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and: "Octav Mayer" Mathematics Institute of the Romanian Academy,

Bd. Carol I 8, Iaşi, Romania
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1. Preliminaries. Notations

The Fitzpatrik function proved to be a very useful tool of the convex analysis in
the study of maximal monotone operators. In our paper this function is used for
deterministic and stochastic differential equations driven by multivalued maximal
monotone operators. We will show how we can reduce the existence problem for
stochastic differential equations of the following types:

• forward case

{

dXt + A (Xt) (dt) ∋ F (t,Xt) dt+G (t,Xt) dWt ,

X0 = ξ, t ∈ [0, T ] and
(1)
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• backward case

{

−dYt + A (Yt) dt ∋ H (t, Yt, Zt) dt− ZtdWt ,

YT = ξ, t ∈ [0, T ]
(2)

to a minimizing problem for convex lower semicontinuous functions.

Usually, existence results are obtained via a penalized problem with Yosida’s approx-
imation operator Aε := [I − (I + εA)−1]/ε.

For the forward equation (1), by studying first a generalized Skorohod problem

{

dx (t) + A (x (t)) (dt) ∋ f (t) dt+ dm (t) ,

x (0) = x0, t ∈ [0, T ] .

the existence of the solution is obtained (see Bensoussan & Răşcanu [4], Răşcanu [16],
or Asiminoaei & Răşcanu [1]) in the general case of a maximal monotone operator.

For backward stochastic differential equations the existence problem (see Pardoux &
Rascanu [13]) is solved only in the case of A = ∂ϕ (the subdifferential of a lower
semicontinuous convex function) and it is an open problem in the general case. That
is the reason and the main motivation to find an approach via convex analysis.

In 1988, in the paper [10], Fitzpatrick proved that any maximal monotone operator
can be represented by a convex function; he explicitly defined the minimal convex
representation. The connection between maximal monotone operators and convex
functions was also approached 13 years later by Martinez-Legaz & Théra in [12],
Burachik & Svaiter in [7] and Burachik & Fitzpatrick in [6]. Since these last three
papers, Fitzpatrick’s results have been the subject of intense research (J. P. Reval-
ski, M. Théra, R. S. Burachik, B. F. Svaiter, J.-P. Penot, S. Simons, C. Zălinescu,
J.-E. Martinez-Legaz etc.). Their results stay in the domain of nonlinear operators:
properties, characterizations, new classes of monotone operators.

Using the idea of Fitzpatrick function we can reduce the existence problems for
stochastic equations of the form (1) or (2) to a minimizing problem of a convex
lower semicontinuous function. Inspired by the studies of Gyöngy & Mart́ınez [11],
we present a new approach for solving the existence problem for stochastic differential
equations with maximal monotone operator. In this paper we will identify the solu-
tions of different types of forward and backward multivalued stochastic differential
equations with the minimum points of a suitably chosen convex lower semicontinuous
functionals.

The paper is organized as follows. In the first section we present some basic properties
of the Fitzpatrick’s function and we will introduce the stochastic framework that will
be used. The next section contains a Fitzpatrick function approach for the study of a
generalized Skorohod problem as well of forward and backward stochastic differential
equations, while Section 3 is dedicated to the case of forward and backward stochastic
variational inequalities.
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1.1. On Fitzpatrick’s function

Let (X, ‖.‖) be a real Banach space and (X∗, ‖.‖∗) be its dual. For x
∗ ∈ X

∗ and x ∈ X

we denote x∗ (x) (the value of x∗ in x) by 〈x, x∗〉 or 〈x∗, x〉 .

If A : X ⇉ X
∗ is a point-to-set operator (from X to the family of subsets of X∗), then

Dom (A) := {x ∈ X : A (x) 6= ∅} and R (A) = {x∗ : ∃x ∈ Dom (A) s.t. x∗ ∈ A (x)} .
We shall always assume that the operator A is proper, i.e. Dom (A) 6= ∅. Usu-
ally the operator A is identified with its graph gr (A) = {(x, x∗) ∈ X× X

∗ : x ∈
Dom (A) , x∗ ∈ A (x)}.

The operator A : X ⇉ X
∗ is a monotone operator (A ⊂ X× X

∗ is a monotone set) if

〈x− y, x∗ − y∗〉 ≥ 0, ∀ (x, x∗) , (y, y∗) ∈ A.

A monotone operator (set) is maximal monotone if it is not properly contained in any
other monotone operator (set). Clearly if A is maximal monotone and (y, y∗) ∈ X×X

∗

then
inf

(u,u∗)∈A
〈y − u, y∗ − u∗〉 ≥ 0 ⇐⇒ (y, y∗) ∈ A.

Given a function ψ : X →]−∞,+∞] we denote Dom (ψ) := {x ∈ X : ψ (x) <∞} .
We say that ψ is proper if Dom (ψ) 6= ∅. The subdifferential ∂ψ : X ⇉ X

∗ is defined
by

(x, x∗) ∈ ∂ψ if 〈y − x, x∗〉+ ψ (x) ≤ ψ (y) , ∀y ∈ X.

It is well known that: if ψ is a proper convex l.s.c. function, then ∂ψ : X ⇉ X
∗ is a

maximal monotone operator.

Let ψ : X →]−∞,+∞] be a proper function. The conjugate of ψ is the function
ψ∗ : X∗→]−∞,+∞],

ψ∗ (x∗) := sup {〈u, x∗〉 − ψ (u) : u ∈ X} .

Remark that, if h : X× X
∗→]−∞,+∞], then h∗ : X

∗×X
∗∗→]−∞,+∞] and, for

any (x∗, x) ∈ X
∗×X, h∗ (x∗, x) is well defined by identifying X with its image under

canonical injection of X into X
∗∗, that is, every x ∈ X can be seen as a function

x : X∗ → R defined by x(x∗) = x∗(x) = 〈x, x∗〉. For a complete study on maximal
monotone operators, one can consult Barbu [2] or Brézis [5].

Definition 1.1. Given a monotone operator A : X ⇉ X
∗, the associated Fitzpatrick

function is defined as H = HA : X× X
∗ → ]−∞,+∞],

H (x, x∗) := 〈x, x∗〉 − inf {〈x− u, x∗ − u∗〉 : (u, u∗) ∈ A}

= sup {〈u, x∗〉+ 〈x, u∗〉 − 〈u, u∗〉 : (u, u∗) ∈ A}
(3)

Clearly H (x, x∗) ≤ 〈x, x∗〉, for all (x, x∗) ∈ A and, as supremum of convex strongly
(and (w,w∗)) continuous functions, H = HA : X × X

∗ → ]−∞,+∞] is a proper
convex strongly (and (w,w∗)) l.s.c. function. Usually, we shall consider on X the
strong topology and, on X

∗ the w∗-topology; in this case, H is also a l.s.c. function.
Whenever is necessary, we will consider the Fitzpatrick functionH restricted at U×V,
with U ⊂ X and V ⊂ X

∗.
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Let (x∗, x) ∈ ∂H (u, u∗). Then, from the definition of a subdifferential operator, we
have

〈(x∗, x) , (z, z∗)− (u, u∗)〉+H (u, u∗) ≤ H (z, z∗) , ∀ (z, z∗) ∈ X
∗∗ × X

∗,

or, equivalently,

〈u− x, u∗ − x∗〉 − inf {〈u− y, u∗ − y∗〉 : (y, y∗) ∈ A}

≤ 〈z − x, z∗ − x∗〉 − inf {〈z − y, z∗ − y∗〉 : (y, y∗) ∈ A} , ∀ (z, z∗) ∈ X
∗∗ × X

∗.
(4)

Since the operator A is a maximal monotone one, then

inf {〈u− y, u∗ − y∗〉 : (y, y∗) ∈ A} ≤ 0 and

inf {〈z − y, z∗ − y∗〉 : (y, y∗) ∈ A} = 0, ∀ (z, z∗) ∈ A;

consequently, we have

(x∗, x) ∈ ∂H (u, u∗) =⇒ 〈u− x, u∗ − x∗〉 ≤ inf {〈z − x, z∗ − x∗〉 : (z, z∗) ∈ A} . (5)

Also, by the monotonicity of A, from (4) follows

(x, x∗) ∈ A =⇒ (x∗, x) ∈ ∂H (x, x∗) .

Hence, if A : X ⇉ X
∗ is a maximal monotone operator, then HA characterizes A as

follows.

Theorem 1.2 (Fitzpatrick, see Fitzpatrick [10], Simons & Zălinescu [17]).
Let A : X ⇉ X

∗ be a maximal monotone operator and H its associated Fitzpatrick
function. Then, for all (x, x∗) ∈ X× X

∗,

H(x, x∗) ≥ 〈x, x∗〉 .

Moreover, the following assertions are equivalent:

(a) (x, x∗) ∈ A;

(b) H(x, x∗) = 〈x, x∗〉 ;
(c) H∗(x∗, x) = 〈x, x∗〉 ;
(d) ∃ (u, u∗) ∈ Dom (∂H) such that (x∗, x) ∈ ∂H (u, u∗) and 〈u− x, u∗ − x∗〉 = 0;

(e) (x∗, x) ∈ ∂H (x, x∗) .

Proof. It is not difficult to show that (b) ⇔ (a) ⇒ (e) ⇒ (d) ⇒ (a). Moreover,
using the Fenchel equality:

(x∗, x) ∈ ∂H (x, x∗) ⇒ H(x, x∗) +H∗(x∗, x) = 〈(x, x∗), (x∗, x)〉 ,

we obtain that (e)& (b) ⇒ (c) . The point (c) yields (a) by using the equivalent form
of the definition of H∗ :

H∗(x∗, x) = 〈x, x∗〉 − inf
(u,u∗)∈X×X∗

{〈x− u, x∗ − u∗〉+H (u, u∗)− 〈u, u∗〉} .
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Remark 1.3. The function HA is minimal in the family of convex functions f :
X× X

∗ → ]−∞,+∞] with the properties: f(x, x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ X× X
∗

and f(x, x∗) = 〈x, x∗〉 for all (x, x∗) ∈ A.

Using the above tools, in the paper [17], Simons and Zălinescu give a nice proof of
the famous Rockafellar’s characterization of a maximal monotone operator.

Let H be a real separable Hilbert space and A : H ⇉ H be a maximal monotone
operator. Denote for ε > 0, Jε, Aε : H → H, the (1-, resp. 1/ε -) Lipschitz continuous
functions Jε (x) = (I + εA)−1 (x) and

Aε (x) =
x− Jε (x)

ε
∈ A (Jε (x)) .

