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1. Introduction

The question addressed in this work is the following: in the 2× 2 symmetric case, is
every homogeneous gradient Young measure a laminate? More precisely, let Ω ⊂ IRN

be a bounded open set, u ∈ W 1,∞(Ω, IRm), f : IMm×N → IR a continuous function
defined on matrices and consider functionals of the type

I(u) =

∫

Ω

f(∇u(x)) dx.

In order to apply the so-called direct method of the Calculus of Variations to the
above functional, one needs to ensure the (sequential) weak-* lower semicontinuity
of I; and while in the scalar case (N = 1 or m = 1) the convexity of f is both a
necessary and sufficient condition, in the vectorial case (N,m > 1) this condition is
still sufficient, but is far from being necessary. More than 50 years ago Morrey showed
in [12] that the adequate notion of convexity for the vector case is quasiconvexity of
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the integrand f , which can be defined by

f(A) ≤

∫

(0,1)N
f(A+∇ξ(x)) dx

for every A ∈ IMm×N and every ξ ∈ W
1,∞
0 ((0, 1)N , IRm). Here we prefer, however, to

use the following equivalent definition:

f(A) ≤

∫

(0,1)N
f(A+∇ξ(x)) dx

for every A ∈ IMm×N and every (0, 1)N -periodic ξ ∈ W 1,∞(IRN , IRm).

The quasiconvexity condition is in general very hard to verify, namely due to its
nonlocal character. Thus two other related convexity conditions were introduced,
which are easier to check: a sufficient condition, called polyconvexity, introduced by
Ball in [1] (f is polyconvex if there is a convex function g such that

f(A) = g(M(A))

for every A ∈ IMm×N , where M(A) is the vector of all minors of the matrix A); and,
on the other hand, a necessary condition called rank-one convexity (f is rank-one
convex if

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B)

for every t ∈ [0, 1] and every A,B ∈ IMm×N with rank{A − B} ≤ 1). While in the
scalar case all these concepts are equivalent, in the vector case the polyconvexity
condition is strictly stronger than quasiconvexity and weaker than convexity.

Consider now the implication from rank-one convexity to quasiconvexity. For the
general case N ≥ 2, m ≥ 3, Šverák ([19]) disproved such implication with a remark-
able counterexample, whose crucial point was the fact that when the dimension of
the target space is m ≥ 3, it is possible to find periodic deformations whose gradients
take values in a subspace of IMm×N having very few rank-one directions. Still today
there does not exist any other such example. (Using Šverák’s counterexample, Kris-
tensen in [11] proved that when N ≥ 2,m ≥ 3 there is no local condition equivalent
to quasiconvexity.) As to special cases, as has been known for a long time, when
f is quadratic equivalence holds for every N,m > 1 (see [20], [21]; and for a more
general proof, see [2]); while for 2 × 2 diagonal matrices, Müller ([13]) showed that
equivalence holds.

What remains to be cleared up is the general m = 2 case: does rank-one convexity
imply quasiconvexity in this case, or not? In this work we report on our attempts
to find a negative answer, through a counterexample, to such question, even in the
special case of 2× 2 symmetric matrices.

But we prefer to use an alternative approach, as follows. The question whether
rank-one convexity implies quasiconvexity can be restated in terms of laminates and
homogeneous gradient Young measures: is every homogeneous gradient Young mea-
sure a laminate?
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Laminates are a special subclass of probability measures (associated to rank-one con-
vexity), which can be understood, at least conceptually, in a constructive way ([17]).
The basic idea comes from the (Hk) conditions ([7]): a set of pairs {(λi, Ai)}1≤i≤k

where λi > 0,
∑

i λi = 1, Ai ∈ IMm×N is said to satisfy the (Hk) condition if:

1. for k = 2, rank{A1 − A2} ≤ 1;

2. for k ≥ 2, then, up to a permutation, rank{A1 − A2} ≤ 1; and defining, for
2 ≤ i ≤ k − 1,

{

θ1 = λ1 + λ2 B1 =
λ1A1+λ2A2

λ1+λ2

θi = λi+1 Bi = Ai+1

then the pairs (θi, Bi)1≤i≤k−1 satisfy (Hk−1) (an example appears below, see (10) and
Figure 3.1). A finite-order laminate µk is then defined by

µk :=
k

∑

i=1

λiδAi
.

