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1. Introduction

Let X be a real Banach space and X∗ its topological dual. We use the notation π
and π∗ for the duality product in X ×X∗ and in X∗ ×X∗∗, respectively:

π : X ×X∗ → R, π∗ : X
∗ ×X∗∗ → R

π(x, x∗) = 〈x, x∗〉, π∗(x
∗, x∗∗) = 〈x∗, x∗∗〉. (1)

The norms on X, X∗ and X∗∗ will be denoted by ‖ · ‖. We also use the notation R̄

for the extended real numbers:

R̄ = {−∞} ∪ R ∪ {∞}.

Whenever necessary, we will identify X with its image under the canonical injection
of X into X∗∗.

A point to set operator T : X ⇉ X∗ is a relation on X ×X∗:

T ⊂ X ×X∗
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and T (x) = {x∗ ∈ X∗ | (x, x∗) ∈ T}. An operator T : X ⇉ X∗ is monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ T

and it is maximal monotone if it is monotone and maximal (with respect to the
inclusion) in the family of monotone operators of X into X∗. The conjugate of f is
f ∗ : X∗ → R̄,

f ∗(x∗) = sup
x∈X

〈x, x∗〉 − f(x).

Note that f ∗ is always convex and lower semicontinuous.

The subdifferential of f is the point to set operator ∂f : X ⇉ X∗ defined at x ∈ X
by

∂f(x) = {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈y − x, x∗〉, ∀y ∈ X}.
For each x ∈ X, the elements x∗ ∈ ∂f(x) are called subgradients of f . The concept of
ε-subdifferential of a convex function f was introduced by Brøndsted and Rockafellar
[4]. It is a point to set operator ∂εf : X ⇉ X∗ defined at each x ∈ X as

∂εf(x) = {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈y − x, x∗〉 − ε, ∀y ∈ X},

where ε ≥ 0. Note that ∂f = ∂0f and ∂f(x) ⊂ ∂εf(x), for all ε ≥ 0.

A convex function f : X → R̄ is said to be proper if f > −∞ and there exists a point
x ∈ X for which f(x) < ∞. Rockafellar proved that if f is proper, convex and lower
semicontinuous, then ∂f is maximal monotone on X [18]. If f : X → R̄ is proper,
convex and lower semicontinuous, then f ∗ is proper and f satisfies the Fenchel-Young
inequality: for all x ∈ X, x∗ ∈ X∗,

f(x) + f ∗(x∗) ≥ 〈x, x∗〉, f(x) + f ∗(x∗) = 〈x, x∗〉 ⇐⇒ x∗ ∈ ∂f(x). (2)

Moreover, in this case, ∂εf (and ∂f = ∂0f) may be characterized using f ∗:

∂f(x) = {x∗ ∈ X∗ | f(x) + f ∗(x∗) = 〈x, x∗〉},
∂εf(x) = {x∗ ∈ X∗ | f(x) + f ∗(x∗) ≤ 〈x, x∗〉+ ε}.

(3)

The subdifferential and the ε-subdifferential of the function 1
2
‖ · ‖2 will be of special

interest in this paper, and will be denoted by J : X ⇉ X∗ and Jε : X ⇉ X∗

respectively

J(x) = ∂
1

2
‖x‖2, Jε(x) = ∂ε

1

2
‖x‖2.

Using f(x) = (1/2)‖x‖2 in (3), it is trivial to verify that

J(x) =

{

x∗ ∈ X∗ | 1

2
‖x‖2 + 1

2
‖x∗‖2 = 〈x, x∗〉

}

=
{

x∗ ∈ X∗ | ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉
}

and

Jε(x) =

{

x∗ ∈ X∗ | 1
2
‖x‖2 + 1

2
‖x∗‖2 ≤ 〈x, x∗〉+ ε

}

.
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The operator J is widely used in Convex Analysis in Banach spaces and it is called the
duality mapping of X. The operator Jε was introduced by Gossez [11] to generalize
some results concerning maximal monotonicity in reflexive Banach spaces to non-
reflexive Banach spaces. It was also used in [10] to the study of locally maximal
monotone operators in non-reflexive Banach spaces.

If X is a real reflexive Banach space and T : X ⇉ X∗ is monotone, then T is maximal
monotone if and only if

R(T (·+ z0) + J) = X∗, ∀z0 ∈ X.

We shall prove a similar result for a class of maximal monotone operators in non-
reflexive Banach spaces.

2. Basic definitions and theory

In this section we present the tools and results which will be used to prove the main
results of this paper.

For f : X → R̄, conv f : X → R̄ is the largest convex function majorized by f , and
cl f : X → R̄ is the largest lower semicontinuous function majorized by f . It is trivial
to verify that

cl f(x) = lim inf
y→x

f(y), f∗ = (conv f)∗ = (cl conv f)∗.

The functions cl f and cl conv f are usually called the (lower semicontinuous) closure
of f and the convex lower semicontinuous closure of f , respectively.

Fitzpatrick proved constructively that maximal monotone operators are representable
by convex functions. Let T : X ⇉ X∗ be maximal monotone. The Fitzpatrick

function of T [9] is ϕT : X ×X∗ → R̄

ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x− y, y∗ − x∗〉+ 〈x, x∗〉 (4)

and Fitzpatrick family associated with T is

FT =







h ∈ R̄
X×X∗

∣

∣

∣

∣

∣

∣

h is convex and lower semicontinuous
〈x, x∗〉 ≤ h(x, x∗), ∀(x, x∗) ∈ X ×X∗

(x, x∗) ∈ T ⇒ h(x, x∗) = 〈x, x∗〉







. (5)

Theorem 2.1 ([9, Theorem 3.10]). Let X be a real Banach space and T : X ⇉

X∗ be maximal monotone. Then for any h ∈ FT (5)

(x, x∗) ∈ T ⇐⇒ h(x, x∗) = 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

and ϕT (4) is the smallest element of the family FT .

