix z ∈ U (x0) \ C and a minimizing sequence {xn} ⊂ C. Let us choose
{x′n} ⊂ ∂∗C, {x′′n}, vn ∈ N

p
C (x′n) and ξ

∗
n ∈ ∂ρF (x′′n − z) as in Lemma 5.1 and such

that ρF (x′′n − z) = ρF 0 (−vn), n = 1, 2, ... (see Remarks 5.2 and 5.3). Since by (6)

‖xn − x0‖ ≤ ‖F‖ ρF (xn − z) + ‖z − x0‖
≤
(
‖F‖

∥∥F 0
∥∥+ 1

)
‖z − x0‖+ ‖F‖

(
ρF (xn − z)− TF

C (z)
)
, (51)

and ρF (xn − z)− TF
C (z) → 0+, ‖xn − x′n‖ → 0 as n→ ∞, we can suppose without

loss of generality that x′n ∈ Cδ (x0) for all n = 1, 2, ... . Consider a decreasing sequence
νn → 0+ such that

‖x′n − xn‖+ ‖x′′n − xn‖ ≤ νn; (52)

ρF (x′n − z) ≤ TF
C (z) + νn; (53)

‖vn + ρF (x′′n − z) ξ∗n‖ ≤ 1

2
TF
C (z) νn, (54)

n = 1, 2, ... . It follows, in particular, from (54) and (52) that

∥∥∥∥
vn

ρF 0 (−vn)
+ ξ∗n

∥∥∥∥ ≤ TF
C (z)

2 (TF
C (z)− ‖F 0‖ ‖x′′n − xn‖)

νn ≤ νn. (55)

Furthermore, (see Proposition 3.4) the hypothesis (A2) implies that the (single-
valued) mapping JF : Uδ,δ′ (x0) → ∂F is uniformly continuous, and, therefore, the
sequence

βn := sup
‖ξ∗−η∗‖≤νn
ξ∗,η∗∈Uδ,δ′ (x0)

‖JF (ξ∗)− JF (η∗)‖

tends to zero as n→ ∞.

Observe that ξ∗n ∈ NF

(
x′′n−z

ρF (x′′n−z)

)
∩ ∂F 0 (see [15, Corollary 2.3]), and hence, as it is

easy to see,

x′′n − z

ρF (x′′n − z)
= JF (ξ∗n) . (56)

By (55) we have ξ∗n, − vn
ρ
F0 (−vn) ∈ Uδ,δ′ (x0), and, consequently,

∥∥∥∥JF (ξ∗n)− JF

(
− vn
ρF 0 (−vn)

)∥∥∥∥ ≤ βn, n = 1, 2, ... . (57)
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Given m ≥ n we obtain from (56) and (57) (see also (52) and (53)):

‖x′′m − x′′n‖
≤ ρF (x′′m − z) ‖JF (ξ∗m)− JF (ξ∗n)‖+ |ρF (x′′m − z)− ρF (x′′n − z)| ‖F‖
≤ TF

C (z) ‖JF (ξ∗m)− JF (ξ∗n)‖+ 4νn ‖F‖
(∥∥F 0

∥∥+ 1
)

≤ TF
C (z)

∥∥∥∥JF
(
− vm
ρF 0 (−vm)

)
− JF

(
− vn
ρF 0 (−vn)

)∥∥∥∥

+ 2TF
C (z)βn + 4νn ‖F‖

(∥∥F 0
∥∥+ 1

)
. (58)

Since − vn
ρ
F0 (−vn) ∈ −N

p
C (x′n) ∩ ∂F 0, applying the condition (A1) we find from (58)

that (
1− LTF

C (z)
)
‖x′m − x′n‖ ≤ ν ′n

for some sequence ν ′n → 0+, n → ∞. Hence, by the choice of z (see (50)) we
conclude that {x′n} (and {xn} as well) is a Cauchy sequence.

Case 2. If at the point x0 the condition (B ) holds then we set

U (x0) :=

{
z ∈ H : ‖z − x0‖ <

δ

‖F‖ ‖F 0‖+ 1
, TF

C (z) <
K

M

}
, (59)

where the constant M > 0 is such that ψC (x, v) ≤ M for all x ∈ Cδ (x0) and
v ∈ N

p
C (x). Let z ∈ U (x0) \ C, and {xn} ⊂ C be a minimizing sequence of x 7→

ρF (x− z) on C. Everything is already proved if xn → x0, n → ∞. Otherwise, as
we’ll see in sequel, there is no loss of generality to suppose that x0 is not a cluster
point of {xn}, and that the number sequence {ρF (xn − z)} is nonincreasing. By
using Lemma 5.1 similarly to the Case 1 we choose sequences {x′n} ⊂ ∂∗C, {x′′n},
vn ∈ N

p
C (x′n) and ξ∗n ∈ ∂ρF (x′′n − z) satisfying (40), (41) and (47). Observe that

in virtue of the hypothesis (B 1) a simpler version of Lemma 5.1 holds that gives
x′n = x′′n (see Remark 5.4). But, for the sake of uniformity, we prefer to keep all the
notations. We can assume, certainly, that 0 < ‖x′n − x0‖ < δ, n = 1, 2, ... (see (40)
and (51)). Let us choose a decreasing sequence νn → 0+ satisfying the inequalities
(52)-(55), and assume that νn ≤ δ′, n = 1, 2, ... . Since x′n ∈ Cδ (x0) \ {x0} and
−vn/ρF 0 (−vn) ∈ −N

p
C (x′n) ∩ ∂F 0, we obtain from (55) that ξ∗n ∈ Uδ,δ′ (x0) (see

(49)).

For convenience sake let us introduce the following notations:

ρn := ρF (x′′n − z) ;

Gn := z + ρnF ;

Rn :=
1

‖ξ∗n‖
RF (ξn, ξ

∗
n) =

1

2γF (ξn, ξ
∗
n)

(see (23), (24));

ψn := ψC (x′n, vn) .

Here ξn := JF (ξ∗n) can be found as in the Case 1 (see (56)). Combining the hypotheses
(B 1) and (B 2) we have from the above arguments:

1

2Rn

− TF
C (z) ‖ξ∗n‖ψn ≥ 2ν :=

1

‖F‖
(
K − TF

C (z)M
)
> 0.
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Since ‖vn‖ − TF
C (z) ‖ξ∗n‖ → 0+ as n→ ∞ (see (54) and (53)), using again bounded-

ness of the sequence {ψn}, we can choose ν ′n > 0 such that

1

2 (Rn + ν ′n)
− ‖vn‖ψn ≥ ν (60)

for n = 1, 2, ... large enough (assume that for all n).