Let

BV0 ([0, T ] ;H) = {k : [0, T ] → H : lklT <∞, k (0) = 0} ,

where lklT := ‖k‖BV ([0,T ];H) . If we consider on C ([0, T ] ;H) the usual norm

‖y‖C([0,T ];H) = ‖y‖T = sup {|y (s)| : 0 ≤ s ≤ T} ,

then (C ([0, T ] ;H))∗ = BV0 ([0, T ] ;H) . We denote the duality between these spaces
by

〈〈z, g〉〉 :=

∫ T

0

〈z (t) , dg (t)〉 .

Denote by A the realization on C ([0, T ] ;H) of the maximal monotone operator
A : H ⇉ H, that is the operator A : C ([0, T ] ;H) ⇉ BV0 ([0, T ] ;H) defined as
follows: (x, k) ∈ A if x ∈ C

(

[0, T ] ;Rd
)

, k ∈ BV0 ([0, T ] ;H) and one of the following
equivalent conditions are satisfied:

(d1) for all 0 ≤ s ≤ t ≤ T,
∫ t

s
〈x (r)− z, dk (r)− z∗dr〉 ≥ 0, ∀ (z, z∗) ∈ A;

(d2) for all 0 ≤ s ≤ t ≤ T and for all u, u∗ ∈ C([0, T ];H) such that (u(r), u∗(r)) ∈
A, ∀r ∈ [s, t],

∫ t

s

〈x(r)− u(r), dk(r)− u∗(r)dr〉 ≥ 0;

(d3) for all u, u∗ ∈ C([0, T ];H) such that (u(r), u∗(r)) ∈ A, ∀r ∈ [0, T ] ,

∫ T

0

〈x(r)− u(r), dk(r)− u∗(r)dr〉 ≥ 0.

A is a maximal monotone operator since, setting

u (r) = Jε

(

x (r) + y (r)

2

)

=
x (r) + y (r)

2
− εAε

(

x (r) + y (r)

2

)

;

u∗ (r) = Aε

(

x (r) + y (r)

2

)
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in (d2) written for (x, k) ∈ A and respectively for (y, ℓ) ∈ A and taking then ε → 0,
we infer (since εAε → 0 as ε→ 0) that

∫ t

s

〈x (r)− y (r) , dk (r)− dℓ (r)〉 ≥ 0, ∀ 0 ≤ s ≤ t ≤ T. (6)

The maximality clearly follows from the definition of A.

For the realization of the operator A on Lr (0, T ;H) , r ≥ 1, we use the same notation
A without risk of confusion since every time we mention the space of realization.
In this case, the operator A : Lr (0, T ;H) ⇉ Lq (0, T ;H) , 1

r
+ 1

q
= 1 is defined by

(x, g) ∈ A if

•
∫ t

s
〈x (r)− z, g (r)− z∗〉 dr ≥ 0, for all 0 ≤ s ≤ t ≤ T and for all (z, z∗) ∈ A,

or (clearly), equivalently

• g (t) ∈ A (x (t)) , a.e. t ∈ [0, T ] .

Arguing similar to the previous situation, we obtain that A is a maximal monotone
operator.

1.2. Stochastic framework

Let (Ω,F ,P, {Ft}t≥0) be a stochastic basis i.e. (Ω,F ,P) is a complete probability
space and {Ft}t≥0 is a filtration satisfying the usual assumptions of right continuity
and completeness:

NP ⊂ Fs ⊂ Ft =
⋂

ε>0

Ft+ε ,

for all 0 ≤ s ≤ t, where NP is the set of all P-null sets.

Let (H, | · |
H
) be a real separable Hilbert space; if F is a closed subset of H, denote

by BF the σ-algebra generated by the closed subsets of F.

Denote by Sp
H
[0, T ] , p ≥ 0, the space of progressively measurable continuous stochas-

tic processes X : Ω × [0, T ] → H (i.e. t 7−→ X (ω, t) is continuous a.s. ω ∈ Ω, and
(ω, s) 7−→ X (ω, s) : Ω× [0, T ] → H is

(

Ft ⊗ B[0,t],BH

)

measurable for all t ∈ [0, T ]),
such that

‖X‖Sp
H
[0,T ] =

{

(E ‖X‖pT )
1

p
∧1
<∞, if p > 0,

E [1 ∧ ‖X‖T ] , if p = 0,

where
‖X‖T := sup

t∈[0,T ]

|Xt| .

The space (Sp
H
[0, T ] , ‖·‖Sp

H
[0,T ]), p≥ 1, is a Banach space and Sp

H
[0, T ], 0 ≤ p < 1, is

a complete metric space with the metric ρ(Z1, Z2)= ‖Z1−Z2‖Sp
d
[0,T ] (when p = 0 the

metric convergence coincides with the probability convergence).

If H = R
d we will denote Sp

H
[0, T ] by Sp

d [0, T ].

Let
(

H0, |·|H0

)

be a real separable Hilbert space and

B = {Bt(ϕ) : (t, ϕ) ∈ [0, T ]×H0} ⊂ L0 (Ω,F ,P)
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a Gaussian family of real-valued random variables with zero mean and covariance
function

E [Bt(ϕ)Bs(ψ)] = (t ∧ s)× 〈ϕ, ψ〉
H0
, ∀ϕ, ψ ∈ H0, ∀s, t ∈ [0, T ],

where t ∧ s = min {t, s} . We call (B,{Ft}) a H0-Wiener process if, for all t ∈ [0, T ],
we have

(i) FB
t = σ{Bs(ϕ); s ∈ [0, t], ϕ ∈ H0} ∨ NP ⊂ Ft and

(ii) Bt+h(ϕ)−Bt(ϕ) is independent of Ft , for all h > 0, ϕ ∈ H0.

Note that, given any orthonormal basis {ei; i ∈ I ⊆ N
∗} of H0, the sequence βi =

{βi
t = Bt(ei); t ∈ [0, T ]}, i ∈ I, defines a family of independent real-valued standard

Wiener processes (Brownian motions). Moreover, if H0 is of finite dimension, we have

Bt =
∑

i≥1

βi
tei , t ∈ [0, T ].

In the general case this series does not converge in H0, but rather in a larger space
H̃0,H0 ⊂ H̃0 which is such that the injection of H0 into H̃0 is Hilbert-Schmidt.
Moreover, B ∈ M2(0, T ; H̃0).

By Mp(0, T ;H), p ≥ 1, we denote the space of H-valued continuous, p-integrable
martingales M , that is, the space of all continuous stochastic processes M : Ω ×
[0, T ] → H satisfying, P-a.s,

(m1) M0 = 0,

(m2) E |Mt|
p <∞, ∀t ∈ [0, T ] ,

(m3) E [Mt|Fs] =Ms, for all 0 ≤ s ≤ t ≤ T.

Mp(0, T ;H) is a Banach space with respect to the norm ‖X‖Mp = (E |XT |
p)

1/p
; in

the case p > 1, Mp(0, T ;H) is a closed linear subspace of Sp
H
[0, T ].

In order to define the stochastic integral with respect to the H0-Wiener process B,
we introduce a class of processes with values in the separable Hilbert space L2(H0;H)
of Hilbert–Schmidt operators from H0 into H, i.e. the space of linear operators F :
H0 → H satisfying

‖F‖2HS =
∞
∑

i=1

|Fei|
2
H
= TrF ∗F = TrFF ∗ <∞.

Denote Λp
H×H0

(0, T ) , p ∈ [0,∞[, the space of progressively measurable processes
Z : Ω×]0, T [→ L2(H0;H) such that:

‖Z‖Λp =



























[

E

(
∫ T

0

‖Zs‖2HSds

)

p

2

]

1

p
∧1

, if p > 0,

E

[

1 ∧

(
∫ T

0

‖Zs‖2HSds

)

1

2

]

, if p = 0.
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The space (Λp
H×H0

(0, T ) , ‖·‖Λp), p ≥ 1, is a Banach space and Λp
H×H0

(0, T ), 0 ≤ p < 1,
is a complete metric space with the metric ρ(Z1, Z2) = ‖Z1 − Z2‖Λp .

Consider {ei; i ∈ I ⊂ N
∗} an orthonormal basis of H0. Let Z ∈ Λp

H×H0
(0, T ), with

p ≥ 0. The stochastic integral I is defined by Z
I
7→ I· (Z), where

It (Z) :=

∫ t

0

ZsdBs =
∑

i∈I

∫ t

0

Zs(ei)dBs(ei), t ∈ [0, T ] .

Note that it doesn’t depend on the choice of the orthonormal basis of H0. The
application

I : Λp
H×H0

(0, T ) → Sp
H
[0, T ]

is a linear continuous operator and it has the following properties:

(a) EIt (Z) = 0, if p ≥ 1,

(b) E|IT (Z) |2 = ‖Z‖2Λ2 , if p ≥ 2,

(c)
1

cp
‖Z‖pΛp ≤ E sup

t∈[0,T ]

|It (Z) |p ≤ cp ‖Z‖
p
Λp , if p > 0,

(Burkholder-Davis-Gundy inequality)

(d) I(Z) ∈ Mp(Ω× [0, T ];H), p ≥ 1.

The definition and the properties of the stochastic integral can be found in Pardoux
& Răşcanu [14] or Da Prato & Zabczyk [15].

If H0 = R
k and H = R

d then {Bt, t ≥ 0} is a k-dimensional Wiener process (Brownian
motion); L2(H0;H) is the space of real matrices F = (fij)d×k and |F |2 := ‖F‖2HS =
∑

i,jf
2
i,j. In this situation, the space Λp

H×H0
(0, T ) will be denoted by Λp

d×k (0, T ) .

2. Fitzpatrick function approach

2.1. A Generalized Skorohod problem

Throughout this section H is a real separable Hilbert space with the norm |·| and the
scalar product 〈·, ·〉.

We study the multivalued monotone differential equation

{

dx (t) + Ax (t) (dt) ∋ dm (t) ,

x (0) = x0, t ≥ 0,
(GSP ) (7)

where we assume

(HGSP ) :











(i) A : H ⇉ H is a maximal monotone operator,

(ii) x0 ∈ Dom(A),

(iii) m : [0,∞) −→ H is continuous and m (0) = 0.
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Definition 2.1. A continuous function x : [0, T ] → H is a solution of Eq. (7) if
x (t) ∈ Dom(A) for all 0 ≤ t ≤ T, (T arbitrarily fixed) and there exists k ∈
C ([0, T ] ;H)

⋂

BV0 ([0, T ] ;H) such that

x (t) + k (t) = x0 +m (t) , ∀0 ≤ t ≤ T

and
∫ t

s

〈x (r)− z, dk (r)− z∗dr〉 ≥ 0, ∀ (z, z∗) ∈ A, ∀0 ≤ s ≤ t ≤ T. (8)

(Without confusion, the uniqueness of k will permit us to call the pair (x, k) solution
of the generalized Skorohod problem (GSP ) and we write (x, k) = GSP (A;x0,m).)