Fitzpatrick’s results described above were rediscovered by Mart́ınez-Legaz and Théra
[15], and Burachik and Svaiter [7]. Since then, this area has been the subject of
intense research.
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The indicator function of A ⊂ X is δA : X → R̄,

δA(x) :=

{

0, x ∈ A

∞, otherwise.

Using the indicator function we have another expression for Fitzpatrick function:

ϕT (x, x
∗) = (π + δT )

∗ (x∗, x).

The supremum of Fitzpatrick family is the S-function, defined and studied by Bu-
rachik and Svaiter in [7], ST : X ×X∗ → R̄

ST (x, x
∗) = sup

{

h(x, x∗)

∣

∣

∣

∣

h : X ×X∗ → R̄ convex lower semicontinuous
h(x, x∗) ≤ 〈x, x∗〉, ∀(x, x∗) ∈ T

}

or, equivalently (see [7, Eq. (35)], [6, Eq. 29])

ST = cl conv(π + δT ). (6)

Some authors [2, 21, 3] attribute the S-function to [16] although this work was sub-
mitted after the publication of [7]. Moreover, the content of [7], and specifically the
ST function, was presented on Erice workshop on July 2001, by R. S. Burachik [5].
A list of the talks of this congress, which includes [17], is available on the www1. It
will also be noted that [6], the preprint of [7], was published (and available on www)
at IMPA preprint server in August 2001.

Burachik and Svaiter also proved that the family FT is invariant under the mapping

J : R̄X×X∗ → R̄
X×X∗

, J h(x, x∗) = h∗(x∗, x). (7)

If T : X ⇉ X∗ is maximal monotone, then [7]

J(FT ) ⊂ FT , J ST = ϕT .

In particular, for any h ∈ FT ,

h(x, x∗) ≥ 〈x, x∗〉, h∗(x∗, x) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗. (8)

A partial converse of this fact was proved in [8]: in a reflexive Banach space, if h is
convex, lower semicontinuous and satisfy (8) then

T := {(x, x∗) | h(x, x∗) = 〈x, x∗〉}

is maximal monotone and h ∈ FT [8]. In order to extend this result to non-reflexive
Banach spaces, Marques Alves and Svaiter considered an extension of condition (8)
to non-reflexive Banach spaces:

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗,
h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

(9)

We shall prefer the synthetic notation h ≥ π, h∗ ≥ π∗ for the above condition. The
following result will be fundamental in our analysis
1http://www.polyu.edu.hk/∼ama/events/conference/EriceItaly-OCA2001/Abstract.html
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Theorem 2.2 ([12, Theorem 3.4]). Let h : X × X∗ → R̄ be a convex and lower

semicontinuous function. If

h ≥ π, h∗ ≥ π∗

and h(x, x∗) < 〈x, x∗〉+ ε, then for any λ > 0 there exists xλ, x
∗
λ such that

h(xλ, x
∗
λ) = 〈xλ, x

∗
λ〉, ‖xλ − x‖ < λ, ‖x∗

λ − x∗‖ < ε/λ.

Using Theorem 2.2, the authors proved [12] that condition (9) ensures that h rep-
resents a maximal monotone operator. Here we will be interested also in the case
where the lower semicontinuity assumption is removed.

Theorem 2.3 ([12, Theorem 4.2, Corollary 4.4]). Let h : X × X∗ → R̄ be a

convex function. If

h ≥ π, h∗ ≥ π∗

then

T = {(x, x∗) ∈ X ×X∗ | h∗(x∗, x) = 〈x, x∗〉}
is maximal monotone and satisfy the restricted Brøndsted-Rockafellar property. Ad-

ditionally, if h is also lower semicontinuous, then

T = {(x, x∗) ∈ X ×X∗ | h(x, x∗) = 〈x, x∗〉}.

We will need the following immediate consequence of the above theorem:

Corollary 2.4. Let h : X ×X∗ → R̄. If

convh ≥ π, h∗ ≥ π∗

then

T = {(x, x∗) ∈ X ×X∗ | h∗(x∗, x) = 〈x, x∗〉}
= {(x, x∗) ∈ X ×X∗ | Jh(x, x∗) = 〈x, x∗〉}

is maximal monotone,

T = {(x, x∗) ∈ X ×X∗ | cl convh(x, x∗) = 〈x, x∗〉}

cl convh ∈ FT and Jh ∈ FT , where Jh(x, x∗) = h∗(x∗, x).

Proof. As the duality product is continuous in X × X∗, cl convh ≥ π. As conju-
gation is invariant under the conv operation and the (lower semicontinuous) closure,
(cl convh)∗ = h∗ ≥ π∗. To end the proof, apply Theorem 2.3 to cl convh, observe
that Jh is convex, lower semicontinuous, Jh ≥ π and use definition (5).

In a non-reflexive Banach Space X, if T : X ⇉ X∗ is maximal monotone and for
some h ∈ FT it holds that h ≥ π, h∗ ≥ π∗, then T behaves similarly to a maximal
monotone operator in a reflexive Banach space. A natural question is: what is the
class of maximal monotone operators (in non-reflexive Banach spaces) which have
some function in Fitzpatrick family satisfying (9)? To answer this question, first let
us recall the definition of maximal monotone operators of type NI [20].
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Definition 2.5. A maximal monotone operator T : X ⇉ X∗ is of type NI if

inf
(y,y∗)∈T

〈y∗ − x∗, x∗∗ − y〉 ≤ 0, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

In [22] it was observed that if T is a maximal monotone operators of type NI, then
ST satisfies condition (9).