Let us consider the approximate curvature centre of the set Gn (at the point x′′n)

zn := x′′n − ρn (Rn + ν ′n) ξ
∗
n. (61)

We claim that for each m ≥ n

‖zn − x′′m‖ ≤ ‖zn − x′′n‖+ 2
∥∥F 0

∥∥ ‖F‖ νn. (62)

Indeed, monotonicity of the sequence {ρF (xn − z)} implies ρm ≤ ρn+2 ‖F 0‖ νn. On
the other hand, from the definition of Gn, from (24) and (56) we obtain:

Gn ⊂ z + ρn
(
J (ξ∗n)− (Rn + ν ′n) ξ

∗
n + (Rn + ν ′n) ‖ξ∗n‖B

)

= x′′n − ρn (Rn + ν ′n) ξ
∗
n + ρn (Rn + ν ′n) ‖ξ∗n‖B

= zn + ‖x′′n − zn‖B.

Thus,

x′′m ∈ Gm ⊂ Gn + 2
∥∥F 0

∥∥ ‖F‖ νnB
⊂ zn +

(
‖x′′n − zn‖+ 2

∥∥F 0
∥∥ ‖F‖ νn

)
B,

and the inequality (62) follows.

Given arbitrary m ≥ n, by (61), (54) and by the definition of proximal normals we
find:

〈zn − x′′n, x
′′
m − x′′n〉

= ρn (Rn + ν ′n) 〈−ξ∗n, x′′m − x′′n〉

≤ (Rn + ν ′n) 〈vn, x′′m − x′′n〉+
1

2
TF
C (z) (Rn + ν ′n) νn ‖x′′m − x′′n‖

≤ (Rn + ν ′n)ψn ‖vn‖ ‖x′m − x′n‖
2
+ (Rn + ν ′n)µn,

where µn → 0+, n→ ∞. Hence,

∥∥∥∥
zn − x′′m

2
+
zn − x′′n

2

∥∥∥∥
2

=

∥∥∥∥zn − x′′n +
x′′n − x′′m

2

∥∥∥∥
2

≥ ‖zn − x′′n‖
2
+
1

4
‖x′′m − x′′n‖

2 − (Rn + ν ′n)ψn ‖vn‖‖x′m − x′n‖
2 − (Rn + ν ′n)µn. (63)
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Applying the parallelogram identity and combining with (63) we obtain:

1

4
‖x′′m − x′′n‖

2
=

∥∥∥∥
zn − x′′m

2
− zn − x′′n

2

∥∥∥∥
2

=
1

2
‖zn − x′′m‖

2
+

1

2
‖zn − x′′n‖

2 −
∥∥∥∥
zn − x′′m

2
+
zn − x′′n

2

∥∥∥∥
2

≤ 1

2

(
‖zn − x′′m‖

2 − ‖zn − x′′n‖
2
)
− 1

4
‖x′′m − x′′n‖

2

+ (Rn + ν ′n)ψn ‖vn‖ ‖x′m − x′n‖
2
+ µn (Rn + ν ′n) .

Therefore, by using the claim above (see (62)), (52), the hypothesis (B 2) and the a
priori estimate (25)) we conclude that

[
1

2 (Rn + ν ′n)
− ‖vn‖ψn

]
‖x′m − x′n‖

2 ≤ µ′
n

for some µ′
n → 0 as n→ ∞. The Cauchy property of the sequence {x′n} (and of {xn}

as well) follows from this inequality together with (60).

Let us pass now to the second part of the proof. Denote by

U =
⋃

x0∈C
U (x0) ⊃ C,

where we put U (x0) := intC for x0 ∈ intC. Given x0 ∈ ∂C, z ∈ U (x0) \ C
and a minimizing sequence {xn} ⊂ C of x 7→ ρF (x− z) on C, in the Case 1 (the
condition (A) valid at x0) we immediately find the (unique) projection πFC (z) as limit
of {xn}, existing since it is a Cauchy sequence. Otherwise (the condition (B ) holds)
we choose first a subsequence {xkn} such that {ρF (xkn − z)} is nonincreasing, and x0
is not a cluster point of {xkn}. Being a Cauchy sequence it converges to an element
x ∈ πFC (z). Assuming that x, y ∈ πFC (z) with x 6= y we consider the sequence {xn}
whose odd terms are equal to x and all even terms are equal to y. Since {ρF (xn − z)}
is now stationary, we can again apply the first part of the proof and conclude the
convergence of {xn} to x = y. Notice that the above arguments are applicable also
if one of the points x or y coincides with x0 (because for a pair of natural numbers n
and m with m ≥ n we utilize the hypothesis (B 2) at the point x′′n only). In order to
show continuity at the point z ∈ U let us observe that for each {zn} ⊂ U converging
to z the sequence

{
πFC (zn)

}
minimizes x 7→ ρF (x− z) on C. Indeed,

ρF
(
πFC (zn)− z

)
≤ ρF

(
πFC (zn)− zn

)
+ ρF (zn − z)

≤ TF
C (z) + 2

∥∥F 0
∥∥ ‖zn − z‖ → TF

C (z) + .

Thus, by the same reasons as above, each subsequence of
{
πFC (zn)

}
admits a sub-

sequence converging to πFC (z). So πFC (zn) → πFC (z), and theorem is completely
proved.
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Thus we have two types of local assumptions guaranteeing the well-posedness of the
time-minimum projection in a neighbourhood of a fixed point x0 ∈ ∂C. The first one
(the condition (A)) provides regularity of the superposition operator involving both
the proximal normal cone to C and the gradient ∇ρF 0 (·), while the other involves
the curvatures of F and C being square characteristics of these sets. Therefore, we
can refer to (A) and (B ) as to the first and to the second order condition, respec-
tively. Although there is a large class of problems, which satisfy both hypotheses (for
instance, if F = B and C = {x ∈ H : f (x) ≤ 0}, where f (·) is a locally C1,1 function
with ∇f (x) 6= 0), simple examples show (see Section 8) that none of the two ((A)
and (B )) implies the other. In the end of Section 7 we amplify a little bit this list of
local conditions including some extreme cases.

If the set C is proximally smooth then we can give an explicit formula for a neighbour-
hood where the continuous retraction πFC (·) is defined, which has, however, mainly
theoretic interest due to the fact that it involves approximations to the projection
itself. To this end let us consider a slightly stronger hypothesis than (B 2). Namely,
we say that (F,C) satisfies the condition (B ′

2) at a point x0 ∈ ∂C if there exist
δ, δ′ > 0 and K > 0 such that

{F (J (ξ∗) , ξ∗) ≥ K for all ξ∗ ∈ Uδ,δ′ (x0) ,

where the set Uδ,δ′ (x0) is defined by (48).