In virtue of this definition, the (classical) Skorohod problem (for more details, one
can consult Cépa [8] or [9]) is obtained for A = ∂IE : Rd

⇉ R
d, where E is a closed

convex subset of Rd,

IE (x) =

{

0, if x ∈ E,

+∞, if x ∈ R
d \ E

and

∂IE (x) =











0, if x ∈ int(E),
{

ν ∈ R
d : 〈ν, y − x〉 ≤ 0, for all y ∈ E

}

, if x ∈ Bd (E) ,

∅, if x /∈ E.

The definition of the solution can be given in a equivalent form as follows.

Definition 2.2. A continuous function x : [0, T ] → R
d×R

d is a solution of Skorohod
problem in E if x (t) ∈ E for all 0 ≤ t ≤ T and there exists k ∈ C

(

[0, T ] ;Rd
)
⋂

BV0
(

[0, T ] ;Rd
)

such that



























(a) lklt =

∫ t

0

1x(s)∈Bd(E)d lkls ,

(b) k (t) =

∫ t

0

nx(s)d lkls , where nx(s) ∈ NE (x (s))

and
∣

∣nx(s)

∣

∣ = 1, d l k ls -a.e.

and
x (t) + k (t) = x0 +m (t) , ∀t ∈ [0, T ] .

(NE (x) denotes the outward normal cone to E at x ∈ E.)

Let A : C ([0, T ] ;H) ⇉ BV0 ([0, T ] ;H) be the realization of the maximal monotone
operator A : H ⇉ H and

X = {µ ∈ C ([0, T ] ;H) : µ (0) = 0}

the linear closed subspace of C ([0, T ] ;H) . For each R > 0, we define

YR = {k ∈ C ([0, T ] ;H) : k (0) = 0, lklT ≤ R} ;
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YR is a closed subset of C ([0, T ] ;H) and, consequently, it is a metric space with
respect to the metric from C ([0, T ] ;H). Remark that, by Helly-Foiaş theorem (see
Barbu & Precupanu [3], Theorem 3.5 & Remark 3.2), it is also a bounded w∗-closed
subset of BV0 ([0, T ] ;H).

Let α : R+ → R+ a continuous function such that α (0) = 0. Denote

Cα = {x ∈ X : mx (ε) ≤ α (ε) for all ε ≥ 0} .

Here the function mx : R+ → R+ represents the modulus of continuity of the contin-
uous function x : [0, T ] → H and it is defined by

mx (δ) = mx,T (δ) = sup {|x (t)− x (s)| : |t− s| ≤ δ, t, s ∈ [0, T ]} .

Clearly, Cα is a bounded closed convex subset of X.

Consider, for each (u, u∗) ∈ A and ν ∈ X, the function J(u,u∗,ν) : H×X×YR×X → R

given by

J(u,u∗,ν) (a, x, k, µ)

= |a− x0|
2 +

∫ T

0

[〈u (t) , dk (t)〉+ 〈x (t) , du∗ (t)〉 − 〈u (t) , du∗ (t)〉]

−

∫ T

0

〈x (t) , dk (t)〉+ 2R ‖µ−m‖T +

∫ T

0

〈µ (t)− ν (t) , dk (t)〉 −R ‖ν −m‖T

and J : H× X× YR × X →]−∞,+∞], defined by

J (a, x, k, µ) = sup
(u,u∗)∈A, ν∈Cα

J(u,u∗,ν) (a, x, k, µ)

= |a− x0|
2 +H (x, k)− 〈〈x, k〉〉+ 2R ‖µ−m‖T

+ sup
ν∈Cα

{〈〈µ− ν, k〉〉 −R ‖ν −m‖T} ,

(9)

where H : C ([0, T ] ;H) × BV0 ([0, T ] ;H) →] − ∞,+∞] is the Fitzpatrick function
associated to the maximal monotone operator A.

Remark 2.3. J : H×X×YR ×X →]−∞,+∞] is a lower semicontinuous function
as the supremum of the continuous functions J(u,u∗,ν).

Remark also that, for µ ∈ Cα,

2R ‖µ−m‖T + sup
ν∈Cα

{〈〈µ− ν, k〉〉 −R ‖ν −m‖T} ≥ R ‖µ−m‖T ≥ 0.

Proposition 2.4. Let R > 0 and α : R+ → R+ a continuous function such that
α (0) = 0. The function J has the following properties

(a) J (a, x, k, µ) ≥ 0, for all (a, x, k, µ) ∈ H× X× YR × Cα.

(b) Let (a, x, k, µ) ∈ H × X × YR × Cα. Then J(a, x, k, µ) = 0 iff a = x0, µ = m
and k ∈ A (x) .
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(c) The restriction of J to the closed convex set

K = {(a, x, k, µ) ∈ H× X× YR × Cα : x+ k = a+ µ}

is a convex lower semicontinuous function; for (a, x, k, µ) ∈ K, we have

J(a, x, k, µ) = 0 iff a = x0, µ = m and (x, k) = GSP (A;x0,m) .

Proof. The points (a) and (b) clearly are consequences of the properties of the Fitz-
patrick function H. Let us prove (c) . We have (a, x, k, µ) ∈ K and

J (a, x, k, µ)

= |a− x0|
2 +H (x, k)− 〈〈x, k〉〉+ 2R ‖µ−m‖T

+ sup
ν∈Cα

{〈〈µ− ν, k〉〉 −R ‖ν −m‖T}

= |a− x0|
2 +H (x, k) +

1

2
|x (T )− µ (T )|2 −

1

2
|a|2 −

∫ T

0

〈µ (s) , dk (s)〉

+ 2R ‖µ−m‖T + sup
ν∈Cα

{〈〈µ− ν, k〉〉 −R ‖ν −m‖T}

= |x0|
2 − 2 〈a, x0〉+

1

2
|a|2 +H (x, k) +

1

2
|x (T )− µ (T )|2

+ 2R ‖µ−m‖T + sup
ν∈Cα

{〈〈−ν, k〉〉 −R ‖ν −m‖T}

and the convexity of J follows.

In the sequel we prove the existence and uniqueness of the solution of the multivalued
monotone differential equation (7). Our proof is strongly connected with the one from
Răşcanu [16]. First highlight some properties of a solution (x, k) = GSP (A;x0,m) .

Consider M a bounded and equicontinuous subset of C ([0, T ] ;H) and we denote

‖M‖T = sup {‖y‖T : y ∈ M} and mM,T (δ) = sup {my,T (δ) : y ∈ M} .

Proposition 2.5. Fix T > 0. Let the assumption (HGSP ) be satisfied and

int (Dom (A)) 6= ∅.

Then, there exists a positive constant CM such that

(a) If m ∈ M and (x, k) = GSP (A;x0,m) then

‖x‖2T + lklT ≤ CM(1 + |x0|
2). (10)

(b) If m, m ∈ M, (x, k) = GSP (A;x0,m) and (x, k) = GSP(A; x0, m) then

‖x− x‖T ≤ CM (1 + |x0|+ |x0|) (|x0 − x0|+ ‖m− m‖1/2T ). (11)

In particular, the uniqueness follows, that is, if x0 = x0 and m = m then (x, k) =
(x, k).
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Proof. (a) In the sequel we fix arbitrary u0 ∈ H and 0 < r0 ≤ 1 such that

B̄ (u0, r0) ⊂ Dom (A)

and
A#

u0,r0
:= sup {|u| : u ∈ A (u0 + r0v) , |v| ≤ 1} <∞.

If in (8) we consider z = u0 + r0v, |v| ≤ 1 and z∗ ∈ A (z), then |z∗| ≤ A#
u0,r0

and we
infer

r0d lklt ≤ 〈x (t)− u0, dk (t)〉+ A#
u0,r0

[r0 + |x (t)− u0|] dt. (12)

Let δ0 = δ0,M > 0 be defined by

δ0 +mM,T (δ0) =
r0
4
.

By Energy Equality

|x (t)−m (t)− u0|
2 + 2

∫ t

0

〈x (r)− u0, dk (r)〉 = |x0 − u0|
2 + 2

∫ t

0

〈m (r) , dk (r)〉

and, using (12), we obtain

|x (t)−m (t)− u0|
2 + 2r0 lklt

≤ |x0 − u0|
2 + 2

∫ t

0

〈m (r) , dk (r)〉+ 2A#
u0,r0

∫ t

0

[r0 + |x (r)− u0|] dr.

Let n0 =
⌈

T
δ0

⌉

and consider the partition 0 = t0 < t1 < ... < tn0
= t, ti+1 − ti =

t
n0

≤

δ0, i = 0, n0 − 1 (⌈a⌉ is the smallest integer greater or equal to a ∈ R). Then

∫ t

0

〈m (r) , dk (r)〉

=

n0−1
∑

i=0

∫ ti+1

ti

〈m (r)−m (ti) , dk (r)〉+
n0−1
∑

i=0

〈m (ti) , k (ti+1)− k (ti)〉

≤ mM,T (δ0) lklt +
n0−1
∑

i=0

〈m (ti) ,m (ti+1)− x (ti+1) + u0 −m (ti) + x (ti)− u0〉

≤
r0
4
lklt + 2(n0 + 1) ‖m‖t ‖x− u0 −m‖t .

Hence

|x (t)−m (t)− u0|
2 +

3r0
2

lklt

≤ |x0 − u0|
2 +

[

4 (n0 + 1) ‖m‖t + 2tA#
u0,r0

]

‖x− u0 −m‖t

+ 2 (t+ t ‖m‖t)A
#
u0,r0

,

which implies (10), where CM = C(T, u0, r0, A
#
u0,r0

, δ0, ‖M‖T ).



A. Răşcanu, E. Rotenstein / The Fitzpatrick Function - A Bridge between ... 117

(b) By ordinary differential calculus and (10) we infer

|x (t)−m (t)− x (t) + m (t) |2 + 2

∫ t

0

〈x (r)− x (r) , dk (r)− dk (r)〉

= |x0 − x0|
2 + 2

∫ t

0

〈m (r)− m (r) , dk (r)− dk (r)〉

≤ |x0 − x0|
2 + 2‖m− m‖T [lklT + lklT ]

≤ |x0 − x0|
2 + 4CM‖m− m‖T (1 + |x0|

2 + |x0|
2).