Mart́ınez-Legaz and Svaiter defined [14] (with a different notation), for h : X×X∗ →
R̄ and (x0, x

∗
0) ∈ X ×X∗

h(x0,x∗

0
) : X ×X∗ → R̄,

h(x0,x∗

0
)(x, x

∗) := h(x+ x0, x
∗ + x∗

0)− [〈x, x∗
0〉+ 〈x0, x

∗〉+ 〈x0, x
∗
0〉].

(10)

The operation h 7→ h(x0,x∗

0
) preserves many properties of h, as convexity, lower semi-

continuity and can be seen as the action of the group (X×X∗,+) on R̄
X×X∗

, because

(

h(x0,x∗

0
)

)

(x1,x∗

1
)
= h(x0+x1,x∗

0
+x∗

1
).

Moreover
(

h(x0,x∗

0
)

)∗
= (h∗)(x∗

0
,x0)

,

where the rightmost x0 is identified with its image under the canonical injection of
X into X∗∗. Therefore,

1. h ≥ π ⇐⇒ h(x0,x0) ≥ π,

2.
(

h(x0,x∗

0
)

)∗ ≥ π∗ ⇐⇒ (h∗)(x∗

0
,x0)

≥ π∗,

We shall need the following theorem. Its proof is heavily based on these nice properties
of the map h 7→ h(x0,x∗

0
) and it is presented on the Appendix A.

Theorem 2.6 ([13, Theorem 1.2]). Let T : X ⇉ X∗ be maximal monotone. The

following conditions are equivalent

1. T is of type NI,

2. there exists h ∈ FT such that h ≥ π and h∗ ≥ π∗,

3. for all h ∈ FT , h ≥ π and h∗ ≥ π∗,

4. there exists h ∈ FT such that

infh(x0,x∗

0
) +

1

2
‖x‖2 + 1

2
‖x∗‖2 = 0, ∀(x0, x

∗
0) ∈ X ×X∗,

5. for all h ∈ FT ,

infh(x0,x∗

0
) +

1

2
‖x‖2 + 1

2
‖x∗‖2 = 0, ∀(x0, x

∗
0) ∈ X ×X∗.

3. Surjectivity and maximal monotonicity in non-reflexive Banach spaces

We begin with two elementary technical results which will be useful.

Proposition 3.1. The following statements holds:
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1. For any ε ≥ 0, if y∗ ∈ Jε(x), then | ‖x‖ − ‖y∗‖ | ≤
√
2ε.

2. Let T : X ⇉ X∗ be a monotone operator and ε,M > 0. Then,

(T + Jε)
−1 (BX∗ [0,M ])

is bounded.

Proof. To prove item 1., let ε ≥ 0 and y∗ ∈ Jε(x). The desired result follows from
the following inequalities:

1

2
(‖x‖ − ‖y∗‖)2 ≤ 1

2
‖x‖2 + 1

2
‖y∗‖2 − 〈x, y∗〉 ≤ ε.

To prove item 2., take (z, z∗) ∈ T . If x ∈ (T + Jε)
−1 (B[0,M ]) then there exists x∗, y∗

such that
x∗ ∈ T (x), y∗ ∈ Jε(x), ‖x∗ + y∗‖ ≤ M.

Therefore, using Fenchel Young inequality (2), the monotonicity of T and the defini-
tion of Jε we obtain

1

2
‖x− z‖2 + 1

2
‖x∗ + y∗ − z∗‖2 ≥ 〈x− z, x∗ + y∗ − z∗〉

≥ 〈x− z, y∗〉

≥
[

1

2
‖x‖2 + 1

2
‖y∗‖2 − ε

]

− ‖z‖‖y∗‖.

Note also that

‖x− z‖2 ≤ ‖x‖2 + 2‖x‖‖z‖+ ‖z‖2, ‖x∗ + y∗ − z∗‖2 ≤ (M + ‖z∗‖)2.

Combining the above equations we obtain

1

2
‖z‖2 + 1

2
(M + ‖z∗‖)2 ≥ 1

2
‖y∗‖2 − ‖x‖‖z‖ − ‖z‖‖y∗‖ − ε.

As y∗ ∈ Jε(x), by item 1., we have ‖x‖ ≤ ‖y∗‖+
√
2ε. Therefore

1

2
‖z‖2 + 1

2
(M + ‖z∗‖)2 ≥ 1

2
‖y∗‖2 − 2‖y∗‖‖z‖ − ‖z‖

√
2ε− ε.

Hence, y∗ is bounded. In fact,

‖y∗‖ ≤ 2‖z‖+
√

4‖z‖2 + 2
[

‖z‖
√
2ε+ ε

]

+ ‖z‖2 + (M + ‖z∗‖)2.

As we already observed, ‖x‖ ≤ ‖y∗‖+
√
2ε and so, x is also bounded.

Now we will prove that under monotonicity, dense range of some perturbation of a
monotone operator is equivalent to surjectivity of that perturbation.
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Lemma 3.2. Let T : X ⇉ X∗ be monotone and µ > 0. Then the conditions below

are equivalent

1. R(T (·+ z0) + µJε) = X∗, for any ε > 0 and z0 ∈ X,

2. R(T (·+ z0) + µJε) = X∗, for any ε > 0 and z0 ∈ X.

Proof. It suffices to prove the lemma for µ = 1 and then, for the general case,
consider T ′ = µ−1T . Now note that for any z0 ∈ X and z∗0 ∈ X∗, T − {(z0, z∗0)} is
also monotone. Therefore, it suffices to prove that 0 ∈ R(T + Jε), for any ε > 0 if
and only if 0 ∈ R(T + Jε), for any ε > 0. The "if" is easy to check. To prove the
"only if", suppose that

0 ∈ R(T + Jε), ∀ε > 0.