In particular, fixing l, we call (l − 1)-th order laminate to µl if it is generated by a
set of pairs {(λi, Ai)}1≤i≤l satisfying the (Hl) condition. Then a laminate µ is any
weak-* limit, in the sense of measures, of sequences of finite-order laminates

µk
∗
⇀ µ.

Laminates can also be characterized as the probability measures µ (with support on
a compact set K ⊂ IMm×N) for which Jensen’s inequality

f

(
∫

K

Adµ(A)

)

≤

∫

K

f(A) dµ(A)

holds for rank-one convex functions f (see [17]).

On the other hand, concerning homogeneous gradient Young measures, they can be
characterized, similarly, as the probability measures satisfying Jensen’s inequality for
quasiconvex functions f ([10]). Alternatively, homogeneous gradient Young measures
can be defined as the probability measures µ for which there is a sequence (uj) ⊂
W 1,∞(Ω, IRm) satisfying

uj
∗
⇀ u in W 1,∞(Ω, IRm),

for which the sequence (∇uj) generates the Young measure µ (in the sense that

ϕ(∇uj)
∗
⇀

∫

K

ϕ(A) dµ(A) in L∞(Ω)

for each continuous ϕ). For simplicity, we will omit the term "homogeneous".

Similarly, a polyconvex measure is a probability measure for which Jensen’s inequality
holds for polyconvex functions ([17]). It turns out that polyconvex measures can be
also characterized as the probability measures µ commuting with the minors of the
matrices:

M

(
∫

K

Adµ(A)

)

=

∫

K

M(A) dµ(A).
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For each fixed barycenter

P0 =

∫

K

Adµ(A),

the set of all laminates is a convex subset of the set of all gradient Young measures,
which in turn is a convex subset of the set of all polyconvex measures, itself convex.

In the m = 2 case, several authors have tried to answer the question of equivalence
between quasiconvexity and rank-one convexity (see e.g. [14], [15], [18]), without
success. Several explicit computations about this problem can be found in [9]. Other
numerical computations on related subjects can be found in [3], [4], [5], [6]. The
interested reader may find general reviews on this subjects in [16]. A general reference
on the Calculus of Variations is [8].

Here we follow the attempt [15] of Pedregal to adapt the approach [19] of Šverák to
the space of 2× 2 symmetric matrices, using measures supported on the 8 vertices of
the cube [−1, 1]3. Pedregal has attempted the following strategy: to generate a point
Q− in the set of gradient Young measures, as extreme in this set as possible, with
the aim of showing the impossibility of generating such Q− as a laminate. Gradient
Young measures with barycenter (0, 0, 0) were used in his attempt.

Our contribution, in this work, aims at analyzing what we believe to be one of the
best choices to try and find a counterexample for the 2× 2 symmetric case, following
the same strategy of [15], with other specially chosen barycenters. We have thus
considered, besides (0, 0, 0), for several reasons (in particular to keep the symmetry
between the x and y coordinates, which translates into symmetry of the different sets
of measures), the barycenters (1

3
, 1
3
, 0) and (1

2
, 1
2
, 0). But unfortunately also we have

finally succeeded (see Theorem 2.5) to generate their corresponding laminates.

This is why we have then changed our focus, towards the problem of characterizing
exactly the corresponding members of a precise class of laminates. Indeed, the char-
acterization we have reached in Theorem 2.6 below concerns only the laminates of a
certain type, which we call 3-edge-laminates (see Definition 2.2). They seem to gener-
ate (through convexity) all the laminates, but we were unable to prove this because,
as is known and we have rediscovered, it is amazingly difficult, in general, to prove
rigorously (in concrete examples) that a given gradient Young measure or polyconvex
measure is not a laminate. Similarly, if one fixes an arbitrary polyconvex measure
then it looks equally difficult to prove that it is not a gradient Young measure. All
the computations done do not seem to relieve our doubts: they just reinforce our
feeling that the relationship between rank-one convexity and quasiconvexity is not
at all trivial or superficial; and (beyond the question of being able to find or not a
counterexample) that both concepts, of laminates and gradient Young measures, are
not yet well understood.

