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Under mild conditions on a polyconvex function W : R2×2 → R, its largest convex representative,
known as the Busemann representative, may be written as the supremum over all affine functions
φ : R5 → R satisfying φ(ξ,det ξ) ≤ W (ξ) for all 2 × 2 matrices ξ. In this paper, we construct an
example of a polyconvex W : R2×2 → R whose Busemann representative is, on an open set, strictly
larger than the supremum of all affine functions φ as above and which also satisfy φ(ξ0,det ξ0) =
W (ξ0) for at least one 2× 2 matrix ξ0.
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1. Introduction

Polyconvexity was first identified by Morrey in [6] and was later developed by Ball
[1] in connection with nonlinear elasticity. A function W : RN×n → R ∪ {∞} is
polyconvex if there exists a convex function ϕ, said to be a convex representative of
W , such that

W (ξ) = ϕ(R(ξ))

for all real N × n matrices ξ, where R(ξ) is the list of minors of ξ written in some
fixed order. Busemann et al. pointed out in [4] that there is a largest such convex
representative, which, henceforth, we refer to as the Busemann representative and
denote by ϕW .

One of the broader aims of the series of papers [4] Busemann et al. was to study
the restriction of convex functions to non-convex sets. Ball observed in [1] that
polyconvexity fits into this framework, and the relationship between the two has
since been explored further in [3].

Busemann et al. show in [4] that provided the polyconvex function W is bounded
linearly below and real-valued then the Busemann representative can be expressed as

ϕW (X) = inf

{

d+1
∑

i=1

λjW (ξj) : λj ≥ 0,
d+1
∑

j=1

λj = 1 and
d+1
∑

j=1

λjR(ξj) = X

}

. (1)
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Here, d is the least integer such that R(ξ) ∈ Rd for all ξ ∈ RN×n and X lies in Rd.
They also show that

ϕW (X) = sup{a(X) : a ∈ L}, (2)

where
L = {φ affine : φ(R(ξ)) ≤ W (ξ) ∀ ξ ∈ RN×n}.

The hypothesis that W is bounded linearly below ensures that there is at least one
element in L. The graph of any φ ∈ L is a hyperplane, so (2) states that ϕW is built
from hyperplanes which lie below the set GW := {(R(ξ),W (ξ)) : ξ ∈ RN×n}.

The main result in this short note is that there is no redundancy in the expression
(2) in the case N = n = 2. To be precise, one cannot replace L in (2) by the smaller
class T , where

T = {φ ∈ L : ∃ ξ ∈ R2×2 s.t. W (ξ) = φ(R(ξ))}.

Thus T represents the collection of supporting hyperplanes to GW which meet GW in
at least one point. We define

ϕτ (X) = sup{a(X) : a ∈ T }.

Note that ϕW ≥ ϕτ in view of the inclusion T ⊂ L. In the next section we construct
a real-valued, non-negative polyconvex W to which (2) applies and which is such that
ϕW > ϕτ on a large set. This result is surprising since the set {R(ξ) : ξ ∈ R2×2} is
large: its convex hull is the whole of R5. (For a proof of this fact see [1].) Certainly
one might expect ϕW = ϕτ to be the case under extra assumptions, which could
include super-quadratic growth of W , for example. See [3] for further details.

The result of this note is relevant to [3, Lemma 2.4], where the structure of ϕW is
described. We present a version of the lemma below for the reader’s benefit; for the
proof consult [3].

Lemma 1.1 ([3, Lemma 2.4]). Let S = {R(ξ) : ξ ∈ RN×n} and suppose W :
RN×n → R is polyconvex. Define ϕW by (1). Then for each X ∈ Rd either one or

both of the following hold:

(a) there exists Y ∈ S such that ϕW |[Y,X] is affine;

(b) there exists a unit vector e ∈ Rd such that for all Y ∈ Rd and all t ∈ R the

function t 7→ ϕW (Y + te) is constant.

The dichotomy can be sharp in the sense that (a) and not (b) can hold, as easy
examples show, and that (b) and not (a) can hold, which is a consequence of the
counterexample constructed below. It is shown in [3] that when (a) holds the dif-
ferentiability of ϕW on S implies that ϕW is the unique convex representative. The
counterexample below shows that this result is false when (b) holds and (a) does not.