First use item 2. of Proposition 3.1 with M = 1/2 to conclude that there exists ρ > 0
such that

(T + J1/2)
−1 (BX∗ [0, 1/2]) ⊂ BX [0, ρ].

By assumption, for any 0 < η < 1
2
there exists xη ∈ X, x∗

η, y
∗
η ∈ X∗ such that

x∗
η ∈ T (xη), y∗η ∈ Jη(xη) and ‖x∗

η + y∗η‖ < η <
1

2
. (11)

As Jη(xη) ⊂ J1/2(xη), xη ∈ (T + J1/2)
−1(x∗

η + y∗η) and so,

‖xη‖ ≤ ρ, ‖y∗η‖ ≤ ρ+ 1,

where the second inequality follows from the first one and item 1. of Proposition 3.1.
Therefore

1

2
‖x∗

η‖2 ≤
1

2

(

‖x∗
η + y∗η‖+ ‖y∗η‖

)2 ≤ 1

2
η2 + η(ρ+ 1) +

1

2
‖y∗η‖2,

〈xη, x
∗
η〉 = 〈xη, x

∗
η + y∗η〉 − 〈xη, y

∗
η〉 ≤ ρη − 〈xη, y

∗
η〉.

Combining the above inequalities we obtain

1

2
‖xη‖2 +

1

2
‖x∗

η‖2 + 〈xη, x
∗
η〉 ≤

1

2
‖xη‖2 +

1

2
‖y∗η‖2 − 〈xη, y

∗
η〉+ η(2ρ+ 1) +

1

2
η2.

The inclusion y∗η ∈ Jη(xη) means that,

1

2
‖xη‖2 +

1

2
‖y∗η‖2 − 〈xη, y

∗
η〉 ≤ η. (12)

Hence, using the two above inequalities we conclude that

1

2
‖xη‖2 +

1

2
‖x∗

η‖2 + 〈xη, x
∗
η〉 ≤ 2η(ρ+ 1) +

1

2
η2.

To end the prove, take an arbitrary ε > 0. Choosing 0 < η < 1/2 such that,

2η(ρ+ 1) +
1

2
η2 < ε,
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we have

1

2
‖xη‖2 +

1

2
‖x∗

η‖2 + 〈xη, x
∗
η〉 < ε, x∗

η ∈ T (xη).

According tho the above inequality, −x∗
η ∈ Jε(xη). Hence 0 ∈ (T + Jε)(xη).

In a reflexive Banach space, surjectivity of a monotone operator plus the duality
mapping is equivalent to maximal monotonicity. This is a classical result of Rockafel-
lar [19]. To obtain a partial extension of this result to non-reflexive Banach spaces,
we must consider the “enlarged� duality mapping.

Lemma 3.3. Let T : X ⇉ X∗ be monotone and µ > 0. If

R(T (·+ z0) + µJε) = X∗, ∀ε > 0, z0 ∈ X

then T , the closure of T in the norm-topology of X ×X∗, is maximal monotone and

of type NI.

Proof. Note that T +µJε = µ(µ−1T +Jε). Therefore, it suffices to prove the lemma
for µ = 1 and then, for the general case, consider T ′ = µ−1T . The monotonicity of T̄
follows from the continuity of the duality product.

Using the assumptions on T and Lemma 3.2 we conclude that T (·+ z0) + Jε is onto,
for any ε > 0 and z0 ∈ X. Therefore, for any (z0, z

∗
0) ∈ X × X∗ and ε > 0, there

exists xε, x
∗
ε such that

x∗
ε + z∗0 ∈ T (xε + z0) and − x∗

ε ∈ Jε(xε). (13)

Note that the second inclusion in the above equation is equivalent to

1

2
‖xε‖2 +

1

2
‖x∗

ε‖2 ≤ 〈xε,−x∗
ε〉+ ε. (14)

To prove maximal monotonicity of T̄ , suppose that (z0, z
∗
0) ∈ X×X∗ is monotonically

related to T̄ . As T ⊂ T̄

〈z − z0, z
∗ − z∗0〉 ≥ 0, ∀ (z, z∗) ∈ T.

So, taking ε > 0 and xε ∈ X, x∗
ε ∈ X∗ as in (13) we conclude that

〈xε, x
∗
ε〉 = 〈xε + z0 − z0, x

∗
ε + z∗0 − z∗0〉 ≥ 0,

which, combined with (14) yields

1

2
‖xε‖2 +

1

2
‖x∗

ε‖2 ≤ ε.

As (xε + z0, x
∗
ε + z∗0) ∈ T , and ε is an arbitrary strictly positive number, we conclude

that (z0, z
∗
0) ∈ T̄ , and T̄ is maximal monotone.
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It remains to prove that T̄ is of type NI. Consider an arbitrary (z0, z
∗
0) ∈ X × X∗

and h ∈ FT̄ . Then, using (13), (14) we conclude that for any ε > 0, there exists
(xε, x

∗
ε) ∈ X ×X∗ such that

h(xε + z0, x
∗
ε + z∗0) = 〈xε + z0, x

∗
ε + z∗0〉,

1

2
‖xε‖2 +

1

2
‖x∗

ε‖2 ≤ 〈xε,−x∗
ε〉+ ε.