The organization of this work is as follows. In Section 2 we explain in detail the results
obtained in this work, culminating in Theorems 2.5 and 2.6. This is complemented by
Section 3, which proves Theorem 2.5, namely by exhibiting sets of points generating
the laminates stated in it. As to Section 4, it deals with sets of polyconvex measures;
while Section 5 concerns sets of gradient Young measures. In Section 6, after some
preliminaries, we prove Theorem 2.6, characterizing the extreme points of the three
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sets of 3-edge-laminates (i.e. those corresponding to the barycenter (a, a, 0) with a =
0, a = 1

3
, a = 1

2
), which is our main result. Finally, Section 7 concerns the conjecture

(which seems to us quite reasonable) that the extreme points of the general set of
laminates are (in the 2× 2 symmetric case) themselves 3-edge-laminates. We report
here on our computational experiments aimed at confirming (or invalidating) such
conjecture; and after exploiting the whole power of a high capacity personal computer
(namely: by expressing each laminate point exactly through rational coordinates, as
a quotient of two integer numbers with 16 decimal digits), we have found nothing to
contradict such conjecture.

As a concluding remark, we feel that to prove nonequivalence between laminates and
gradient Young measures (for 2 × 2 symmetric matrices) one would need to find a
means of enlarging the set of gradient Young measures which one is able to generate
directly. Indeed, given the fact that the set of gradient Young measures is a 3-
dimensional convex set with nonempty interior, it is quite unfortunate that one is
now able to generate directly just a 1-dimensional subset (whose extreme points lie,
moreover, generally in the interior of the convex set of laminates, instead of reaching,
at least, its boundary)!

2. Definitions and description of our results

Since we start by generalizing, in a sense, the work of [15], namely by extending
its study to two more barycenters, we use its same notations (namely those of [15,
Section 4]).

Thus we consider barycenters which are 2× 2 symmetric matrices of the form

P ′
0 =

(

α1 + α3 α3

α3 α2 + α3

)

,

represented by points
P0 = (α1, α2, α3) ∈ [−1, 1]3;

and using [0, 1]2-periodic functions ϕ : IR2 → IR, we consider Lipschitz deformations
u : IR2 → IR2 of the type

u(x) = ∇ϕ(x) + P ′
0 x (1)

with u the superposition of 3 sawtooth waves with oscillations along directions (1, 0),
(0, 1) and (1, 1), respectively, meaning that ∇u(x) is, pointwise a.e., a symmetric
matrix

(

x+ z z

z y + z

)

,

represented by a vector (x, y, z) assuming only 8 different values, namely the 8 vertices
{−1, 1}3 of the cube. We thus have gradient Young measures supported on the above
8 vertices; and likewise for polyconvex measures and laminates. Such measures are
characterized by their barycenter P0 and by the weights a, b, c on 3 vertices of the
cube, hence we represent them as (compact convex) sets in (a, b, c)-space, as follows.

To simplify the presentation, instead of probability measures we use measures with
total mass := 576 (= 242), so that our relevant vector measures become triples (a, b, c)
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a

b

c

d = 288 − a − b − c

a = 432 − 3a − b − c

b = 2a + c − 144

c = 2a + b − 144

d = 144 − a

Figure 2.1: P0 = (0, 0, 0)

of integer numbers, with few exceptions (which involve only the simple rational num-
bers 64.8, 74.(6) = 74 + 2

3
, 76.5, 106.(6) = 106 + 2

3
, 157.(09) = 157 + 1

11
, 158.4 ); we

thus avoid writing lots of cumbersome fractions.

Let us start by recalling the result of [15], concerning the barycenter P0 = (0, 0, 0), so
that the reader of that paper becomes smoothly acquainted with our own geometric
representations, before proceeding to the other two barycenters which are considered
here.