Theorem 6.2. Assume that C ⊂ H is ϕ-convex with a continuous function ϕ : C →
R+, and at each point x0 ∈ ∂C the pair (F,C) satisfies the condition (B ′

2). Then
the mapping z 7→ πFC (z) is single-valued and continuous on the open set A (C) of all
points z ∈ H, which either belong to C or satisfy the inequality

lim inf
F(z)

{
{F (J (ξ∗) , ξ∗)− TF

C (z)ϕ (x)
}
> 0. (64)

Here F (z), z /∈ C, is the filter in H3 generated by the sets
{
(x, v, ξ∗) : ρF (x− z) < TF

C (z) + ε, x ∈ ∂C;

v ∈ NC (x) , ‖ξ∗ + v‖ < ε, ξ∗,−v ∈ ∂F 0
}
, ε > 0.

Proof. In order to prove openess of A (C) let us take first z ∈ A (C) \C and choose
ν > 0, ε > 0 such that

{F (J (ξ∗) , ξ∗)− TF
C (z)ϕ (x) ≥ ν (65)

whenever x ∈ ∂C with ρF (x− z) ≤ TF
C (z) + ε and v ∈ NC (x), ξ∗ ∈ ∂F 0 with

‖ξ∗ + v‖ ≤ ε, ρF 0 (−v) = 1. By the a priori estimate (25) the function ϕ (·) is
bounded on the set of x satisfying (65), say ϕ (x) ≤M with some M > 0. Set

ε′ := min

(
ε

4 ‖F 0‖ ,
ε

2
,

ν

2M ‖F 0‖

)
.

Assuming, moreover, that
(
z + ε′B

)
∩ C = ?, for each z′ ∈ z + ε′B let us define the

set
P (z′) :=

{
x ∈ ∂C : ρF (x− z′) ≤ TF

C (z′) + ε′
}
6= ?. (66)
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Then, by the choice of ε′, for arbitrary vectors ξ∗,−v ∈ ∂F 0 with v ∈ NC (x),
x ∈ P (z′) and ‖ξ∗ + v‖ ≤ ε′ the inequality

{F (J (ξ∗) , ξ∗)− TF
C (z′)ϕ (x) ≥ ν

2
(67)

holds, implying that z′ ∈ A (C).

Let now z := x0 ∈ ∂C. By the hypothesis (B ′
2) and continuity of the function ϕ (·)

there exist δ, δ′ > 0 and positive constants K, M such that {F (J (ξ∗) , ξ∗) ≥ K for
all ξ∗ ∈ Uδ,δ′ (x0) and ϕ (x) ≤M for all x ∈ Cδ (x0). Set

ε′ :=
1

2
min

(
K

‖F 0‖M ,
δ

‖F‖ (‖F 0‖+ 1)

)
.

Taking z′ /∈ C with ‖z′ − x0‖ ≤ ε′ and x ∈ P (z′) we have that

‖x− x0‖ ≤ ‖x− z′‖+ ‖z′ − x0‖
≤ ‖F‖

(
TF
C (z′) + ε′

)
+ ε′ ≤ δ,

and TF
C (z′)ϕ (x) ≤ K/2. If, furthermore, v ∈ NC (x), ρF 0 (−v) = 1, and ξ∗ ∈ ∂F 0

with ‖ξ∗ + v‖ ≤ ε′ < δ′ then clearly ξ∗ ∈ Uδ,δ′ (x0), and we obtain the inequality (67)
with ν = K. Consequently, z′ ∈ A (C).

Proving the well-posedness of the projection πFC (·) we can proceed as in the proof
of Theorem 6.1 with some minor changements. Let us fix z ∈ A (C), z /∈ C, and
take a minimizing sequence {xn} for x 7→ ρF (x− z) on the set C, assuming that
{ρF (xn − z)} decreases (may be not strictly). Choosing then the sequences {x′n} ⊂
∂C, vn ∈ NC (x′n), ξ

∗
n ∈ ∂ρF (x′n − z) from Lemma 5.1 (see Remarks 5.3 and 5.4) and

a decreasing number sequence νn → 0+, which satisfies the inequalities ‖x′n − xn‖ ≤
νn, ρF (x′n − z) ≤ TF

C (z) + νn and
∣∣TF

C (z) ‖ξ∗n‖ − ‖vn‖
∣∣ ≤ νn (68)

(see (41)), we find then (see (64)) a number ν > 0 such that

{F (J (ξ∗n) , ξ
∗
n)− TF

C (z)ϕ (x′n) ≥ 2ν ‖F‖ (69)

for n ≥ 1 large enough (assume that for all n). Denoting as earlier

Rn :=
1

2 ‖ξ∗n‖{F (J (ξ∗n) , ξ
∗
n)

and ψn := ϕ (x′n) we rewrite (69) in the form

1

2Rn

− TF
C (z) ‖ξ∗n‖ψn ≥ 2ν. (70)

Due to the estimate (25) the sequence {1/Rn} is bounded (and {ψn} is bounded too
as follows from (70)). Taking into account the inequality (68), we come to (60), and
the remainder of the proof is exactly the same as respective reasoning in Theorem
6.1.
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In a finite dimensional space due to the compactness of the set Uδ,δ′ (x0), the condition
(B ′

2) can be substituted by the second order strict convexity of F w.r.t. each vector
ξ∗ ∈ −NC (x0). However, in general, we have to require the local uniformity of
this property through lack of the strong convergence of normals. A global version
of the uniform strict convexity was introduced in [15] (see Definition 5.2). Notice
that the γ-strict convexity considered there (with γ > 0) is nothing else than the
inequality {F (J (ξ∗) , ξ∗) ≥ γ/2 valid simultaneously for all ξ∗ ∈ ∂F 0. In this case
as an immediate consequence of Theorem 6.2 we obtain the following well-posedness
result.

Corollary 6.3. Let F ⊂ H be a closed bounded γ-strictly convex set with 0 ∈ intF ,
and let C ⊂ H be nonempty closed and ϕ-convex set with a continuous function
ϕ : C → R+. Then the projection πFC (z) is a singleton continuously depending on
z ∈ B (C), where

B (C) :=





z ∈ H : lim sup

ρF (x−z)→TF
C(z)+

x∈∂C

ρF (x− z)ϕ (x) <
γ

2





(71)

is an open set containing C.

The set (71), which is clearly smaller than the neighbourhood given by (64), can be
written in terms of the projection as

B (C) =
{
z ∈ H : TF

C (z)ϕ
(
πFC (z)

)
<
γ

2

}
.