1.1. Notation

We do not distinguish between the inner product of two matrices and the inner
product of two vectors in R5, using · for both. Here, R5 is shorthand for R2×2 ×R,
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and in this case the inner product of (ξ, s) with (η, t) is given by

(ξ, s) · (η, t) = ξ · η + st,

where ξ, η are two matrices in R2×2, s, t ∈ R and

ξ · η = tr(ξTη).

Finally, if a, b ∈ R2 then the 2× 2 matrix a⊗ b has (i, j)−entry aibj.

2. Construction of W such that ϕW > ϕτ on a large set

We restrict attention to polyconvex functions defined on R2×2, so that R(ξ) =
(ξ, det ξ) for each 2× 2 matrix ξ. To begin with we recall some basic facts about the
subgradients of ϕW (for the definition of the subgradient of a convex function see [7]).
When W : R2×2 → R is polyconvex and differentiable on an open set U ⊂ R2×2 it
can be shown that for each ξ ∈ U

∂ϕW (R(ξ)) = {(DW (ξ)− ρcof ξ, ρ) : ρmin(ξ) ≤ ρ ≤ ρmax(ξ)}, (3)

where the functions ρmax, ρmin : R
2×2 → R are defined by

ρmax(ξ) = inf

{

W (η + ξ)−W (ξ)−DW (ξ) · η

det η
: det η > 0

}

(4)

ρmin(ξ) = sup

{

W (η + ξ)−W (ξ)−DW (ξ) · η

det η
: det η < 0

}

. (5)

The proof of these assertions can be found in [3, Section 2]. Thus when ξ ∈ U , a
sufficient condition for the differentiability of ϕW , and hence of ϕτ (because ϕW ≥ ϕτ

on R5, and because ϕW and ϕτ agree on S—see [2, Corollary 2.5]), at R(ξ) is that
there exists a number ρ(ξ) such that

W (ξ + η) ≥ W (ξ) +DW (ξ) · η + ρ(ξ) det η

for all 2× 2 matrices η.

Now let [ξ] = ξ − ξ11e1 ⊗ e1, where e1 is the first canonical basis vector in R2, and
define W (ξ) = |([ξ], det ξ−y)|, where |z| is the usual Euclidean norm inR5 and where
y is a fixed positive number. It is easy to see that W is polyconvex and differentiable
away from the set {ξ : W (ξ) = 0}, which, since y 6= 0, is empty. With the above
remarks in mind the following proposition shows that ϕW is differentiable at all points
R(ξ) in S.

Proposition 2.1. Let ξ ∈ R2×2 and let W be as above. Then for all η

W (ξ + η)−W (ξ)−DW (ξ) · η ≥ ρ(ξ) det η,

where ρ(ξ) = (det ξ−y)
W (ξ)

.
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Proof. The inequality amounts to proving

|([ξ + η], det(ξ + η)− y)| ≥
1

W (ξ)
([ξ + η] · [ξ] + (det ξ − y)(det(ξ + η)− y)).

But this follows directly from the Cauchy-Schwarz inequality.

Remark 2.2. The choice of ρ(ξ) in Proposition 2.1 is by analogy with the following

example. Suppose f(ξ) = |R(ξ)| and note that an obvious convex representative of f

is ϕ(ξ, δ) = |(ξ, δ)|. Differentiating this with respect to δ, evaluating at R(ξ), where
ξ 6= 0, and referring to (3) gives a candidate ρ(ξ) = det ξ

f(ξ)
.

Now consider the line L := Span{e1 ⊗ e1}. Clearly det l = 0 for all l ∈ L. Since
D2 det(ξ)[η, η] = 2 det η for all 2 × 2 matrices ξ and η, we can assume that the
curvature of the graph of the determinant (i.e., the curvature of S) is bounded above
uniformly on the set {l + η : l ∈ L, |η| < 1}. In particular, we deduce that for
sufficiently small ǫ > 0 the (convex) tube

Tǫ := {(l + η, y) : l ∈ L, |η| ≤ ǫ},

which lies in R5, satisfies dist (Tǫ,S) > 0. With W as above it is claimed that
ϕW > ϕτ on the tube Tǫ. Figure 2.1 below is intended as an analogy which may help
the reader to visualize the idea behind the proof of Proposition 2.3.

Proposition 2.3. Let W (ξ) = |([ξ], det ξ−y)| and assume ǫ has been chosen so that

the tube Tǫ does not meet S. Then ϕW (X) > ϕτ (X) for all X ∈ Tǫ.