With P0 = (0, 0, 0), as shown below (in Section 4), the weights on the vertices {−1, 1}3

of the cube, for each polyconvex measure, can be represented as follows (see Figure
2.1):

a 7→ (1, 1, 1), b 7→ (−1, 1, 1), c 7→ (1,−1, 1),

d = 288− a− b− c 7→ (−1,−1, 1),

a = 432− 3a− b− c 7→ (1, 1,−1), b = 2a+ c− 144 7→ (−1, 1,−1),

c = 2a+ b− 144 7→ (1,−1,−1), d = 144− a 7→ (−1,−1,−1).

Using this notation, the polyconvex measures for the barycenter P0 = (0, 0, 0) con-
stitute the polyhedron in (a, b, c)-space which is the convex hull of its vertices:

A = (0, 144, 144), B0 = (72, 0, 0), B1 = (72, 216, 0),

B2 = (72, 0, 216), C = (144, 0, 0).
(2)

(This 3-dimensional solid is easily visualized: B0, B1, B2 are the vertices of a vertical
triangle which is the common basis of two opposite pyramids having vertex at A,C
respectively, see Figure 2.2.)

Inside this set of polyconvex measures lies the corresponding set of gradient Young
measures, obtained in [15] from the Riemann-Lebesgue lemma (see [17]) for periodic
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A = (0, 144, 144)

R
−

2
= (36, 72, 180)

B2 = (72, 0, 216)

Q− = (36, 108, 108)

R
−

0
= (36, 72, 72)

R
−

1
= (36, 180, 72)

B0 = (72, 0, 0)
Q+ = (108, 36, 36)

R
+
0

= (108, 0, 0)

B1 = (72, 216, 0)

R
+
1

= (108, 108, 0)
C = (144, 0, 0)

Figure 2.2: P0 = (0, 0, 0)

gradients, which is a straight-line segment as shown below (see Section 5). For the
barycenter zero, the extremities of this segment are

Q− = (36, 108, 108), Q+ = (108, 36, 36).

We prefer, however, in order to simplify further the geometric picture of the relation-
ship between gradient Young measures and laminates, to present each one of these
sets of polyconvex measures in (a, b, c)-space through its intersection with the bisec-
tor plane b = c. For example, the edge B1B2 – with extremities (a, b, c) = (72, 216, 0)
and (a, c, b) – is thus represented by its point of intersection with the bisector plane:
B = (72, 108). In this way the above polyhedron (which is the set of polyconvex
measures) becomes represented by a polygon, the convex hull of its 4 vertices:

A = (0, 144), B0 = (72, 0), B = (72, 108), C = (144, 0),

see Figure 2.3. (Notice: in this figure, and also in the next ones, Q−
+ and Q−

0 represent
the points of intersection of the vertical line through Q− with the boundary of the
above polygon; similarly for Q+

+ and Q+
0 . The reader should not pay attention, for the

moment, to the points in these figures which are denoted using the letter R, namely
R−, R−

0 , ...; indeed, these points will be the subject of Theorem 2.6.)

Concerning the generated segment of gradient Young measures, mentioned above, it
is contained in the bisector plane, with its extremities being now represented by

Q− = (36, 108), Q+ = (108, 36). (3)

As to the set of laminates, its intersection with the bisector plane – as happens with
the set of polyconvex measures – coincides with its orthogonal projection into this
plane.

We present now some definitions, aimed at simplifying the notation.

Definition 2.1. D will denote the class of Lipschitz deformations u : IR2 → IR2 of
the type (1), while Dχ denotes its subset consisting of deformations u(·) ∈ D which
can be expressed as

u1(x, y) =

∫ x

0

χ1(t− δ1) dt+

∫ x+y

0

χ3(t− δ3) dt,
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A = (0, 144)

R− = Q
−

+
= (36, 126)

P

Q− = (36, 108)
B = (72, 108)

R

R
−

0
= Q

−

0
= (36, 72) Q

R+ = Q
+
+

= (108, 54)

R
Q+ = (108, 36)

P

B0 = (72, 0) R
+
0

= Q
+
0

= (108, 0)

C = (144, 0)

Figure 2.3: P0 = (0, 0, 0)

u2(x, y) =

∫ y

0

χ2(t− δ2) dt+

∫ x+y

0

χ3(t− δ3) dt,

with δi ∈ (0, 1) and

χi(s) :=

{

1, s ∈ (0, si),

−1, s ∈ (si, 1),

extended periodically to IR, where

si :=
1

2
(1 + αi) .