Notice that the unit ball B is γ-strictly convex with γ = 1, and the set (71) in
the case F = B is exactly the same as constructed in [7] (see Definition 2.5 and
Proposition 2.6). On the other hand, if the set C is ϕ-convex with ϕ = const then
the well-posedness condition given by Corollary 6.3 admits the form 2ϕTF

C (z) < γ,
which is slightly weaker than the hypotheses of Theorem 5.6 [15].

7. Some particular and special cases

Let us concretize the results obtained in the previous section. First, we consider
the case of a ϕ-convex target set with smooth boundary, denoting by n (x) the unit
normal vector to C at the point x ∈ ∂C and setting

v (x) := − n (x)

ρF 0 (−n (x))
. (72)

Theorem 7.1. Let C be a closed set with smooth boundary, which is ϕ-convex with
a continuous function ϕ : C → R+, and let F be a closed bounded set with 0 ∈ intF ,
which is strictly convex of the second order w.r.t. each vector v (x), x ∈ ∂C. Then the
time-minimum projection πFC (·) is well defined on the (open) set A (C) (see (64)),
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which in this case admits the form




z ∈ H : lim inf

ρF (x−z)→TF
C(z)+

ξ∗−v(x)→0
x∈∂C, ξ∗∈∂F 0

{
{F (J (ξ∗) , ξ∗)− TF

C (z)ϕ (x)
}
> 0





. (73)

We put naturally lim inf in (73) to be equal to +∞ whenever z ∈ intC.

Proof. It is immediate consequence of Theorem 6.2, since the second order strict
convexity of F together with the lower semicontinuity of ξ∗ 7→ {F (J (ξ∗) , ξ∗) at
v (x), x ∈ ∂C, and with the continuity of v (·) imply the condition (B ′

2).

In terms of the time-minimum projection itself (already defined and single-valued on
A (C)) we can represent this neighbourhood as

A (C) = C ∪
{
z ∈ H \ C : TF

C (z)ϕ (x̄) < {F (J (v (x̄)) , v (x̄))
}

where x̄ := πFC (z).

Remark 7.2. If dimH <∞ then each minimizing sequence has a cluster point, and,
consequently, the neighbourhood (73) can be written in a simpler form

A (C) =




z : lim inf
ρF (x−z)→TF

C(z)+
x∈∂C

{
{F (J (v (x)) , v (x))− TF

C (z)ϕ (x)
}
> 0




 .

Concretizing now the local result given by Theorem 6.1 we have

Theorem 7.3. Let C be a closed ϕ-convex set with smooth boundary and such that
for each point x0 ∈ ∂C one of the assumptions holds:

(i) the set F is uniformly strictly convex w.r.t. the vector v (x0), and the (single-
valued) mapping x 7→ JF (v (x)) is Lipschitz continuous near x0;

(ii) the set F is strictly convex of the second order w.r.t. v (x0).

Then z 7→ πFC (z) is a neighbourhood retraction of the set C.

Proof. The hypothesis (i) is nothing else than the condition (A) at the point x0
specified for the case of smooth boundary, while (ii) implies the condition (B ′

2) at x0,
which is equivalent to (B 2) in this case. Thus, we are able to apply directly Theorem
6.1.

Notice that if at each point x0 ∈ ∂C the dynamics satisfies the hypothesis (i) from
the above theorem then we can entirely avoid the ϕ-convexity assumption for the
target set.

Theorem 7.4. Let C be a closed set with smooth boundary, and let F be uniformly
strictly convex w.r.t. each vector v (x), x ∈ ∂C. If, moreover, the (single-valued)
mapping x 7→ JF (v (x)) is locally lipschitzean on ∂C then the statement of Theorem
7.3 holds.
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On the other hand, we can obtain the well-posedness of πFC (·) in a neighbourhood of
a ϕ-convex set C even with lack of the strict convexity of F w.r.t. ξ∗ ∈ −N

p
C (x)∩∂F 0

for some isolated points x ∈ ∂C where smoothness of the boundary is also violated
(see Example 8.4).

Observe that the formulas (64), (73) as well as neighbourhoods U(x0) given by The-
orem 6.1 (see (59)) involve the function {F (ξ, ξ∗), which can not be substituted,
in general, by the "true" curvature {F (ξ, ξ∗). Let us propose a method to estimate
{F (ξ, ξ∗) from below basing on the differentiability properties of the duality mapping
JF (·) similarly as it was done for γ±F (ξ, ξ∗) (see (36)). To this end we assume that
the set F 0 has second order smooth boundary (at ξ∗ ∈ ∂F 0) and associate to each
δ > 0 some positive number β (δ, ξ∗) such that

∥∥∇2ρF 0 (η∗)−∇2ρF 0 (ξ∗)
∥∥ ≤ δ

whenever η∗ ∈ ∂F 0 with ‖η∗ − ξ∗‖ ≤ β (δ, ξ∗). Then, given δ > 0 and 0 < λ < 1 the
inequality ∥∥∇2ρF 0 (η∗ + tv∗)−∇2ρF 0 (ξ∗)

∥∥ ≤ δ (74)

holds for all 0 < t ≤ (1− λ)β (δ, ξ∗) / ‖F 0‖, v∗ ∈ ∂F 0 and η∗ ∈ ∂F 0 with ‖η∗ − ξ∗‖ <
λβ (δ, ξ∗). Recalling the proof of Proposition 4.4 we obtain from (38) and (74) that

SF 0 (t, η∗, η) ≤ 1

2

(∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

+ δ
∥∥F 0

∥∥2
)
t2 (75)

where as usual η := J (η∗). Applying the Legendre-Fenchel transform to both parts
of (75) we come to the inequality

S
F

F 0 (r, η
∗, η)

≥ sup

{
tr − 1

2

(∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

+ δ
∥∥F 0

∥∥2
)
t2 : 0 < t ≤ (1− λ)

β (δ, ξ∗)

‖F 0‖

}

=
r2

2
(∥∥∇2ρF 0 (ξ∗)

∥∥
F 0

+ δ ‖F 0‖2
) , (76)

which holds true for all 0 < r ≤ (1− λ) q (δ, ξ∗), where

q (δ, ξ∗) := β (δ, ξ∗)

∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

+ δ ‖F 0‖2

‖F 0‖ .