On the other hand,

|x (t)−m (t)− x (t) + m (t) |2 ≥
1

2
|x (t)− x (t)|2 − ‖m− m‖2T

≥
1

2
|x (t)− x (t)|2 − 2 ‖M‖T ‖m− m‖T

Combining these last two inequalities with (6), we deduce

|x (t)− x (t) |2

≤ 2 |x0 − x0|
2 + 4 ‖M‖T ‖m− m‖T + 8CM‖m− m‖T (1 + |x0|

2 + |x0|
2)

and (11) easily follows, with a constant CM; the two relations (10) and (11) can be
written with a common constant CM := max{CM, CM}.

Theorem 2.6. Under the assumptions (HGSP ), if we have also int (Dom (A)) 6= ∅,
then the generalized convex Skorohod problem (7) has a unique solution (x, k) and
estimates (10) and (11) hold.

Proof. The uniqueness and estimates (10) and (11) have been obtained in the above
result. It suffices to prove the existence on an arbitrary fixed interval [0, T ].

Let x0,n ∈ Dom(A) and mn ∈ C∞ ([0, T ] ;H) be such that

x0,n → x0 in H and mn → m in C ([0, T ] ;H) .

Notice thatM = {m,m1,m2, . . .} is a bounded equicontinuous subset of C ([0, T ] ;H).
We set α(ε) = mM,T (ε) and let J (resp. Jn): H× X× YR × X →]−∞,+∞] be the
functions defined by (9) associated to (x0,m,A) (and resp. (x0,n,mn, A)). Then

J (a, x, k, µ)

= Jn (a, x, k, µ)− |a− x0,n|
2 − 2R ‖µ−mn‖T + |a− x0|

2

+ sup
ν∈Cα

{〈〈µ− ν, k〉〉 −R ‖ν −m‖T} − sup
ν∈Cα

{〈〈µ− ν, k〉〉 −R ‖ν −mn‖T}

≤ Jn (a, x, k, µ)− |a− x0,n|
2 − 2R ‖µ−mn‖T + |a− x0|

2

+R sup
ν∈Cα

{‖ν −mn‖T − ‖ν −m‖T}

≤ Jn (a, x, k, µ)− |a− x0,n|
2 − 2R ‖µ−mn‖T + |a− x0|

2 +R ‖m−mn‖T .
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In particular,

J (x0,n, x, k,mn) ≤ Jn (x0,n, x, k,mn) + |x0,n − x0|
2 +R ‖m−mn‖T . (13)

By a classical result (see Barbu [2], Theorem 2.2) there exist xn ∈ C ([0, T ] ;H) and
hn ∈ L1 (0, T ;H), hn (t) ∈ Axn(t), a.e. t ∈ [0, T ], such that

xn (t) +

∫ t

0

hn (s) ds = x0,n +mn (t) . (14)

If we denote kn (t) =
∫ t

0
hn (s) ds, then (xn, kn) ∈ A and therefore, by Fitzpatrick’s

Theorem, H (xn, kn) = 〈〈xn, kn〉〉 .

Then, using Proposition 2.5, there exists a positive constant C, not depending on n,
such that, for all n, j ∈ N

∗,

‖xn‖
2
T + lknlT ≤ C and

‖xn − xj‖T ≤ C(|x0,n − x0,j|+ ‖mn −mj‖
1/2
T ).

Hence, there exists x ∈ C ([0, T ] ;H) such that, as n→ ∞,

xn → x in C([0, T ] ; Dom(A)).

Let
k (t) = x0 +m (t)− x (t) .

We deduce that

kn = x0,n +mn − xn −→ k in C ([0, T ] ;H)

and clearly follows
k ∈ BV ([0, T ] ;H) , lklT ≤ C.

Setting R = C, the quantities J (x0,n, xn, kn,mn) and Jn (x0,n, xn, kn,mn) are well de-

fined. Moreover, by Proposition 2.4, Jn (x0,n, xn, kn,mn) = 0. Passing to lim infn→+∞

in (13), the lower-semicontinuity of J implies

0 ≤ J (x0, x, k,m) ≤ lim inf
n→+∞

J (x0,n, xn, kn,mn) = 0,

that is, there exists a minimum point for which J is zero. By Proposition 2.4(c) we
infer that the generalized convex Skorohod problem (7) has a solution.

Remark 2.7. We highlight that the existence problem is reduced to the minimiza-
tion of a specific l.s.c. convex function on a bounded closed convex subset of H×X×
BV ([0, T ] ;H) × X. Indeed, via Proposition 2.4(c), the minimization of J is on the
set Hρ0 × XR × YR × Cα, where

Hρ0 = {h ∈ H : |h| ≤ ρ0 := sup{|x0|, |x0,n| : n ∈ N
∗}} ,

XR = {x ∈ X : ‖x‖T ≤ R} and R = C. Classical results (see Zeidler [18], Theorem
38.A) establish sufficient conditions for a functional defined on a subset of a reflexive
Banach space to attain its minimum.
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We note that, in the framework of Hilbert spaces, the assumption int(Dom(A)) 6= ∅
from the above results is fairly restrictive. One can renounce at this condition, but
we have to consider a stronger assumption on m and, moreover, to weaken the notion
of solution for the generalized Skorohod problem (7). Therefore, along H, we consider
(V, ‖·‖

V
) a real separable Banach space with separable dual (V∗, ‖·‖

V∗) such that

V ⊂ H ∼= H
∗ ⊂ V

∗,

where the embeddings are continuous, with dense range (the duality paring (V∗,V)
is denoted also by 〈·, ·〉, and, for k : [0,∞) −→ V

∗, k (0) = 0, we use the adequate
notation llkll∗T = ‖k‖BV ([0,T ];V∗)).

Reconsider the multivalued monotone differential equation (7) under the assumptions

H̄GSP :

{

HGSP : (i) and (ii) ,

(iii′) m : [0,∞) −→ V is continuous and m (0) = 0.

Definition 2.8. A continuous function x : [0,∞) → H is a solution of Eq. (7) if

(i) there exist the sequences {x0,n} ⊂ Dom(A) and mn : [0,∞) −→ V, mn (0) = 0
of C1−continuous functions satisfying, for all T > 0,

|x0,n − x0|+ ‖mn −m‖C([0,T ];V) → 0, as n→ ∞,

(ii) there exist xn ∈ C([0,∞); Dom(A)), kn ∈ C([0,∞);H)∩BV0,loc (R+;V
∗) , kn (0)

= 0, and a function k such that

xn (t) + kn (t) = x0,n +mn (t) , ∀t ≥ 0

and, for all T > 0,

(a) ‖xn − x‖T + ‖kn − k‖T → 0, as n→ ∞,

(b) sup
n∈N∗

llknll∗T <∞,

(c)

∫ t

s

〈xn (r)− z, dkn (r)− z∗dr〉 ≥ 0, ∀ (z, z∗) ∈ A, ∀0 ≤ s ≤ t ≤ T .

(Without confusion, the uniqueness of k will permit us to call the pair (x, k) solution
of the generalized Skorohod problem (7) and we write (x, k) = GSP (A;x0,m).)

Remark 2.9. If (x, k) = GSP (A;x0,m) then we clearly have

(iii) x (t) ∈ Dom(A), for all t ≥ 0,

(iv) k ∈ C([0,∞);H)∩BV0,loc (R+;V
∗), k (0) = 0 and

(v) x (t) + k (t) = x0 +m (t) , ∀t ≥ 0.

Replacing now the condition int(Dom(A)) 6= ∅ we obtain (see, for example, Răşcanu
[16], Theorem 2.3) the following result of existence and uniqueness of a solution for
the generalized Skorohod problem (7).
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Theorem 2.10. Under the hypothesis
(

H̄GSP

)

, if there exist h0 ∈ H and r0, a1, a2 >
0 such that

r0 ‖z
∗‖

V∗ ≤ 〈z∗, z − h0〉+ a1 |z|
2 + a2, ∀ (z, z∗) ∈ A (15)

then the differential equation (7) has a unique solution (x, k) in the sense of Definition
2.8. Moreover, for all T > 0,

(a) if (x, k) = GSP (A;x0,m) and (x, k) = GSP (A; x0, m), then there exists a
positive constant C such that

‖x− x‖2T ≤ C
[

|x0 − x0|
2 + ‖m− m‖2T + ‖m− m‖C([0,T ];V) ll k −

k ll∗T

]

and

(b) for every equiuniform continuous subset M ⊂ C ([0, T ] ;V) , m ∈ M, there
exists C0 = C0 (r0, h0, a1, a2, T,NM) > 0 for which

‖x‖2T + ll k ll∗T ≤ C0

[

1 + |x0|
2 + ‖m‖2T

]

.

(Here NM is the constant of equiuniform continuity given by sup{‖f (t)−f (s)‖
V
:

|t− s| ≤ T/NM} ≤ r0/4, ∀f ∈ M.)

From Răşcanu [16] we mention three situations when the relation (15) is satisfied:

(a) A = A0 + ∂ϕ, where A0 : H → H is a continuous monotone operator on H

and ϕ : H →] −∞,+∞] is a proper convex l.s.c. function for which there exist
h0 ∈ H, R0 > 0, a0 > 0 such that

ϕ (h0 + x) ≤ a0, ∀x ∈ V, ‖x‖
V
≤ R0.

(b) ◦ There exists a separable Banach space U such that U ⊂ H ⊂ U
∗ densely and

continuously and U ∩ V is dense in V,
◦ A : H ⇉ H is a maximal monotone operator with Dom(A) ⊂ U,
◦ ∃a, λ ∈ R, a > 0, such that for all (x1, y1) , (x2, y2) ∈ A

(y1 − y2, x1 − x2) + λ |x1 − x2|
2 ≥ a ‖x1 − x2‖

2
V
,

◦ ∃h0 ∈ U, ∃r0, a0 > 0 such that

h0 + r0e ∈ Dom(A) and
∥

∥A0 (h0 + r0e)
∥

∥

U∗
≤ r0,

for all e ∈ U ∩ V, ‖e‖
V
= 1, where A0x := PrAx 0.

(c) A is a maximal monotone with int(Dom(A)) 6= ∅ and V = H.

2.2. Maximal monotone SDE with additive noise

Consider now the following stochastic differential equation (for short SDE), where by
B we denote the H0-Wiener process defined in Section 1.2,

{

dXt + AXt(dt) ∋ GtdBt ,

X0 = ξ, t ∈ [0, T ] ,
(16)
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where

(HMSDE) :











(i) A : H ⇉ H is a maximal monotone operator,

(ii) ξ ∈ L0(Ω,F0,P; Dom(A)),

(iii) G ∈ Λ2
H×H0

.

Setting X = L2 (Ω;C ([0, T ] ;H)), the space L2 (Ω;BV0 ([0, T ] ;H)) is a linear subspace
of the dual of X and, the natural duality

(X,K) 7→ E

∫ T

0

〈Xt, dKt〉

between these two suggests to use the notation X
∗ for L2 (Ω;BV0 ([0, T ] ;H)), even it

is not the entire dual space. On X we shall consider the strong topology and on X
∗

the w∗-topology. Let A the realization of A on X× X
∗.