The first equality above is equivalent to h(z0,z∗0 )
(xε, x

∗
ε) = 〈xε, x

∗
ε〉. Therefore,

h(z0,z∗0 )
(xε, x

∗
ε) +

1

2
‖xε‖2 +

1

2
‖x∗

ε‖2 < ε,

that is,

infh(z0,z∗0 )
(x, x∗) +

1

2
‖x‖2 + 1

2
‖x∗‖2 = 0.

Now, use item 5. of Theorem 2.6 to conclude that T̄ is of type NI.

Direct application of Lemma 3.3 gives the next corollary.

Corollary 3.4. If T : X ⇉ X∗ is monotone, closed, µ > 0 and

R(T (·+ z0) + µJε) = X∗, ∀ε > 0, z0 ∈ X

then T , is maximal monotone and of type NI.

Proof. Use Lemma 3.3 and the assumption T = T̄ .

Lemma 3.5. Let T1, T2 : X ⇉ X∗ be maximal monotone and of type NI. Take

h1 ∈ FT1
, h2 ∈ FT2

and define

h : X ×X∗ → R̄

h(x, x∗) = (h1(x, ·)�h2(x, ·)) (x∗) = inf
y∗∈X∗

h1(x, y
∗) + h2(x, x

∗ − y∗),

DX(hi) = {x ∈ X | ∃ x∗, hi(x, x
∗) < ∞}, i = 1, 2.

If
⋃

λ>0

λ(DX(h1)−DX(h2)) (15)

is a closed subspace then

h ≥ π, h∗ ≥ π∗, Jh ≥ π, (Jh)∗ ≥ π∗,

T1 + T2 = {(x, x∗) | Jh(x, x∗) = 〈x, x∗〉}
= {(x, x∗) | h(x, x∗) = 〈x, x∗〉}

and T1 + T2 is maximal monotone of type NI and

Jh, clh ∈ FT1+T2
.
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Proof. Since h1 ∈ FT1
and h2 ∈ FT2

, we have h1 ≥ π and h2 ≥ π. So

h1(x, y
∗) + h2(x, x

∗ − y∗) ≥ 〈x, y∗〉+ 〈x, x∗ − y∗〉 = 〈x, x∗〉.

Taking the inf in y∗ at the left-hand side of the above inequality we conclude that
h ≥ π.

Let (x∗, x∗∗) ∈ X∗ ×X∗∗. Using the definition of h we have

h∗(x∗, x∗∗)

= sup
(z,z∗)∈X×X∗

〈z, x∗〉+ 〈z∗, x∗∗〉 − h(z, z∗) (16)

= sup
(z,z∗,y∗)∈X×X∗×X∗

〈z, x∗〉+ 〈z∗, x∗∗〉 − h1(z, y
∗)− h2(z, z

∗ − y∗) (17)

= sup
(z,y∗,w∗)∈X×X∗×X∗

〈z, x∗〉+ 〈y∗, x∗∗〉+ 〈w∗, x∗∗〉 − h1(z, y
∗)− h2(z, w

∗) (18)

where we used the substitution z∗ = w∗ + y∗ in the last term. So, defining H1, H2 :
X ×X∗ ×X∗ → R̄

H1(x, y
∗, z∗) = h1(x, y

∗), H2(x, y
∗, z∗) = h2(x, z

∗), (19)

we have
h∗(x∗, x∗∗) = (H1 +H2)

∗(x∗, x∗∗, x∗∗).

Using (15), the Attouch-Brezis extension [1, Theorem 1.1] of Fenchel-Rockafellar
duality theorem and (19) we conclude that the conjugate of the sum at the right hand
side of the above equation is the exact inf-convolution of the conjugates. Therefore,

h∗(x∗, x∗∗) = min
(u∗,y∗∗,z∗∗)

H∗
1 (u

∗, y∗∗, z∗∗) +H∗
2 (x

∗ − u∗, x∗∗ − y∗∗, x∗∗ − z∗∗).

Direct use of definition (19) yields

H∗
1 (u

∗, y∗∗, z∗∗) = h∗
1(u

∗, y∗∗) + δ0(z
∗∗), ∀(u∗, y∗∗, z∗∗) ∈ X∗ ×X∗∗ ×X∗∗, (20)

H∗
2 (u

∗, y∗∗, z∗∗) = h∗
2(u

∗, z∗∗) + δ0(y
∗∗), ∀(u∗, y∗∗, z∗∗) ∈ X∗ ×X∗∗ ×X∗∗. (21)

Hence,
h∗(x∗, x∗∗) = min

u∗∈X∗

h∗
1(u

∗, x∗∗) + h∗
2(x

∗ − u∗, x∗∗). (22)

Therefore, using that h∗
1 ≥ π∗, h

∗
2 ≥ π∗, (22) and the same reasoning used to show

that h ≥ π we have
h∗ ≥ π∗.

Up to now, we proved that h ≥ π and h∗ ≥ π∗( and Jh ≥ π). So, using Theorem 2.3
we conclude that S : X ⇉ X∗, defined as

S = {(x, x∗) ∈ X ×X∗ | Jh(x, x∗) = 〈x, x∗〉},

is maximal monotone. As Jh is convex and lower semicontinuous, Jh ∈ FS.
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We will prove that T1 + T2 = S. Take (x, x∗) ∈ S, that is, Jh(x, x∗) = 〈x, x∗〉.
Using (22) we conclude that there exists u∗ ∈ X∗ such that

h∗
1(u

∗, x) + h∗
2(x

∗ − u∗, x) = 〈x, x∗〉.

We know that

h∗
1(u

∗, x) ≥ 〈x, u∗〉, h∗
2(x

∗ − u∗, x) ≥ 〈x, x∗ − u∗〉.