By using the duality between the moduli of local smoothness and of local strict
convexity (see (29)) we obtain from (76) and (12) that

ĈF (r, η, η∗) ≥ r2

2 ‖F‖2
(∥∥∇2ρF 0 (ξ∗)

∥∥
F 0

+ δ ‖F 0‖2
) (77)

whenever 0 < r ≤ (1− λ) q (δ, ξ∗) ‖F‖. Obviously, ĈF (r, η, η∗) = +∞ for r > 2 ‖F‖,
while in the case (1− λ) q (δ, ξ∗) ‖F‖ < r ≤ 2 ‖F‖, by the monotonicity of the

function ĈF (·, η, η∗), we have

ĈF (r, η, η∗) ≥ (1− λ)2
q2 (δ, ξ∗)

8 ‖F‖2
(∥∥∇2ρF 0 (ξ∗)

∥∥
F 0

+ δ ‖F 0‖2
) r2. (78)
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Finally, comparing the inequalities (77) and (78), which hold for all η∗ near ξ∗, by
arbitrarity of λ, 0 < λ < 1, we obtain (see (23)):

γF (ξ, ξ∗) ≥ 1

2 ‖F‖2
(∥∥∇2ρF 0 (ξ∗)

∥∥
F 0

+ δ ‖F 0‖2
) min

(
q2 (δ, ξ∗)

4
, 1

)
. (79)

This estimate together with Theorem 7.1 permit us to formulate the following result.

Theorem 7.5. In addition to the hypotheses of Theorem 7.1 let us suppose that the
polar set F 0 has boundary of class C2 near v (x) for each x ∈ ∂C. Then for a given
δ > 0 the time-minimum projection πFC (·) is well-defined on the (open) set Aδ (C) of
all z ∈ H, which either belong to C or satisfy the inequality

lim inf
ρF (x−z)→TF

C(z)+
ξ∗−v(x)→0

x∈∂C, ξ∗∈∂F 0

{
Q (δ, ξ∗)− TF

C (z)ϕ (x)
}
> 0,

where

Q (δ, ξ∗) :=
1

2 ‖F‖2 ‖ξ∗‖
min




β2 (δ, ξ∗)

(∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

+ δ ‖F 0‖2
)

4 ‖F 0‖2
,

1∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

+ δ ‖F 0‖2



 . (80)

Remark 7.6. It is seen from (80) and from the definition of β (δ, ξ∗) that the neigh-
bourhood Aδ (C) is larger whenever the second derivative ∇2ρF 0 (·) grows slower.
Theorem 7.5 perfectly works, in particular, when ∇2ρF 0 (·) is Lipschitz continuous
locally at each point ξ∗ ∈ ∂F 0 (in a εξ∗-neighbourhood of ξ∗) with Lipschitz constant
Lξ∗ , in which case we can choose β (δ, ξ∗) equal to min (δ/Lξ∗ , εξ∗) (see Example 8.3).

Concluding this section let us give two special hypotheses involving local convexity
of the target set, which also guarantee the well-posedness of the projection.

Proposition 7.7. Suppose that for a given x0 ∈ ∂C one of the following conditions
holds:

(i) C has smooth boundary at x0, and for some ε > 0 the set C ∩
(
x0 + εB

)
has

nonempty interior, and it is strictly convex of the second order at x0 (w.r.t. the
corresponding normal vector);

(ii) for some ε > 0 the set C ∩
(
x0 + εB

)
is convex, and F is strictly convex of the

second order w.r.t. each v ∈ −NC (x) ∩ ∂F 0, where x ∈ ∂C with ‖x− x0‖ ≤ ε.

Then the function z 7→ πFC (z) is single-valued and continuous in a neighbourhood of
the point x0.

Proof. Let us consider each case separately.

(i) Without loss of generality (translating if necesary the set C) we can suppose that
0 ∈ intG, where G := C ∩

(
x0 + εB

)
. Let us denote by v0 := n (x0) /ρG0 (n (x0)),
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where n (x0) is the unit normal vector to C (as well as to G, certainly) at the point x0.
Since ν := γG (x0, v0) > 0, by (22) and by the continuity of the mapping x 7→ n (x) in

a neighbourhood of x0 there exist 0 < δ ≤ ε and θ ≥ ν/2 such that ĈG (r, x, v) ≥ θr2

whenever x ∈ ∂C, ‖x− x0‖ ≤ δ, v = n (x) /ρG0 (n (x)) and r > 0.

Setting now U (x0) := x0 +
δ
D
B, where D := 2 ‖F 0‖ ‖F‖, take z ∈ U (x0) and a

minimizing sequence {xn} ⊂ ∂C of the function x 7→ ρF (x− z) on C. Similarly as
in the proof of Theorem 6.1 we see that ‖xn − x0‖ ≤ δ, and hence, by Definition 3.2,

〈xn − xm, n (xn)〉 ≥
ν

2
ρG0 (n (xn)) ‖xm − xn‖2 (81)

for all m ≥ n ≥ 1 sufficiently large. In accordance with Lemma 5.1 and Remarks 5.3,

5.4 we do not lose generality if suppose that for some vectors ξ∗n ∈ NF

(
xn−z

ρF (xn−z)

)
∩∂F 0

and for some sequence νn → 0+ the inequality

‖v (xn)− ξ∗n‖ ≤ νn
TF
C (z)

, (82)

n = 1, 2, ..., takes place, where v (xn) is given by (72). Let us set λn :=
ρ
F0 (−n(xn))

ρ
G0 (n(xn))

and zn := xn + λnξ
∗
n. By using (82) and (81) we obtain that

〈zn − xn, xm − xn〉 ≥ − νn
TF
C (z)

λn ‖xm − xn‖+
ν

2
‖xm − xn‖2 (83)

for all m ≥ n ≥ 1. On the other hand, ξ∗n is a normal vector to the set z +
ρF (xn − z)F at the point xn, and xm belongs to this set by the eventual mono-
tonicity of {ρF (xn − z)}. Therefore, 〈zn − xn, xm − xn〉 ≤ 0, and combining this
with (83) we find

ν

2
‖xm − xn‖ ≤ νn

TF
C (z)

λn.

Hence {xn} is a Cauchy sequence because {λn} is bounded, and the remainder follows
by the same line as in the proof of Theorem 6.1.