Definition 2.11. By a solution of Eq. (16) we understand a pair of stochastic pro-
cesses

(X,K) ∈ L0 (Ω;C ([0, T ] ;H))×
[

L0 (Ω;C ([0, T ] ;H)) ∩ L0 (Ω;BV0 ([0, T ] ;H))
]

,

satisfying, P-a.s. ω ∈ Ω, for all 0 ≤ s ≤ t ≤ T ,

(c1) Xt ∈ Dom(A),

(c2) Xt +Kt = ξ +

∫ t

0

GsdBs and

(c3)

∫ t

s

〈Xr − u, dKr − vdr〉 ≥ 0, ∀(u, v) ∈ A.

Clearly,
(X(ω, ·), K(ω, ·)) = GSP (A; ξ(ω),M(ω, ·)) , P-a.s. ω ∈ Ω,

where Mt =
∫ t

0
GsdBs ∈ M2(0, T ;H). Consequently, under the hypothesis (HMSDE),

if int(Dom(A)) 6= ∅ then by Theorem 2.6 there exists a unique solution (X,K) (in
the sense of Definition 2.11) for Eq. (16). Moreover, if

E |ξ|4 + E

(
∫ T

0

‖Gt‖
2
HS dt

)2

< +∞

then X ∈ L4 (Ω;C ([0, T ] ;H)) ⊂ X and K ∈ X ∩ X
∗ (see for example Pardoux &

Răşcanu [14], Proposition 4.22).

In the sequel we define a convex functional whose minimum point coincide with the
solution of Eq. (16).

Let
S = L2 (Ω,F0,P;H)× X× X

∗ × Λ2
H×H0

.

Define, for each (U,U∗) ∈ A,
J(U,U∗) : S → R
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by

J(U,U∗) (η,X,K, g) =
1

2
E |η − ξ|2 +

1

2
E

∫ T

0

‖gt −Gt‖
2
HS dt

+ E

∫ T

0

[〈Ut, dKt〉+ 〈Xt, dU
∗
t 〉 − 〈Ut, dU

∗
t 〉 − 〈Xt, dKt〉]

and J : S →]−∞,+∞]

J (η,X,K, g) = sup
(U,U∗)∈A

J(U,U∗) (η,X,K, g)

=
1

2
E |η − ξ|2 +H (X,K)− 〈〈X,K〉〉+

1

2
E

∫ T

0

‖gt −Gt‖
2
HS dt,

where H : X×X
∗ →]−∞,+∞] is the Fitzpatrick function associated to the maximal

monotone operator A. It is clear that

Remark 2.12. J : S →]−∞,+∞] is a lower semicontinuous function as supremum
of continuous functions.

Since H (X,K) ≥ 〈〈X,K〉〉, then we easily deduce

Proposition 2.13. J has the following properties:

(a) J (η,X,K, g) ≥ 0, for all (η,X,K, g) ∈ S.

(b) J (η,X,K, g) = 0 iff η = ξ, g = G and K ∈ A (X).

(c) Let R > 0. The restriction of J to the bounded closed convex set

L =

{

(η,X,K, g) ∈ S : Xt +Kt = η +

∫ t

0

gsdBs, ∀t ∈ [0, T ] ,

E |η|2 + E ‖X‖2
X
+ ElKl

X∗ + E

∫ T

0

‖gs‖
2
HS ds ≤ R

}

is a convex l.s.c. function and J (η,X,K, g) = 0 iff η = ξ, g = G and (X,K)
is the solution of the SDE (16).

Proof. The points (a) and (b) clearly are consequences of the properties of the Fitz-
patrick function H. Let us prove (c) . Since, by Energy Equality

1

2
E |XT |

2 + E

∫ T

0

〈Xt, dKt〉 =
1

2
E |η|2 +

1

2
E

∫ T

0

‖gt‖
2
HS dt

then

J (η,X,K, g) =
1

2
E |η − ξ|2 +H (X,K)− 〈〈X,K〉〉+

1

2
E

∫ T

0

‖gt −Gt‖
2
HS dt

=
1

2
E |ξ|2 − E 〈η, ξ〉+H (X,K) +

1

2
E |XT |

2

− E

∫ T

0

〈gt, Gt〉 dt+
1

2
E

∫ T

0

‖Gt‖
2
HS dt
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and the convexity of J on the set L follows.

To complete this section, we will situate in the extended framework introduced in
the final part of Subsection 2.1. We will consider once again the spaces H and V and
we assume that V ⊂ H ∼= H

∗ ⊂ V
∗, where the embeddings are continuous with dense

range. Concerning the SDE (16), the hypothesis (HMSDE) will be replaced by

(

H̄MSDE

)

:































(i)

∣

∣

∣

∣

∣

∣

∣

A : H ⇉ H is a maximal monotone operator and

there exist h0 ∈ H and r0, a1, a2 > 0 such that

r0 ‖z∗‖V∗ ≤ 〈z∗, z − h0〉+ a1 |z|
2 + a2, ∀ (z, z∗) ∈ A

(ii) ξ ∈ L2(Ω,F0,P; Dom(A)),

(iii) G ∈ Λ2
H×H0

(0, T ;L2 (H0,H)) .

Definition 2.14. LetMt :=
∫ t

0
GsdBs. A stochastic process X ∈L0

ad (Ω;C ([0, T ] ;H))

that satisfies, P-a.s., X0 = ξ and Xt ∈ Dom(A), ∀t ∈ [0, T ] is a (generalized) solution
of multivalued SDE (16) if there exist

K ∈ L0
ad (Ω;C ([0, T ] ;H)) ∩ L0 (Ω;BV (0, T ;V∗)) , K0 = 0 P-a.s.

and a sequence of stochastic processes {Mn}n∈N∗ satisfying

{

Mn ∈ L2
ad (Ω;C ([0, T ] ;V)) ∩M2 (0, T ;H) ,

Mn −→M in M2 (0, T ;H)
(17)

such that, denoting for a.s. ω ∈ Ω,

(Xn(ω, ·), Kn(ω, ·)) = GSP (A; ξ (ω) ,Mn (ω, ·)) ,

we have Xn → X, Kn → K in L0
ad (Ω, C ([0, T ] ;H)) as n→ ∞ and supn EllK

nll∗T <
+∞.

(Without confusion, the uniqueness of K permits us to call the pair (X,K) a gener-
alized solution of the multivalued SDE (16).)

Recall, from Răşcanu [16], the following existence result which is a consequence of
the corresponding deterministic case here above.

Theorem 2.15. Under the assumption (H̄MSDE) the problem (16) has a unique gen-
eralized solution (X,K) . Moreover the solution satisfies

E sup
t∈[0,T ]

|Xt|
2+E sup

t∈[0,T ]

|Kt|
2+E llKll∗T≤ C0

[

1 + E |ξ|2 + E

∫ T

0

‖Gt‖
2
HS dt

]

, (18)

where C0 = C0 (T, r0, h0, a1, a2) > 0. If (X,K) and (X̃, K̃) are two solutions of (16)
corresponding to (ξ,G) and, respectively, (ξ̃, G̃) then

E sup
t∈[0,T ]

|Xt − X̃t|
2 ≤ C (T )

[

E|ξ − ξ̃|2 + E

∫ T

0

||Gt − G̃t||
2
HS dt

]

. (19)
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Proof. Since the process M does not have V-valued continuous trajectories, we use
the deterministic result approximating the stochastic integral by the sequence

Mn
t :=

n
∑

i=1

〈Mt, ei〉 ei,

where {ei; i ∈ N
∗} ⊂ V is an orthonormal basis in H. By Theorem 2.10, there exists

(Xn (ω) , Kn (ω)) = GSP(A; ξ(ω),Mn(ω)), P-a.s. ω ∈ Ω. It is not difficult to prove
that the following inequalities hold

E sup
t∈[0,T ]

|Xn
t |

2 + E sup
t∈[0,T ]

|Kn
t |

2 + E llKnll∗T≤ C0

[

1 + E|ξ|2 + E|Mn
T |

2
]

and, if (X̃n (ω) , K̃n (ω)) = GSP(A; ξ̃(ω), M̃n(ω)), then

E sup
t∈[0,T ]

|Xn
t − X̃n

t |
2 + E sup

t∈[0,T ]

|Kn
t − K̃n

t |
2 ≤ C (T )

[

E|ξ − ξ̃|2 + E|Mn
T − M̃n

T |
2
]

.

So (replacing M̃n by M̃n′

), there exist X,K ∈ L2
ad (Ω;C ([0, T ] ;H)) such that Xn →

X and Kn → K in L2
ad (Ω;C ([0, T ] ;H)) as n → ∞. The inequalities (18) and (19)

are immediate consequences and, as a by-product, (X,K) is a solution of Eq. (16).
For more details, we invite the interested reader to consult Răşcanu [16].

2.3. Backward stochastic A−representation

Let (Ω,F ,P, {Ft}t≥0) be a stochastic basis, where {Ft}t≥0 is the standard filtration
associated to a H0-Wiener process {Bt}t≥0.

By the representation theorem, for ξ ∈ L2 (Ω,FT ,P;H) there exists a unique Z ∈
Λ2

H×H0
(0, T ) such that

ξ = Eξ +

∫ T

0

ZsdBs

and, for each (ξ,H) ∈ L2 (Ω,FT ,P;H)× Λ2
H
(0, T ), there exists a unique pair

(Y, Z) ∈ S2
H
[0, T ]× Λ2

H×H0
(0, T )

such that

Yt +

∫ T

t

Hsds = ξ −

∫ T

t

ZsdBs

and the mapping (ξ,H) 7→ (Y, Z) : L2 (Ω,FT ,P;H) × Λ2
H
(0, T ) → S2

H
[0, T ]×

Λ2
H×H0

(0, T ) is linear and continuous. (Y, Z) is defined as

Yt = E

(

ξ −

∫ T

t

Hsds

∣

∣

∣

∣

Ft

)

and ξ −

∫ T

0

Hsds = E

(

ξ −

∫ T

0

Hsds

)

+

∫ T

0

ZsdBs.

Denote
Yt = Ct (ξ,H) and Zt = Dt (ξ,H) .
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Remark that, by the Energy Equality, we have

E |Yt|
2 + E

∫ T

t

‖Zs‖
2
HSds = E |ξ|2 + 2E

∫ T

t

〈Ys, Fs〉 ds. (20)

If A : H ⇉ H is a maximal monotone operator then the realization of A on Λ2
H
(0, T )

is the maximal monotone operator A : Λ2
H
(0, T ) ⇉ Λ2

H
(0, T ) defined by H ∈ A (Y )

iff Ht (ω) ∈ A (Yt (ω)) , dP⊗dt-a.e. (ω, t) ∈ Ω× ]0, T [ . The inner product in Λ2
H
(0, T )

is given by 〈〈U, V 〉〉 = E
∫ T

0
〈Ut, Vt〉 dt.