Combining these inequalities with the previous equation we conclude that these in-
equalities hold as equalities, and so

u∗ ∈ T1(x), x∗ − u∗ ∈ T2(x), x∗ ∈ (T1 + T2)(x).
h1(x, u

∗) = 〈x, u∗〉, h2(x, x
∗ − u∗) = 〈x, x∗ − u∗〉, h(x, x∗) ≤ 〈x, x∗〉.

We proved that S ⊂ T1+T2. Since T1+T2 is monotone and S is maximal monotone,
we have T1 + T2 = S (and Jh ∈ FT1+T2

). Note also that h(x, x∗) ≤ 〈x, x∗〉 for any
(x, x∗) ∈ T1 + T2 = S. As h ≥ π, we have equality in T1 + T2. Therefore,

T1 + T2 ⊂ {(x, x∗) | h(x, x∗) = 〈x, x∗〉} ⊂ {(x, x∗) | clh(x, x∗) ≤ 〈x, x∗〉}.

Since h ≥ π and the duality product π is continuous in X×X∗, we also have clh ≥ π.
Hence, using the above inclusion we conclude that clh coincides with π in T1 + T2.
Therefore, clh ∈ FT1+T2

and the rightmost set in the above inclusions is T1 + T2.
Hence

T1 + T2 = {(x, x∗) | h(x, x∗) = 〈x, x∗〉}.

Conjugation is invariant under the (lower semicontinuous) closure operation. There-
fore,

(clh)∗ = h∗ ≥ π∗

and so T1 + T2 is NI. We proved already that Jh ∈ FT1+T2
. Using item 3. of Theo-

rem 2.6 we conclude that (Jh)∗ ≥ π∗.

Theorem 3.6. If T : X ⇉ X∗ is a closed monotone operator, then the conditions

below are equivalent

1. R(T (·+ z0) + J) = X∗ for all z0 ∈ X,

2. R(T (·+ z0) + Jε) = X∗ for all ε > 0, z0 ∈ X,

3. R(T (·+ z0) + Jε) = X∗ for all ε > 0, z0 ∈ X,

4. T is maximal monotone and of type NI.

Proof. Item 1. trivially implies item 2.. Using Lemma 3.2 we conclude that, in
particular, item 2. implies item 3.. Now use Corollary 3.4 to conclude that item 3.

implies item 4.. Up to now we have 1. ⇒ 2. ⇒ 3. ⇒ 4..

To complete the proof we will show that item 4. implies item 1.. So, assume that item
4. holds, that is, T is of type NI. Take z∗0 ∈ X∗ and z0 ∈ X. Define T0 = T−{(z0, z∗0)}.
Trivially

z∗0 ∈ R(T (·+ z0) + J) ⇐⇒ 0 ∈ R(T0 + J).
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As the class NI is invariant under translations, in order to prove item 1., it is sufficient
to prove that if T is of type NI, then 0 ∈ R(T + J). Let h ∈ FT and ε > 0. Define
p : X ×X∗ → R,

p(x, x∗) =
1

2
‖x‖2 + 1

2
‖x∗‖2. (23)

Item 5. of Theorem 2.6 ensure us that there exists (xε, x
∗
ε) ∈ X ×X∗ such that

h(xε, x
∗
ε) + p(xε,−x∗

ε) < ε2. (24)

Direct calculations yields p ≥ π and p∗ ≥ π∗. We also know that p ∈ FJ and so J is
of type NI. Define H : X ×X∗ → R̄,

H(x, x∗) = inf
y∗∈X∗

h(x, y∗) + p(x, x∗ − y∗).

As D(p) = X × X∗, we may apply Lemma 3.5 to conclude that T + J is NI and
clH ∈ FT+J . Using (24) we have

H(xε, 0) ≤ h(xε, x
∗
ε) + p(xε,−x∗

ε) < ε2.

So, clH(xε, 0) ≤ H(xε, 0) < 〈xε, 0〉+ε2. Now use Theorem 2.2 to conclude that there
exists x̄, x̄∗ such that

(x̄, x̄∗) ∈ T + J, ‖x̄− xε‖ < ε, ‖x̄∗ − 0‖ < ε.

So, x̄∗ ∈ R(T + J) and ‖x̄∗‖ < ε. As ε > 0 is arbitrary, 0 is in the closure of
R(T + J).

Corollary 3.7. If T : X ⇉ X∗ is a closed monotone operator then the conditions

bellow are equivalent

a. R(T (·+ z0) + µJ) = X∗ for all z0 ∈ X and some µ > 0,

b. R(T (·+ z0) + µJ) = X∗ for all z0 ∈ X, µ > 0,

c. R(T (·+ z0) + µJε) = X∗ for all ε > 0, z0 ∈ X and some µ > 0,

d. R(T (·+ z0) + µJε) = X∗ for all ε > 0, z0 ∈ X, µ > 0,

e. R(T (·+ z0) + µJε) = X∗ for all ε > 0, z0 ∈ X, and some µ > 0,

f. R(T (·+ z0) + µJε) = X∗ for all ε > 0, z0 ∈ X, µ > 0,

g. T is maximal monotone and of type NI.

Proof. Suppose that item a. holds. Define T ′ = µ−1T and use Theorem 3.6 to
conclude that T ′ is maximal monotone and of type NI. Therefore, T = µT ′ is maximal
monotone and of type NI, which means that g. holds.

Now assume that item g. holds, that is, T is maximal monotone and of type NI. Then,
for all µ > 0, µ−1T is maximal monotone and of type NI, which implies item b..

As the implication b. ⇒ a. is trivial, we conclude that items a., b., g. are equivalent.

The same reasoning shows that items c., d., g. are equivalent and so on.
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A. Proof of Theorem 2.6

Proof. First let us prove that item 2. and item 4. are equivalent. So, suppose item
2. holds and let (x0, x

∗
0) ∈ X ×X∗. Direct calculations yield

h(x0,x∗

0
) ≥ π, (h(x0,x∗

0
))

∗ ≥ π∗.