(ii) In this case we set U (x0) := x0+
ε

2(‖F‖‖F 0‖+1)
B and show directly that πFC (z) 6= ?

for each z ∈ U (x0). Indeed, if {xn} ⊂ C is a sequence with ρF (xn − z) ≤ TF
C (z)+1/n

then by the boundedness there exists its subsequence converging weakly to some
x ∈ H. Since

xn ∈ C ∩
(
z +

(
TF
C (z) +

1

n

)
F

)
⊂ C ∩

(
x0 + εB

)

for n ≥ 1 large enough, and the last set is weakly closed, we have x ∈ C. On the
other hand, choosing a sequence yn ∈ z + TF

C (z)F such that ρF (xn − yn) ≤ 1/n
we observe that the weak limit of some its subsequence is equal to x too. Hence
x ∈

(
z + TF

C (z)F
)
∩C = πFC (z). This simple argument was used earlier, e.g., in [15,

Theorem 4.2(b)].
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Let us assume now that the projection πFC (z) consists at least of two different points,
say x and y, both clearly belonging to G := C ∩

(
x0 + εB

)
. Then πFC (z) contains

the whole segment {λx+ (1− λ) y : λ ∈ [0, 1]}. Fix some x := λx +
(
1− λ

)
y with

0 < λ < 1. Then we have

0 ∈ ∂ (ρF (x− z) + IG (x)) = ∂ρF (x− z) +NC (x) , (84)

and there exists a unit normal vector n ∈ NC (x) such that v := −n/ρF 0 (−n) ∈
∂ρF (x− z) ⊂ ∂F 0, or, equivalently, (x− z) /TF

C (z) ∈ ∂ρF 0 (v) = JF (v). In fact,

x−z
TF
C(z)

is the unique element of JF (v), and v ∈ NF

(
x−z

TF
C(z)

)
. It easily follows now that

the vector v is orthogonal to the line

L :=

{
λ
x− z

TF
C (z)

+ (1− λ)
y − z

TF
C (z)

: λ ∈ R

}
.

Hence RF (JF (v) , v) = +∞ contradicting the condition of theorem.

Finally, let us consider a sequence {zn} ⊂ U (x0) converging to some z ∈ U (x0).
By the arguments above, without loss of generality we may suppose that

{
πFC (zn)

}
,

being a minimizing sequence for x 7→ ρF (x− z) on C, converges weakly to the
unique projection πFC (z). Setting x := πFC (z), from the relation (84) we find again a
normal vector n ∈ NC (x) such that (x− z) /TF

C (z) is the unique element of JF (v)
where v := −n/ρF 0 (−n). Therefore, it is a strongly exposed point of F w.r.t. v (see
Proposition 3.3(i)). In particular, the weak convergence of

{(
πFC (zn)− zn

)
/TF

C (zn)
}

to
(
πFC (z)− z

)
/TF

C (z) implies the strong convergence, and the continuity of the
mapping z 7→ πFC (z) follows.

8. Examples

Example 8.1. In a Hilbert space H for a fixed v ∈ H, ‖v‖ = 1, and 0 < θ < 1 let
us consider the convex closed cone

Kv,θ := {x ∈ H : 〈v, x〉 ≥ θ ‖x‖} ,

whose polar cone is

K0
v,θ =

{
x ∈ H : 〈−v, x〉 ≥

√
1− θ2 ‖x‖

}
.

Taking now 0 < θ1 < θ2 < 1, we define C := H \Kv,θ1 and F := (Kv,θ2 − v) ∩B.

The set C neither has smooth boundary, nor is ϕ-convex, and, moreover, the origin is
its "inward corner" point, Np

C (0) = {0}. On the other hand, F is not strictly convex,
because the boundary ∂F contains a lot of linear segments.

However, the hypotheses of Theorem 6.1 are fulfilled, and πFC (·) is a (global) con-
tinuous retraction of C. Indeed, let us represent the target set in the form C =
{x ∈ H : f (x) ≤ 0} where f (x) := 〈v, x〉 − θ1 ‖x‖. Then N

p
C (x) = ∇f (x)R+ =
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(
v − θ1

x
‖x‖

)
R+ for each x ∈ ∂∗C = ∂C \ {0}. In particular, taking ξ∗ ∈ −N

p
C (x) ∩

∂F 0 we have

〈−v, ξ∗〉 =
√

1− θ21 ‖ξ∗‖ >
√
1− θ22 ‖ξ∗‖ ,

i.e., ξ∗ ∈ intK0
v,θ2

, implying obviously JF (ξ∗) = {−v}. Therefore, the condition (A1)
is satisfied trivially at the point x0 = 0 (with arbitrary δ > 0). In order to justify

(A2) let us choose δ
′ > 0 and σ,

√
1− θ22 < σ < 1, such that

〈−v, η∗〉 ≥ σ ‖η∗‖

whenever η∗ ∈ ∂F 0 with ‖η∗ − ξ∗‖ ≤ 2δ′. Hence, for each η∗ ∈ Uδ,δ′ (0) (see (48))
and each η ∈ F by duality of the cones we have 〈η∗ + δ′v, v + η〉 ≤ 0, and recalling
that JF (η∗) = {−v} we obtain

ĈF (r,−v, η∗) = inf {〈−v − η, η∗〉 : η ∈ F, ‖v + η‖ ≥ r}
≥ δ′ inf {〈v + η, v〉 : η ∈ F, ‖v + η‖ ≥ r} ≥ δ′θ2r > 0,

which means the uniform strict convexity w.r.t. the set of directions Uδ,δ′ (0). In
this example, certainly, it is easier to observe directly the uniform continuity of the
mapping JF (η∗) ≡ −v on Uδ,δ′ (0) (this is what we really need proving Theorem 6.1)

than to construct an estimate of the modulus ĈF .

Example 8.2. Let us modify slightly the previous example, taking arbitrary v ∈ H
with ‖v‖ = 1; 0 < θ1, θ2 < 1; 1 < α < 2 and setting

C := {x ∈ H : 〈v, x〉 ≤ θ1 ‖x‖α} ;
F := {ξ ∈ H : 〈v, ξ + v〉 ≥ θ2 ‖ξ + v‖α} .

Clearly, F is convex closed bounded with 0 ∈ intF , and C is closed admitting at each
point x ∈ ∂C, x 6= 0, the unique unit normal vector directed as∇f (x) = v−αθ1 x

‖x‖2−α

(here f (x) := 〈v, x〉−θ1 ‖x‖α), which is also continuously extendable up to the origin
(we have ∇f (0) = v). So that Nl

C (x) = ∇f (x)R+, x ∈ ∂C, and the boundary of C
is smooth. However, Np

C (0) = {0} (as one easily verifies there is no point except the
origin itself whose metric projection onto C is 0), while N

p
C (x) = Nl

C (x) at other
points x ∈ ∂C. Therefore, C is not ϕ-convex, and the condition (B ) can not be
applied (at least in a neighbourhood of the point 0).