Consider the backward stochastic differential equation

{

−dYt + A (Yt) dt ∋ −ZtdBt, t ∈ [0, T ] ,

YT = ξ,
(21)

where
{

(i) A : H ⇉ H is a maximal monotone operator and

(ii) ξ ∈ L2(Ω,FT ,P; Dom(A)).

Definition 2.16. Y ∈ S2
H
[0, T ] is a solution of Eq. (21) if there exist H ∈ Λ2

H
(0, T )

and Z ∈ Λ2
H×H0

(0, T ) such that

Yt +

∫ T

t

Hsds = ξ −

∫ T

t

ZsdBs

and H ∈ A (Y ) (that is, Ht (ω) ∈ A (Yt (ω)) , dP⊗ dt-a.e. (ω, t) ∈ Ω× ]0, T [).

Let R > 0 and the ball FR =
{

η ∈ L2 (Ω,FT ,P;H) : E |η|2 ≤ R
}

.

For (U,U∗) ∈ A and ζ ∈ FR define

J(ζ,U,U∗) : L
2 (Ω,FT ,P;H)×Λ2

H
(0, T )× Λ2

H
(0, T ) → R

by

J(ζ,U,U∗) (η, Y,H) =
1

2
E |η − ξ|2 + E

∫ T

0

[〈Ut, Ht〉+ 〈Yt, U
∗
t 〉 − 〈Ut, U

∗
t 〉 − 〈Yt, Ht〉] dt

+
1

2

[

E |ζ − η|2 − E |ζ − ξ|2
]

and J : L2 (Ω,FT ,P;H)×Λ2
H
(0, T )× Λ2

H
(0, T ) →]−∞,+∞],

J (η, Y,H) = sup
{

J(ζ,U,U∗) (η, Y,H) : (U,U∗) ∈ A, ζ ∈ FR

}

(22)

=
1

2
E |η − ξ|2 +H (Y,H)− 〈〈Y,H〉〉+

1

2
sup
ζ∈FR

[

E |ζ − η|2 − E |ζ − ξ|2
]

,

where H : Λ2
H
(0, T ) × Λ2

H
(0, T ) →] −∞,+∞] is the Fitzpatrick function associated

to the maximal monotone operator A.
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Remark 2.17. J : L2 (Ω,FT ,P;H)×Λ2
H
(0, T ) × Λ2

H
(0, T ) →] − ∞,+∞] is a l.s.c.

function as the supremum of the continuous functions J(ζ,U,U∗) (η, Y,H).

If ξ ∈ FR then

2R2 + 2E |η|2 ≥ sup
ζ∈FR

(

E |ζ − η|2 − E |ζ − ξ|2
)

≥ E |η − ξ|2

and clearly follows

Proposition 2.18. Let R > 0 and ξ ∈ FR. J has the following properties:

(a) J (η, Y,H) ≥ H (Y,H) − 〈〈Y,H〉〉 ≥ 0, for all (η, Y,H) ∈ L2 (Ω,FT ,P;H)×
Λ2

H
(0, T )× Λ2

H
(0, T ) .

(b) Let (η, Y , H) ∈ FR×Λ2
H
(0, T ) × Λ2

H
(0, T ) . Then J(η, Y , H) = 0 iff η = ξ,

H ∈ A( Y ).

(c) The restriction of J to the closed convex set

K =
{

(η, Y,H) ∈ FR×Λ2
H
(0, T )× Λ2

H
(0, T ) : Yt = Ct (η,H) , ∀t ∈ [0, T ]

}

is a convex lower semicontinuous function and for (η, Y , H) ∈ K the following
assertions are equivalent:
(c1) inf(η,Y,H)∈FR×Λ2

H
(0,T )×Λ2

H
(0,T )

J (η, Y,H) = J(η, Y , H) = 0.

(c2) η = ξ and ( Y , H, Z), with Zs = Ds(ξ, H), is the solution of the BSDE
(21).

Proof. (Sketch) Since the points (a) and (b) are obvious, we focus on (c). The
convexity of J on K is obtained as follows. By Energy Equality we have

1

2
|C0 (η,H)− C0 (ζ, 0)|

2 + E

∫ T

0

〈Ys − Cs (ζ, 0) , Hs〉 ds

+
1

2
E

∫ T

0

|Ds (η,H)−Ds (ζ, 0)|
2 ds =

1

2
E |η − ζ|2 .

Then

J(ζ,U,Ũ) (η, Y,H)

=
1

2
E |η − ξ|2 + E

∫ T

0

[〈Ut, Ht〉+ 〈Yt, U
∗
t 〉 − 〈Ut, U

∗
t 〉 − 〈Yt, Ht〉] dt

+
1

2

[

E |ζ − η|2 − E |ζ − ξ|2
]

=
1

2
E |η − ξ|2 + [〈〈U,H〉〉+ 〈〈Y, U∗〉〉 − 〈〈U,U∗〉〉] +

1

2
|C0 (η,H)− C0 (ζ, 0)|

2

+ 〈〈C (ζ, 0) , H〉〉+
1

2
‖D (η,H)−D (ζ, 0)‖2 − E |ζ − ξ|2
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Hence

(η, Y,H) 7−→ J (η, Y,H)

=
1

2
E |η − ξ|2 +H (Y,H) + sup

ζ

{

1

2
|C0 (η,H)− C0 (ζ, 0)|

2

+ 〈〈C (ζ, 0) , H〉〉+
1

2
‖D (η,H)−D (ζ, 0)‖2 − E |ζ − ξ|2

}

is, clearly, a convex lower semicontinuous function. Then, the equivalence between
(c1) and (c2) easily follows.

Proving the existence of a solution for the backward stochastic differential equation
(21) is therefore equivalent to solving a problem on convex analysis. More precisely, it
is sufficient to show that the functional defined by the formula (22) attains a minimum
and its value in that point is zero. Unfortunately, this is still an open problem, but
we estimate that the perspective and the tools introduced along this paper will lead
us to the desired result.

3. Fitzpatrick type method for SVI and BSVI

In the following sections we will consider the finite dimensional case H = R
d and

H0 = R
k. Let {Bt, t ≥ 0} be a k-dimensional Brownian motion with respect to a

given complete stochastic basis (Ω,F , P, {Ft}t≥0).

3.1. Stochastic variational inequality

3.1.1. Known results

Let

F : Ω× [0,+∞[× R
d → R

d, G : Ω× [0,+∞[× R
d → R

d×k.

Consider the stochastic variational inequality (for short SVI)

{

dXt + ∂ϕ(Xt)(dt) ∋ F (t,Xt)dt+G(t,Xt)dBt, t ≥ 0,

X0 = ξ,
(23)

where will assume

(H0) : ξ ∈ L0(Ω,F0, P ; Dom(ϕ)) (24)

and

(Hϕ) :

{

(i) ϕ : Rd →]−∞,+∞] is a convex l.s.c. function,

(ii) int(Dom(ϕ)) 6= ∅.
(25)
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Definition 3.1. A pair (X,K) ∈ S0
d × S0

d , K0 = 0, is a solution of the stochastic
variational inequality (23) if the following conditions are satisfied, P-a.s.:



















































(d1) Xt ∈ Dom(ϕ), a.e. t > 0 and ϕ(X) ∈ L1
loc (0,∞) ,

(d2) lKlT <∞, ∀T > 0,

(d3) Xt +Kt = ξ +

∫ t

0

F (s,Xs)ds+

∫ t

0

G(s,Xs)dBs, ∀t ≥ 0,

(d4)

∫ t

s

〈y(r)−Xr, dKr〉+

∫ t

s

ϕ(Xr)dr ≤

∫ t

s

ϕ(y(r))dr,

∀y : R+ → R
d continuous function and ∀0 ≤ s ≤ t.

(26)

Notation 3.2. The notation dKt ∈ ∂ϕ (Xt) (dt) will be used to say that (X,K)
satisfy (d1) , (d2) and (d4) . The SDE (23) will be written, also, in the form











Xt +Kt = ξ +

∫ t

0

F (s,Xs)ds+

∫ t

0

G(s,Xs)dBs, ∀t ≥ 0,

dKt ∈ ∂ϕ (Xt) (dt) .

Remark (see Asiminoaei & Răşcanu [1]) that the condition (d4) from Definition 3.1
is equivalent to each of the following conditions, for any fixed T > 0,

(a1)

∫ t

s

〈z −Xr, dKr〉+

∫ t

s

ϕ(Xr)dr ≤ (t− s)ϕ(z), ∀z ∈ R
d, ∀0 ≤ s ≤ t ≤ T,

(a2)

∫ t

s

〈Xr − z, dKr − z∗dr〉 ≥ 0, ∀ (z, z∗) ∈ ∂ϕ, ∀0 ≤ s ≤ t ≤ T,

(a3)

∫ T

0

〈y(r)−Xr, dKr〉+

∫ T

0

ϕ(Xr)dr ≤

∫ T

0

ϕ(y(r))dr, ∀y ∈ C([0, T ],Rd).

Hence, the condition (d4) means that (X· (ω) , K· (ω)) ∈ ∂ϕ̃, P-a.s., where ϕ̃ is the
realization of ϕ on C

(

[0, T ] ;Rd
)

, that is ϕ̃ : C([0, T ];Rd) →]−∞,+∞],

ϕ̃(x) =







∫ T

0

ϕ(x(t))dt, if ϕ (x) ∈ L1(0, T ),

+∞, otherwise.

(27)

Notation 3.3. We introduce the notation:

F#
R (t) := ess sup {|F (t, x)| : |x| ≤ R} .

We recall the basic assumptions on F and G under which we will study the multival-
ued stochastic equation (23):

◦ the functions F (·, ·, x) : Ω× [0,+∞[ → R
d and G (·, ·, x) : Ω× [0,+∞[ → R

d×k

are progressively measurable stochastic processes for every x ∈ R
d,
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◦ there exist µ ∈ L1
loc (0,∞) and ℓ ∈ L2

loc (0,∞;R+), such that dP⊗ dt-a.e.:

(HF ) :



















































Continuity:

(CF ) : x 7→ F (t, x) : Rd → R
d is continuous,

Monotonicity condition:

(MF ) : 〈x− y, F (t, x)− F (t, y)〉 ≤ µ (t) |x− y|2, ∀x, y ∈ R
d,

Boundedness condition:

(BF ) :

∫ T

0

F#
R (s) ds <∞, for all R, T ≥ 0.