Using [12, Theorem 3.1, Eq. (12)] we conclude that condition item 4. holds. For
proving that item 4. ⇒ item 2., first note that, for any (z, z∗) ∈ X ×X∗,

h(z,z∗)(0, 0) ≥ inf
(x,x∗)

h(z,z∗)(x, x
∗) +

1

2
‖x‖2 + 1

2
‖x∗‖2.

Therefore, using item 4. we obtain

h(z, z∗)− 〈z, z∗〉 = h(z,z∗)(0, 0) ≥ 0.

Since (z, z∗) is an arbitrary element of X ×X∗ we conclude that h ≥ π.

For proving that, h∗ ≥ π∗, take some (y∗, y∗∗) ∈ X∗ ×X∗∗. First, use Fenchel-Young
inequality to conclude that for any (x, x∗), (z, z∗) ∈ X ×X∗,

h(z,z∗)(x, x
∗) ≥ 〈x, y∗ − z∗〉+ 〈x∗, y∗∗ − z〉 −

(

h(z,z∗)

)∗
(y∗ − z∗, y∗∗ − z).

As
(

h(z,z∗)

)∗
= (h∗)(z∗,z),

(

h(z,z∗)

)∗
(y∗ − z∗, y∗∗ − z) = h∗(y∗, y∗∗)− 〈z, y∗ − z∗〉 − 〈z∗, y∗∗ − z〉 − 〈z, z∗〉

= h∗(y∗, y∗∗)− 〈y∗, y∗∗〉+ 〈y∗ − z∗, y∗∗ − z〉.
Combining the two above equations we obtain

h(z,z∗)(x, x
∗)

≥ 〈x, y∗ − z∗〉+ 〈x∗, y∗∗ − z〉 − 〈y∗ − z∗, y∗∗ − z〉+ 〈y∗, y∗∗〉 − h∗(y∗, y∗∗).

Adding (1/2)‖x‖2 + (1/2)‖x∗‖2 in both sides of the above inequality we have

h(z,z∗)(x, x
∗) +

1

2
‖x‖2 + 1

2
‖x∗‖2

≥ 〈x, y∗ − z∗〉+ 〈x∗, y∗∗ − z〉+ 1

2
‖x‖2 + 1

2
‖x∗‖2

− 〈y∗ − z∗, y∗∗ − z〉+ 〈y∗, y∗∗〉 − h∗(y∗, y∗∗).

Note that

〈x, y∗ − z∗〉+ 1

2
‖x‖2 ≥ −1

2
‖y∗ − z∗‖2, 〈x∗, y∗∗ − z〉+ 1

2
‖x∗‖2 ≥ −1

2
‖y∗∗ − z‖2.

Therefore, for any (x, x∗), (z, z∗) ∈ X ×X∗,

h(z,z∗)(x, x
∗) +

1

2
‖x‖2 + 1

2
‖x∗‖2

≥ − 1

2
‖y∗ − z∗‖2 − 1

2
‖y∗∗ − z‖2

− 〈y∗ − z∗, y∗∗ − z〉+ 〈y∗, y∗∗〉 − h∗(y∗, y∗∗).



M. Marques Alves, B. F. Svaiter / On the Surjectivity Properties of ... 223

Using now the assumption we conclude that the infimum, for (x, x∗) ∈ X × X∗, at
the left hand side of the above inequality is 0. Therefore, taking the infimum on
(x, x∗) ∈ X × X∗ at the left hand side of the above inequality and rearranging the
resulting inequality we have

h∗(y∗, y∗∗)− 〈y∗, y∗∗〉 ≥ −1

2
‖y∗ − z∗‖2 − 1

2
‖y∗∗ − z‖2 − 〈y∗ − z∗, y∗∗ − z〉.

Note that

sup
z∗∈X∗

−〈y∗ − z∗, y∗∗ − z〉 − 1

2
‖y∗ − z∗‖2 = 1

2
‖y∗∗ − z‖2.

Hence, taking the sup in z∗ ∈ X∗ at the right hand side of the previous inequality
we obtain

h∗(y∗, y∗∗)− 〈y∗, y∗∗〉 ≥ 0

and item 4. holds. Now, using that item 2. and item 4. are equivalent it is trivial to
verify that item 3. and item 5. are equivalent.

The second step is to prove that item 4. and item 5. are equivalent. So, assume that
item 4. holds, that is, for some h ∈ FT ,

inf
(x,x∗)∈X×X∗

h(x0,x∗

0
)(x, x

∗) +
1

2
‖x‖2 + 1

2
‖x∗‖2 = 0, ∀(x0, x

∗
0) ∈ X ×X∗.

Take g ∈ FT , and (x0, x
∗
0) ∈ X ×X∗. First observe that, for any (x, x∗) ∈ X ×X∗,

g(x0,x∗

0
)(x, x

∗) ≥ 〈x, x∗〉 and

g(x0,x∗

0
)(x, x

∗) +
1

2
‖x‖2 + 1

2
‖x∗‖2 ≥ 〈x, x∗〉+ 1

2
‖x‖2 + 1

2
‖x∗‖2 ≥ 0.

Therefore,

inf
(x,x∗)∈X×X∗

g(x0,x∗

0
)(x, x

∗) +
1

2
‖x‖2 + 1

2
‖x∗‖2 ≥ 0. (25)

As the square of the norm is coercive, there exist M > 0 such that

{

(x, x∗) ∈ X ×X∗ | h(x0,x∗

0
)(x, x

∗) +
1

2
‖x‖2 + 1

2
‖x∗‖2 < 1

}

⊂ BX×X∗(0,M),

where

BX×X∗(0,M) =

{

(x, x∗) ∈ X ×X∗ |
√

‖x‖2 + ‖x∗‖2 < M

}

.