Let us verify the hypothesis (A). First of all, F is uniformly strictly convex (w.r.t. the
whole ∂F 0). It is even strictly convex of the second order with the curvature uniformly
bounded from below (γ-strictly convex). Indeed, for the point ξ̄ := −v ∈ ∂F setting
ξ̄
∗
:= −v/ρF 0 (−v) = −v we directly have

ĈF
(
r, ξ̄, ξ̄

∗)
= θ2r

α ≥ θ2

(‖F‖+ 1)2−α
r2, r > 0, (85)

while for each fixed ξ ∈ ∂F , ξ 6= −v, and η ∈ F close to ξ by the second order Taylor
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formula (see, e.g, [6, p. 75]) we obtain:

‖η + v‖α − ‖ξ + v‖α − α

‖ξ + v‖2−α
〈η − ξ, ξ + v〉

= α

1∫

0

[
‖η − ξ‖2

‖ητ + v‖2−α
− (2− α)

〈ητ + v, η − ξ〉2

‖ητ + v‖4−α

]
(1− τ) dτ

≥ α (α− 1) ‖η − ξ‖2
1∫

0

1− τ

‖ητ + v‖2−α
dτ ≥ α (α− 1) ‖η − ξ‖2

2 (‖F‖+ 1)2−α
, (86)

where ητ := τη + (1− τ) ξ, τ ∈ [0, 1]. Observe that NF (ξ) = ∇g (ξ)R+ where
g (ξ) := θ2 ‖ξ + v‖α − 〈v, ξ + v〉, and as follows from (86)

〈ξ − η,∇g (ξ)〉 =
〈
ξ − η, αθ2

ξ + v

‖ξ + v‖2−α
− v

〉

≥ θ2

[
‖η + v‖α − ‖ξ + v‖α − α

‖ξ + v‖2−α
〈η − ξ, ξ + v〉

]

≥ θ2α (α− 1)

2 (‖F‖+ 1)2−α
‖η − ξ‖2 .

Since ‖∇g (ξ)‖ ≤ 1, from this inequality and from (11) we obtain that

ĈF (r, ξ, ξ∗) ≥ θ2α (α− 1)

2 ‖F‖ (‖F‖+ 1)2−α
r2, r > 0,

where ξ∗ := ∇g (ξ) /ρF 0 (∇g (ξ)). Recalling (85) we conclude that F is γ-strictly
convex with some γ > 0.

In order to verify the hypothesis (A1) let us fix an arbitrary point x ∈ ∂C, x 6= 0,
with the proximal normal vector ∇f (x) and determine a (unique) ξ ∈ ∂F such
that −∇f (x) is normal to F at ξ. Since NF (ξ) = ∇g (ξ)R+, solving the equation
−∇f (x) = λ∇g (ξ), λ > 0, we find immediately that λ = 1 and

ξ =

(
θ1
θ2

) 1

α−1

x− v.

Thus, the (single-valued) mapping x 7→ JF (−N
p
C (x) ∩ ∂F 0) is Lipschitz continuous

on Cδ (0) with δ > 0 arbitrarily large, and the Lipschitz constant is L =
(
θ1
θ2

) 1

α−1

.

Applying now Theorem 6.1 we can affirm that πFC (·) is a neighbourhood retraction
defined on the open set (see (50))

U =

{
z ∈ H : TF

C (z) <

(
θ2
θ1

) 1

α−1

}
.

The following example (in the space H = R2 for the sake of clarity) illustrates the
second order condition (balance between the curvatures).
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Example 8.3. Let F :=
{
(ξ1, ξ2) ∈ R2 : |ξ2| ≤ 1− ξ41, −1 ≤ ξ1 ≤ 1

}
and C :=

{(x1, x2) ∈ R2 : x1 ≤ x22}.

Observe that F is closed convex bounded with 0 ∈ intF , and C is closed, ϕ-convex
with

ϕ (x) =
1√

1 + 4x22
, x = (x1, x2) ∈ ∂C, (87)

and has smooth boundary with the unit normal vector

n (x) =
1√

1 + 4x22
(1,−2x2) , x ∈ ∂C.

Let us estimate the curvature {F (ξ, ξ∗) for an arbitrary dual pair (ξ, ξ∗), ξ ∈ JF (ξ∗),
ξ∗ ∈ ∂F 0. Setting ξ = (ξ1, ξ2) ∈ R × R, by the symmetry reason we can consider,
clearly, only the case when ξ2 ≥ 0 (and ξ1 < 0). If ξ2 > 0 then the (unique) normal
vector ξ∗ to F at ξ such that ρF 0 (ξ∗) = 1 is given by

ξ∗ =
1

1 + 3ξ41

(
4ξ31, 1

)
.

From Definition 3.2 after the simple transformations we have

ĈF (r, ξ, ξ∗) =
1

1 + 3ξ41
inf
{
(η1 − ξ1)

2 [(η1 − ξ1)
2 + 4ξ1 (η1 − ξ1) + 6ξ21

]
:

‖ξ − η‖ ≥ r, −1 ≤ η1 ≤ 1
}
, r > 0. (88)

In virtue of the inequality

‖ξ − η‖ ≤ |η1 − ξ1|
√

1 +
(
1 + |ξ1|+ |ξ1|2 + |ξ1|3

)2
, (89)

it follows (see (88)) that

ĈF (r, ξ, ξ∗)

r2
≥ 1(

1 + 3ξ41
)
Σ2 (ξ1)

[
r2

Σ2 (ξ1)
+ 4r

ξ1
Σ (ξ1)

+ 6ξ21

]
, (90)

where Σ (ξ1) :=

√

1 +

(
3∑

k=0

|ξ1|k
)2

. Notice that the right-hand side in (90) is con-

tinuous in ξ. Therefore, in order to obtain an estimate of the scaled curvature from
below it is enough only to pass to infimum in (90) for r > 0 (see (23)), while for the
"true" (local) curvature we let r → 0+ (see (14)). Thus

{F (ξ, ξ∗) =
γF (ξ, ξ∗)

‖ξ∗‖ ≥ K (ξ1) :=
2ξ21√

1 + 16ξ61Σ
2 (ξ1)

, (91)

and {F (ξ, ξ∗) ≥ 3K (ξ1). In the same way (employing the inequality ‖ξ − η‖ ≥
|ξ1 − η1| instead of (89)) we find upper bounds of the curvatures, which are of the
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order O
(
ξ21
)
as well. In particular, both {F and {F are equal to zero at the points

(0,±1). Therefore, the set F is not γ-strictly convex, and the results of [15] can not
be applied here.