Proof. Recall that ϕτ (X) = sup{a(X) : a ∈ T }, where T consists of all those affine
functions a satisfying a(ξ, det ξ) ≤ W (ξ) for all ξ ∈ R2×2, and a(ξ0, det ξ0) = W (ξ0)
for at least one ξ0. Suppose aξ0 is such that aξ0(ξ0, det ξ0) = W (ξ0). Standard argu-
ments from convex analysis together with the differentiability of ϕW (Proposition 2.1
above) at all (ξ0, det ξ0) show that the gradient of the affine function aξ0 at (ξ0, det ξ0)
must be DϕW (ξ0, det ξ0). Since aξ0 is affine, and in view of (3), it follows that for all
X in R5

aξ0(X) = W (ξ0) +DϕW (ξ0, det ξ0) · (X − (ξ0, det ξ0))

= ([ X], X ′ − y)) ·
([ξ0], det ξ0 − y)

W (ξ0)
.

Here we have used the notation X = ( X,X ′) ∈ R2×2 ×R. Thus

ϕτ (X) = sup

{

([ X], X ′ − y)) ·
([ξ0], det ξ0 − y)

W (ξ0)
: ξ0 ∈ R2×2

}

. (6)

Provided we can find ξ0 such that ([ X], X ′ − y)) and ([ξ0], det ξ0 − y) are parallel, or
asymptotically parallel (which will be made clear below), then it will follow essentially
from the Cauchy-Schwarz inequality that ϕτ (X) = |([ X], X ′ − y))|. There are three

cases to consider, and in doing so we shall refer to the unit vector ([ξ0],det ξ0−y)
W (ξ0)

by

u(ξ0).
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Figure 2.1: A graphical interpretation of the constructions of W , ϕW and ϕτ . S can
be thought of as the union of the two curves in the x− y plane, the graph of ϕW as
the union of the plane ABCD together with the two sloping planes it meets at AD
and BC, and the graph of ϕτ as the union of the two sloping planes. The function
W is represented by the restriction of ϕW to S. Clearly, ϕW > ϕτ in the projection
of ABCD in the x− y plane.

(i) [ X] = 0. Note that u(0) = (0,−1), which gives ϕτ (X) = |X ′−y| provided y > X ′.
Otherwise note that u(kQ) → (0, 1) as k → ∞ whenever Q is a rotation matrix (i.e.
Q ∈ SO(2)), which implies u(kQ) · (0, X ′−y) → |X ′−y| whenever X ′ > y. If y = X ′

then ϕτ (X) = |X ′ − y| trivially.

(ii) X22 6= 0. Set ξ0 = [ X] and consider ξµ = ξ0 + µe1 ⊗ e1. We require det ξµ = X ′.

But this can easily be satisfied by an appropriate choice of µ, and on using X22 6= 0
in det ξµ = det ξ0 + µ X22.

(iii) [ X] 6= 0, X22 = 0. As before, choose ξ0 to satisfy ξ0 = [ X] and let ξµ,ν =
ξ0 + µe1 ⊗ e1 + νe2 ⊗ e2, where µ and ν are parameters. Now we seek µ and ν such
that det ξµ,ν = X ′, that is,

µν = X ′ + X12
X21. (7)

But [ξµ,ν ] = [ X] + νe2 ⊗ e2, and hence

u(ξµ,ν) →
([ X], X ′ − y)

|([ X], X ′ − y)|

provided µ → ∞ and ν → 0 consistent with (7).

Thus in each case we have ϕτ (X) = |([ X], X ′ − y)|. To conclude the proof note that
W (ξ) can be interpreted as the distance of the point (ξ, det ξ) to the centre of the
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tube Tǫ. The construction of Tǫ above therefore implies that W (ξ) ≥ ǫ for all 2 × 2
matrices ξ. Hence ϕW (X) ≥ ǫ for all X, while ϕτ (X) < ǫ for all X inside the tube
Tǫ.

With reference to the statement of [3, Lemma 2.4] given in the introduction, we
remark that because alternative (a) of [3, Lemma 2.4] fails for points X in the tube
Tǫ it must be that (b) holds for such points. It was shown in [3, Proposition 3.5] that
if alternative (a) held at all X and if ϕW was differentiable on S then ϕW was the
unique convex representative of W . This result is clearly false when alternative (b)
holds at some X, even when, as we have seen above, ϕW is differentiable on S.
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