(28)

and

(HG) :































Lipschitz condition:

(LG) : |G(t, x)−G(t, y)| ≤ ℓ (t) |x− y|, ∀x, y ∈ R
d,

Boundedness condition:

(Bg) :

∫ T

0

|G(t, 0)|2dt <∞.

(29)

Clearly (HF ) and (HG) yield F (·, ·, X·) ∈ L1
loc

(

R+;R
d
)

and G(·, ·, X·) ∈ Λ0
d×k for all

X ∈ S0
d .

Theorem 3.4. If the assumptions (24), (25), (28) and (29) are satisfied, then the
SDE (23) has a unique solution (X,K) ∈ S0

d × S0
d (in the sense of Definition 3.1).

Moreover, if there exist p ≥ 2 and u0 ∈ int (Dom (ϕ)) such that, for all T ≥ 0,

E |ξ|p + E

(
∫ T

0

|F (t, u0)| dt

)p

+ E

(
∫ T

0

|G(t, u0)|
2dt

)p/2

< +∞, (30)

then

E(‖X‖pT + ‖K‖p/2T + lKlp/2T ) + E

(
∫ T

0

|ϕ (Xr)| dr

)p/2

<∞.

(For the proof see Pardoux & Răşcanu [14], Theorem 4.14.)

3.1.2. Fitzpatrick approach

In this subsection, assumptions (HF ) and (HG) are replaced by

(i) the functions F (·, ·, x) : Ω× [0,+∞[ → R
d and G (·, ·, x) : Ω× [0,+∞[ → R

d×k

are progressively measurable stochastic processes for every x ∈ R
d and, dP⊗ dt-

a.e.,

(ii) x 7→ F (t, x) : Rd → R
d and x 7→ G (t, x) : Rd → R

d×k are continuous,

(iii) for all x, y ∈ R
d

2 〈x− y, F (t, x)− F (t, y)〉+ |G(t, x)−G(t, y)|2 ≤ 0 and (31)
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(iv) there exists b > 0 such that, for all x ∈ R
d,

|F (t, x)|+ |G(t, x)| ≤ b (1 + |x|) . (32)

Remark 3.5. If µ (t) + 1
2
ℓ2 (t) ≤ 0, for every t ≥ 0, then the assumptions (28-MF )

and (29-LG) implies that (31) holds.

Denote
SBV [0, T ] =

{

K ∈ S0
d [0, T ] : K0 = 0, E lKl2T <∞

}

,

with the w∗-topology, that meansKn → K if limn→∞ E
∫ T

0
〈Xt, dK

n
t 〉=E

∫ T

0
〈Xt, dKt〉,

for all X ∈ L2(Ω;C([0, T ];Rd)).

Let Φ : S2
d [0, T ] →]−∞,+∞] defined by

Φ(X) =







E

∫ T

0

ϕ(Xt)dt, if ϕ (X) ∈ L1(Ω×]0, T [),

+∞, otherwise.

(33)

Since ϕ : Rd →]−∞,+∞] is a proper convex l.s.c. function then Φ is also a proper
convex l.s.c. function.

Let
S := L2(Ω,F0,P; Dom(ϕ))× S2

d [0, T ]× SBV [0, T ]× Λ2
d×k (0, T )

and, for each U ∈ Dom (Φ) = {X ∈ S2
d [0, T ] : Φ(X) <∞}, we consider the mapping

JU : S →]−∞,+∞], defined by

JU (η,X, L, g)

=
1

2
E |η − ξ|2 + E

∫ T

0

[

〈Us −Xs, F (s, Us)〉+
1

2
|gs −G (s, Us)|

2

]

ds

+ E

∫ T

0

〈Us −Xs, dLs〉+ Φ(X)− Φ (U)

(34)

and J : S −→]−∞,+∞]

J (η,X, L, g) := sup
U∈Dom(Φ)

JU (η,X, L, g) .

Remark 3.6. J : S →] −∞,+∞] is a lower semicontinuous function as supremum
of lower semicontinuous functions.

We now have

Proposition 3.7. J has the following properties:

(a) J (η,X, L, g) ≥ 0, for all (η,X, L, g) ∈ S and J is not identically +∞.

(b) Let (η, X, L, g) ∈ S. Then

J(η, X, L, g) = 0 iff η = ξ, g· = G(·, X·), L+

∫ ·

0

F (s, Xs)ds ∈ ∂Φ( X).
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(c) The restriction of J to the closed convex set

L =

{

(η,X, L, g) ∈ S : Xt + Lt = η +

∫ t

0

gsdBs, ∀t ∈ [0, T ]

}

is a convex l.s.c. function. If (η, X, L, g) ∈ L, then J(η, X, L, g) = 0 iff

η = ξ, g· = G(·, X·) and ( X, L+
∫ ·

0
F (s, Xs)ds) is a solution of the SVI (23).

Proof. (a) If X /∈ Dom (Φ) then J (η,X, L, g) = +∞. If X ∈ Dom (Φ) then

J (η,X, L, g) = sup
U∈Dom(Φ)

JU (η,X, L, g)

≥ JX (η,X, L, g)

=
1

2
E |η − ξ|2 +

1

2
E

∫ T

0

|gs −G (s,Xs)|
2 ds ≥ 0.

J is a proper function since, for v0 ∈ ∂ϕ (u0) and η0 = ξ, X0
t = u0, L

0
t = v0t −

∫ t

0
F (s, u0) ds, g

0
s = G (s, u0), we have (using the assumption (31)) that

JU
(

η0, X0, L0, g0
)

≤ 0, for all U ∈ Dom (Φ) .

(b) If J(η, X, L, g) = 0, then X ∈ Dom (Φ) and by the calculus from the proof of (a)
we infer η = ξ, g = G(·, X·) and

JU(η, X, L, g) ≤ 0, for all U ∈ Dom (Φ) .

Hence

E

∫ T

0

〈

Us − Xs, F (s, Us) ds+ dLs

〉

+ Φ( X) ≤ Φ (U) , for all U ∈ Dom (Φ) .

Let V ∈ Dom (Φ) and λ ∈]0, 1[ be arbitrary. Since Dom (Φ) is a convex set, we can
replace U by (1− λ) X + λV. It follows

λE

∫ T

0

〈

Vs − Xs, F (s, Xs + λ(Vs − Xs))ds+ dLs

〉

+ Φ( X)

≤ Φ((1− λ) X + λV ) ≤ (1− λ) Φ( X) + λΦ (V ) ,

which is equivalent to

E

∫ T

0

〈

Vs − Xs, F (s, Xs + λ(Vs − Xs))ds+ dLs

〉

+ Φ( X) ≤ Φ (V ) ,

for all V ∈ Dom (Φ) . By the continuity of x 7→ F (t, x) and assumption (32) we can
pass to limit under the last integral, and it follows that L+

∫ ·

0
F (s, Xs)ds ∈ ∂Φ( X).
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Conversely, using (31), we have

JU(ξ, X, L,G(·, X.))

=
1

2
E

∫ T

0

|G(s, Xs)−G (s, Us) |
2ds+ E

∫ T

0

〈

Us − Xs, F (s, Us)− F (s, Xs)ds
〉

+ E

∫ T

0

〈

Us − Xs, F (s, Xs)ds+ dLs

〉

+ Φ( X)− Φ (U) ≤ 0

and, consequently, J(ξ, X, L,G(·, X.)) = 0.

(c) The second part of this point is easy to observe, and, therefore, ( X, L+
∫ ·

0
F (s, Xs)ds)

is a solution of the SVI (23).

It remains to prove the convexity of J on L. By the Energy Equality we have

1

2
E |XT |

2 + E

∫ T

0

〈Xs, dLs〉 =
1

2
E |η|2 +

1

2
E

∫ T

0

|gs|
2 ds

and, using it in the formula (34), the functional JU (η,X, L, g) becomes

JU (η,X, L, g)

=
1

2
E |η − ξ|2 + E

∫ T

0

〈Us −Xs, F (s, Us) ds〉+
1

2
E

∫ T

0

|gs −G (s, Us)|
2 ds

+

[

E

∫ T

0

〈Us, dLs〉 −
1

2
E |η|2 −

1

2
E

∫ T

0

|gs|
2 ds+

1

2
E |XT |

2

]

+ Φ(X)− Φ (U)

= − E 〈η, ξ〉+
1

2
E |ξ|2 + E

∫ T

0

〈Us −Xs, F (s, Us) ds〉+ E

∫ T

0

〈Us, dLs〉

+
1

2
E |XT |

2 +
1

2
E

∫ T

0

|G (s, Us)|
2 ds− E

∫ T

0

〈gs, G (s, Us)〉 ds+ Φ(X)− Φ (U) .

It clearly follows that JU is convex and lower semicontinuous for ∀U ∈ Dom (Φ) . Con-
sequently, the mapping (η,X, L, g) 7−→ J (η,X, L, g) = supU∈Dom(Φ) JU (η,X, L, g)
has the same properties.

The proof is now complete.

3.2. Backward stochastic variational inequality

In this section we suppose that the filtration {Ft : t ≥ 0} is the natural filtration of
the k–dimensional Brownian motion {Bt : t ≥ 0}, i.e., for all t ≥ 0,

Ft = FB
t := σ ({Bs : 0 ≤ s ≤ t}) ∨NP.

3.2.1. Known results

Consider the backward stochastic variational inequality (for short BSVI)

{

−dYt + ∂ϕ (Yt) dt ∋ F (t, Yt, Zt) dt− ZtdBt, 0 ≤ t < T,

YT = ξ,
(35)
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or, equivalently,






Yt +

∫ T

t

Hsds = ξ +

∫ T

t

F (s, Ys, Zs) ds−
∫ T

t
ZsdBs, t ∈ [0, T ] , P-a.s.,

Ht (ω) ∈ ∂ϕ (Yt (ω)) , dP⊗ dt-a.e.

We assume

(Hξ): ξ : Ω → R
d is a FT -measurable random vector,

(Hϕ): ∂ϕ is the subdifferential of the proper convex l.s.c. function ϕ : R
d →]−

∞,+∞],

(HF ): F : Ω× [0,∞[× R
d × R

d×k → R
d satisfies

◦ the function F (·, ·, y, z) : Ω × [0, T ] → R
d is a progressively measurable

stochastic process for every (y, z) ∈ R
d × R

d×k,
◦ there exist some deterministic functions µ ∈ L1 (0, T ;R) and ℓ ∈ L2 (0, T ;R),
such that,



























































































(i) for all y, y′ ∈ R
d, z, z′ ∈ R

d×k, dP⊗ dt-a.e.:

Continuity:

(Cy) : y −→ F (t, y, z) : Rd → R
d is continuous,

Monotonicity condition:

(My) : 〈y′ − y, F (t, y′, z)− F (t, y, z)〉 ≤ µ (t) |y′ − y|2,

Lipschitz condition:

(Lz) : |F (t, y, z′)− F (t, y, z)| ≤ ℓ (t) |z′ − z|,

(ii) Boundedness condition:

(BF )

∫ T

0

F#
R (t) dt <∞, P-a.s., ∀R ≥ 0,

(36)

where
F#
R (t) = sup {|F (t, y, 0)| : |y| ≤ R} .