However, there is a local uniform rotundity along the boundary of C that permits us to
apply Theorem 7.3(ii). To be more precise let us estimate the respective curvatures.
Considering x = (x1, x2) ∈ ∂C with |x2| ≥ 1/8 we see that for the vector

v (x) := − n (x)

ρF 0 (−n (x))
=

8 |x2|1/3

3 + 16x
4/3
2

(−1, 2x2) (92)

belonging to ∂F 0 there is a unique ξ = (ξ1, ξ2) ∈ JF (v (x)). Namely,

ξ1 = − 1

2 |x2|1/3
∈ [−1, 0[ and ξ2 =

(
1− ξ41

)
sgn (x2) . (93)

Setting for simplicity Σ2 (ξ1) ≤ 17, from (91) we have at this point:

{F (ξ, v (x)) ≥ 1

17

|x2|1/3√
1 + 4x22

. (94)

Otherwise (if |x2| < 1/8) the vector v (x) belongs to the interior of the normal cone

NF (−1, 0) =
{
(v1, v2) ∈ R2 : v1 ≤ −4 |v2|

}
, (95)

and the second order strict convexity also follows. In this case the curvature {F
at ξ̄ = (−1, 0) w.r.t. the vector v (x) is equal to +∞, while {F

(
ξ̄, v (x)

)
is a finite

positive number depending on the size of both sets F and F 0, and on the proximity of
v (x) to the boundary ∂NF

(
ξ̄
)
. To obtain a precise estimate we can proceed, e.g., as

in the proof of Theorem 7.5. Namely, let us denote by d (x) the minimal distance of
v (x) (see (92)) from e± := (−1,±1/4) that are extreme vectors among those ξ∗ ∈ ∂F 0

with JF (ξ∗) = ξ̄. Therefore, the function ξ∗ 7→ ∇2ρF 0 (ξ∗) is Lipschitz continuous
(it is identical zero) on ∂F 0 ∩

(
v (x) + d (x)B

)
. Substituting

∥∥∇2ρF 0 (ξ∗)
∥∥
F 0

= 0;
β (δ, v (x)) = d (x) (see (35) and Remark 7.6) and choosing a suitable δ > 0, from the
inequality (79) we obtain

{F
(
ξ̄, v (x)

)
≥ d (x)

4 ‖F‖2 ‖F 0‖ ‖v (x)‖
, (96)

where ‖F‖ and ‖F 0‖ can be found through the radii of two balls: one containing
the set F and another contained in it. In our case, for instance, ‖F‖ ≤ 7/6 and
‖F 0‖ ≤ 9/8.

Summarizing everything said above, we affirm that the time-minimum projection
πFC (·) is well-posed locally (near C), and, furthermore, the estimates (94) and (96)
together with (87) allow us to evaluate the radius r (x) of a ball centred at a given
x ∈ ∂C where such well-posedness takes place. In particular (see (59)), r (x) =

O
(
|x2|1/3

)
as |x2| → ∞.
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Notice that in this example the mapping x 7→ JF (v (x)) is locally Lipschitzean, and
so we are able to apply the condition (A) as well (see Theorem 7.4), which gives even

a larger radius r (x) = O
(
|x2|4/3

)
as |x2| → ∞ (see (50) and (93)).

In the conclusion let us consider the mixed case (when there are points of both
types: either satisfying the condition (B ) only, or the condition (A)) emphasizing
the situation when the boundedness of the curvature from below should be verified
only in a neighbourhood of a given point x0 ∈ ∂C but not at x0 itself.

Example 8.4. Let us define two continuous real functions f : [−1, 1] → R+ and
g : R+ → R as follows:

f (t) :=

{
1− t4 if t /∈

[
− 1

3
√
3
,− 1

3
√
5

]
;

affine otherwise,

g (t) :=






1
5
t− 1

100
if 0 ≤ t ≤ 1

10
;

t2 if 1
10
< t < 3

4
;(

t− 1
2

)2
+ 1

2
if t ≥ 3

4
.

Set

F :=
{
(ξ1, ξ2) ∈ R2 : |ξ2| ≤ f (ξ1) , −1 ≤ ξ1 ≤ 1

}
;

C :=
{
(x1, x2) ∈ R2 : x1 ≤ g (|x2|)

}
.

In this modification of the previous example the boundary ∂F has two affine pieces,
and the target set is neither ϕ-convex (because it has an "inward corner" point
a =

(
− 1

100
, 0
)
), nor smooth (besides of the point a it has multiple normals at b± =(

9
16
,±3

4

)
).

For each x0 ∈ ∂C, x0 6= a, b±, we may proceed as in Example 8.3 since at these
points both conditions (A) and (B ) hold. If x0 = a then we can not apply (B )
because the boundedness of ψC (·) near a fails. However, for each x ∈ ∂C close
to a the (nontrivial) cone −N

p
C (x) is contained in the interior of NF (−1, 0). In

particular, JF (−N
p
C (x) ∩ ∂F 0) ≡ (−1, 0), and the condition (A) follows (compare

with Example 8.1).

Let now x0 = b+ (the symmetric point is considered similarly). Although at this
point ∂C is not smooth (the normal cone is generated by two noncolinear vectors
e1 = (1,−1/2) and e2 = (1,−3/2)), the function ψC (·) is upper bounded in a neigh-
bourhood of x0, namely,

ψC (x, v) ≤ max





1√

1 + 4x22
,

1√
1 + (2x2 − 1)2




 , (97)

x = (x1, x2) ∈ Cδ (x0), v ∈ N
p
C (x), for some δ > 0. Notice that JF

(
− e1
ρ
F0 (−e1)

)
and

JF

(
− e2
ρ
F0 (−e2)

)
are different, hence the condition (A1) is violated. Also we have no
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strict convexity of the set F with respect to the vector −e/ρF 0 (−e), where

e :=

((
1

3

)4/3

−
(
1

5

)4/3

,

(
1

5

)1/3

−
(
1

3

)1/3
)

belongs to the interior of Np
C (b+), impeding to apply the condition (B ′

2). Neverthe-
less, for each x ∈ Cδ (b

+)� {b+} the (unique) unit normal vector n (x) to C (also
belonging to N

p
C (b+)) is far enough from e/ ‖e‖, and F is strictly convex of the sec-

ond order w.r.t. v (x) := −n (x) /ρF 0 (−n (x)). Moreover, the curvature is uniformly
bounded from below, and the hypothesis (B 2) holds. In such a way constructing
a neighbourhood of x0, where π

F
C (·) is well defined, we may take into account bal-

ance between (97) at the points x ∈ ∂C near x0 and the curvature of F only at

(ξ1, ξ2) ∈ ∂F with ξ1 ∈
[
−
(
1
2

)1/3
,−
(
1
6

)1/3]
, which are close to the end-points of the

respective arc.
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