For any ε > 0, there exists (x̃, x̃∗) such that

min
{

1, ε2
}

> h(x0,x∗

0
)(x̃, x̃

∗) +
1

2
‖x̃‖2 + 1

2
‖x̃∗‖2.

Therefore

ε2 > h(x0,x∗

0
)(x̃, x̃

∗) +
1

2
‖x̃‖2 + 1

2
‖x̃∗‖2 ≥ h(x0,x∗

0
)(x̃, x̃

∗)− 〈x̃, x̃∗〉 ≥ 0,

M2 ≥ ‖x̃‖2 + ‖x̃∗‖2.
(26)
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In particular,
ε2 > h(x0,x∗

0
)(x̃, x̃

∗)− 〈x̃, x̃∗〉.
Now using Theorem 2.2 we conclude that there exists (x̄, x̄∗) such that

h(x0,x∗

0
)(x̄, x̄

∗) = 〈x̄, x̄∗〉, ‖x̃− x̄‖ < ε, ‖x̃∗ − x̄∗‖ < ε. (27)

Therefore,

h(x̄+ x0, x̄
∗ + x∗

0)− 〈x̄+ x0, x̄
∗ + x∗

0〉 = h(x0,x∗

0
)(x̄, x̄

∗)− 〈x̄, x̄∗〉 = 0,

and (x̄+ x0, x̄
∗ + x∗

0) ∈ T . As g ∈ FT ,

g(x̄+ x0, x̄
∗ + x∗

0) = 〈x̄+ x0, x̄
∗ + x∗

0〉,

and
g(x0,x∗

0
)(x̄, x̄

∗) = 〈x̄, x̄∗〉. (28)

Using the first line of (26) we have

ε2 > h(x0,x∗

0
)(x̃, x̃

∗)+

[

1

2
‖x̃‖2+ 1

2
‖x̃∗‖2+ 〈x̃, x̃∗〉

]

−〈x̃, x̃∗〉 ≥ 1

2
‖x̃‖2+ 1

2
‖x̃∗‖2+ 〈x̃, x̃∗〉.

Therefore,

ε2 >
1

2
‖x̃‖2 + 1

2
‖x̃∗‖2 + 〈x̃, x̃∗〉. (29)

Direct use of (27) gives

〈x̄, x̄∗〉 = 〈x̃, x̃∗〉+ 〈x̄− x̃, x̃∗〉+ 〈x̃, x̄∗ − x̃∗〉+ 〈x̄− x̃, x̄∗ − x̃∗〉
≤ 〈x̃, x̃∗〉+ ‖x̄− x̃‖ ‖x̃∗‖+ ‖x̃‖ ‖x̄∗ − x̃∗‖+ ‖x̄− x̃‖ ‖x̄∗ − x̃∗‖
≤ 〈x̃, x̃∗〉+ ε[‖x̃∗‖+ ‖x̃‖] + ε2

and

‖x̄‖2 + ‖x̄∗‖2 ≤ (‖x̃‖+ ‖x̄− x̃‖)2 + (‖x̃∗‖+ ‖x̄∗ − x̃∗‖)2

≤ ‖x̃‖2 + ‖x̃∗‖2 + 2ε[‖x̃‖+ ‖x̃∗‖] + 2ε2.

Combining the two above equations with (28) we obtain

g(x0,x∗

0
)(x̄, x̄

∗) +
1

2
‖x̄‖2 + 1

2
‖x̄∗‖2 ≤ 〈x̃, x̃∗〉+ 1

2
‖x̃‖2 + 1

2
‖x̃∗‖2 + 2ε[‖x̃‖+ ‖x̃∗‖] + 2ε2

Using now (29) and the second line of (26) we conclude that

g(x0,x∗

0
)(x̄, x̄

∗) +
1

2
‖x̄‖2 + 1

2
‖x̄∗‖2 ≤ 2ε M

√
2 + 3ε2.

As ε is an arbitrary strictly positive number, using also (25) we conclude that

inf
(x,x∗)∈X×X∗

g(x0,x∗

0
)(x, x

∗) +
1

2
‖x‖2 + 1

2
‖x∗‖2 = 0.
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Altogether, we conclude that if item 4. holds then item 5. holds. The converse item
5. ⇒ item 4. is trivial to verify. Hence item 4. and item 5. are equivalent. As item
2. is equivalent to item 4. and item 3. is equivalent to 5., we conclude that items 2.,
3., 4. and 5. are equivalent.

Now we will prove that item 1. is equivalent to item 3. and conclude the proof of the
theorem. First suppose that item 3. holds. Since ST ∈ FT

(ST )
∗ ≥ π∗.

As has already been observed, for any proper function h it holds that (cl convh)∗ = h∗.
Therefore

(ST )
∗ = (π + δT )

∗ ≥ π∗,

that is,

sup
(y,y∗)∈T

〈y, x∗〉+ 〈y∗, x∗∗〉 − 〈y, y∗〉 ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗ (30)

After some algebraic manipulations we conclude that (30) is equivalent to

inf
(y,y∗)∈T

〈x∗∗ − y, x∗ − y∗〉 ≤ 0, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗,

that is, T is of type (NI) and so item 1. holds. If item 1. holds, by the same reasoning
we conclude that (30) holds and therefore (ST )

∗ ≥ π∗. As ST ∈ FT , we conclude that
item 2. holds. As has been proved previously item 2. ⇒ item 3..
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