Definition 3.8. A pair (Y, Z) ∈ S0
d [0, T ] × Λ0

d×k (0, T ) of stochastic processes is
a solution of the backward stochastic variational inequality (35) if there exists a
progressively measurable stochastic process H such that, P-a.s.,

(a)

∫ T

0

|Ht| dt+

∫ T

0

|F (t, Yt, Zt)| dt <∞,

(b) (Yt (ω) , Ht (ω)) ∈ ∂ϕ, a.e. t ∈ [0, T ]

and, for all t ∈ [0, T ],

Yt +

∫ T

t

Hsds = η +

∫ T

t

F (s, Ys, Zs) ds−

∫ T

t

ZsdBs. (37)

(Without confusion, the uniqueness of the stochastic process H will permit to call
the triplet (Y, Z,H) a solution of Eq. (35).)
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We introduce now a supplementary assumption

(A) : There exist p ≥ 2, a positive stochastic process β ∈ L1 (Ω× ]0, T [) , a positive
function b ∈ L1 (0, T ) and a real number κ ≥ 0, such that for all (u, u) ∈ ∂ϕ and
z ∈ Rd×k

〈u, F (t, u, z)〉 ≤
1

2
|u|2 + βt + b (t) |u|p + κ |z|2 , dP⊗ dt-a.e.

Theorem 3.9. Let assumptions (Hξ), (Hϕ), (HF ) and (A) be satisfied. If there
exists u0 ∈ Dom (∂ϕ) such that

E |ξ|p + E |ϕ (ξ)|+ E

(
∫ T

0

|F (s, u0, 0)| ds

)p

<∞, (38)

then the BSVI (35) has a unique solution (Y, Z) ∈ Sp
d [0, T ]×Λp

d×k (0, T ) . Moreover,
uniqueness holds in S1+

d [0, T ]× Λ0
d×k (0, T ) , where

S1+
d [0, T ] :=

⋃

p>1

Sp
d [0, T ] .

(For the proof see Pardoux & Răşcanu [14], Theorem 5.13.)

3.2.2. Fitzpatrick approach

In this subsection the assumptions (HF ) are replaced by

(i) the function F (·, ·, y, z) : Ω×[0,+∞[ → R
d is a progressively measurable stochas-

tic processes for every (y, z) ∈ R
d × R

d×k,

(ii) (y, z) 7→ F (t, y, z) : Rd × R
d×k → R

d is continuous dP⊗ dt-a.e.,

(iii) for all y, y′ ∈ R
d and z, z′ ∈ R

d×k

〈y − y′, F (t, y, z)− F (t, y′, z′)〉 ≤
1

2
|z − z′| , dP⊗ dt-a.e., (39)

(iv) there exists b > 0 such that, for all y ∈ R
d,

|F (t, y, z)| ≤ b (1 + |y|+ |z|) , dP⊗ dt-a.e.

Remark that, if

µ (t) +
1

2
ℓ2 (t) ≤ 0, a.e. t ≥ 0,

then the assumptions (HF ) implies (i)–(iii).

Denote by Φ : S2
d [0, T ] →]−∞,+∞] the proper convex lower semicontinuous function

defined by

Φ(X) :=







E

∫ T

0

ϕ(Xt)dt, if ϕ (X) ∈ L1(Ω×]0, T [),

+∞, otherwise
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For each

(U, V ) ∈ D := Dom (Φ)× L2
(

Ω× [0, T ] ;Rd
)

we introduce the function

J(U,V ) : S := L2(Ω,FT ,P,R
d)× Λ2

d (0, T )× S2
d (0, T )× Λ2

d×k (0, T ) → R

by

J(U,V )(η,G, Y, Z) :=
1

2
E |η − ξ|2 + E

∫ T

0

〈Ut − Yt, F (t, Ut, Vt)−Gt〉 dt

−
1

2
E

∫ T

0

|Zt − Vt|
2 dt+ Φ(Y )− Φ (U)

and consider the functional J : S →]−∞,+∞],

J(η,G, Y, Z) := sup
(U,V )∈D

J(U,V )(η,G, Y, Z).

Remark 3.10. J : S →]−∞,+∞] is a lower semicontinuous function as supremum
of lower semicontinuous functions.

We now have

Proposition 3.11. The mapping J has the following properties:

(a) J(η,G, Y, Z) ≥ 0, ∀(η,G, Y, Z) ∈ S and J is not identical +∞.

(b) Let (η, G, Y , Z) ∈ S. Then

J(η, G, Y , Z) = 0 iff η = ξ, F ( Y , Z)− G ∈ ∂Φ(Y ).

(c) The restriction of J to the closed convex set

K =

{

(η,G, Y, Z) ∈ S : Yt = η +

∫ T

t

Gsds−

∫ T

t

ZsdBs, ∀t ∈ [0, T ]

}

is a convex lower semicontinuous function. If (η, G, Y , Z) ∈ K, then

J(η, G, Y , Z) = 0 iff η = ξ and ( Y , Z, H), with H = F ( Y , Z)− G

is a solution of the BSVI (35).

Proof. (a) If Y /∈ Dom (Φ) then J(U,V )(η,G, Y, Z) = +∞ and if Y ∈ Dom (Φ), we

have J(η,G, Y, Z) ≥ J(Y,Z)(η,G, Y, Z) ≥ 0. Moreover, J is a proper function since for
v0 ∈ ∂ϕ (u0) and η

0 = ξ, Y 0
t = u0, Z

0
t = 0, G0

t = F (t, u0, 0)− v0 we have (using the
assumption (39)) that

J(U,V )

(

η0, G0, Y 0, Z0
)

≤ 0, for all (U, V ) ∈ D.
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(b) If J(η, G, Y , Z) = 0 then

J(U,V )(η, G, Y , Z) ≤ 0, ∀U ∈ Dom (Φ) , ∀V ∈ L2
(

Ω× [0, T ] ;Rd
)

.

So, for all (U, V ) ∈ D,

1

2
E |η − ξ|2 + E

∫ T

0

〈

Ut − Yt, F (Ut, Vt)− Gt

〉

dt

−
1

2
E

∫ T

0

| Zt − Vt|
2dt+ Φ(Y )− Φ (U) ≤ 0,

which yields Y ∈ Dom (Φ); taking in particular U = Y and V = Z, we infer

η = ξ, P-a.s.

Hence, for all (U, V ) ∈ D,

E

∫ T

0

〈

Ut − Yt, F (Ut, Vt)− Gt

〉

dt+ Φ(Y ) ≤
1

2
E

∫ T

0

| Zt − Vt|
2dt+ Φ(U) . (40)

Since D is a convex set, we can replace (U, V ) by ((1− λ) Y + λU, (1− λ) Z + λV ),
where λ ∈ (0, 1) . The convexity of Φ leads to the following inequality

E

∫ T

0

〈

Ut − Yt, F ((1− λ) Yt + λUt, (1− λ) Zt + λVt)− Gt

〉

dt

≤
λ

2
E

∫ T

0

| Zt − Vt|
2dt+ Φ(U)− Φ(Y ).

Passing to lim infλ→0, we deduce

E

∫ T

0

〈

Ut − Yt, F ( Yt, Zt)− Gt

〉

dt+ Φ(Y ) ≤ Φ (U) , ∀U ∈ Dom (Φ) ,

that is
F ( Y , Z)− G ∈ ∂Φ(Y ).

Conversely, using assumption (39) we have

J(U,V )(ξ, G, Y , Z)

= E

∫ T

0

〈

Ut − Yt, F (Ut, Vt)− Gt

〉

dt−
1

2
E

∫ T

0

| Zt − Vt|
2dt+ Φ(Y )− Φ (U)

≤ E

∫ T

0

〈

Ut − Yt, F (Ut, Vt)− F ( Yt, Zt)
〉

dt−
1

2
E

∫ T

0

| Zt − Vt|
2dt

+ E

∫ T

0

〈

Ut − Yt, F ( Yt, Zt)− Gt

〉

dt+ Φ(Y )− Φ (U) ≤ 0

and, consequently, J(η, G, Y , Z) = 0.
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(c) If, moreover, (η, G, Y , Z) ∈ K, then

Yt +

∫ T

t

(F ( Ys, Zs)− Gs)ds = η +

∫ T

t

F ( Ys, Zs)ds−

∫ T

t

ZsdBs

and
F ( Y , Z)− G ∈ ∂Φ(Y ),

that is, ( Y , Z, F ( Y , Z)− G) is solution of the SVI (35).

The convexity of J on K is obtained as follows: by the Energy Equality we have

|Y0|
2 + E

∫ T

0

|Zs|
2 ds = E |η|2 + 2E

∫ T

0

〈Ys, Gs〉 ds

and J(U,V )(η,G, Y, Z) becomes

J(U,V )(η,G, Y, Z)

=
1

2
E |η − ξ|2 + E

∫ T

0

〈Ut − Yt, F (Ut, Vt)〉 dt− E

∫ T

0

〈Ut, Gt〉 dt

+ E

∫ T

0

〈Yt, Gt〉 dt−
1

2
E

∫ T

0

|Zt − Vt|
2 dt+ Φ(Y )− Φ (U)

=
1

2
E |ξ|2 − E 〈η, ξ〉+ E

∫ T

0

〈Ut − Yt, F (Ut, Vt)〉 dt− E

∫ T

0

〈Ut, Gt〉 dt

+ E

∫ T

0

〈Zt, Vt〉 dt−
1

2
E

∫ T

0

|Vt|
2 dt+

1

2
E |Y0|

2 + Φ(Y )− Φ (U) .

Hence J is a convex l.s.c. function as supremum of convex l.s.c. functions.

The proof is now complete.
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XXIX, Lecture Notes in Math. 1613, J. Azéma et al. (ed.), Springer, Berlin (1995)
86–107 (in French).

[10] S. Fitzpatrick: Representing monotone operators by convex functions, in: Functional
Analysis and Optimization, Workshop / Miniconference (Canberra, 1988), Proc. Cent.
Math. Anal. Aust. Natl. Univ. 20, Australian National University, Canberra (1988)
59–65.
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