In the search for a counterexample, one important question is how to obtain all the
gradient Young measures which can be generated directly from the Riemann-Lebesgue
lemma (i.e. not indirectly through laminates); and the class Dχ is just the natural
generalization and parametrization, for a general barycenter P0 = (α1, α2, α3), of the
special deformation appearing in [15]. We were unable to write down a more general
expression for the deformations in the class D, capable of yielding more extreme
gradient Young measures, namely outside of the Q-segment (defined in Definition
2.3(a) below).

Definition 2.2. We call 3-edge-laminate to any third order laminate, supported on
edges of [−1, 1]3, which lies on an edge of the set of all laminates.

Definition 2.3. For each fixed barycenter, the intersection of the bisector plane
b = c :

(a) with the set of gradient Young mesures obtained through the Riemann-Lebesgue
lemma by using deformations u ∈ Dχ is denoted by Q-segment;

(b) with the convex hull of the 3-edge-laminates is denoted by R-polygon;

(c) with the set of polyconvex measures is denoted by P-polygon.
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Remark 2.4. Notice that we are able (see Section 4) to generate directly all the
polyconvex measures (which is not true for gradient Young measures or laminates).

Using such notations, in trying to reach the answer "no" (to the question starting
the introduction), the aim would be: to show that the extremities Q−, Q+ of the
Q-segment could not be reached by laminates. However, for the barycenter (0, 0, 0)
such aim was frustrated in [15, Proposition 4.1] (see also below, Section 3), showing
that the measures

Q−
0 = (36, 72), Q−

+ = (36, 126)

are indeed laminates, so that Q− belongs to the set of laminates. The same happens
with Q+: just apply symmetry.

We proceed now to present our own work concerning the two other barycenters P0.
Starting with

P0 =

(

1

3
,
1

3
, 0

)

one obtains for polyconvex measures the following weights on the vertices of [−1, 1]3:

a 7→ (1, 1, 1), b 7→ (−1, 1, 1), c 7→ (1,−1, 1),

d = 288− a− b− c 7→ (−1,−1, 1), a = 640− 3a− b− c 7→ (1, 1,−1),

b = 2a+ c− 256 7→ (−1, 1,−1), c = 2a+ b− 256 7→ (1,−1,−1),

d = 160− a 7→ (−1,−1,−1).

Using this notation, as shown below (see Section 4), the corresponding set of poly-
convex measures has extreme points:

A = (74.(6), 106.(6), 106.(6)) ,

B0 = (128, 0, 0) , B1 = (128, 160, 0) , B2 = (128, 0, 160) ,

C0 = (160, 0, 0) , C1 = (160, 128, 0) , C2 = (160, 0, 128)

(4)

( yielding again two opposite pyramids, but now a vertical plane cuts a triangular
face, in the second pyramid, with vertices C0, C1, C2 ) ; so that its P-polygon is the
convex hull of its vertices

A = (74.(6), 106.(6)) , B0 = (128, 0) , B = (128, 80) ,

C0 = (160, 0) , C = (160, 64) ,

see Figure 2.4.

On the other hand (directly) by the Riemann-Lebesgue lemma, we were able to obtain
(see Section 5) no more than the Q-segment having extremities

Q− = (100, 92), Q+ = (156, 36). (5)
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A = (74.(6), 106.(6))

Q
−

+
= (100, 94)

R− = (96, 96)

P
Q− = (100, 92)

B = (128, 80)

R

Q
+
+

= (156, 66)
R

−

0
= (96, 64)

Q
−

0
= (100, 56)

Q

R− = (158.4, 64.8)

C = (160, 64)

R

Q+ = (156, 36)

R

p

Q
+
0

= (156, 0) C0 = (160, 0)

B0 = (128, 0) R
+
0

= (157.(09), 0)

Figure 2.4: P0 = (1
3
, 1
3
, 0)

Thus, concerning the barycenter P0 =
(

1
3
, 1
3
, 0
)

, our aim was to show these Q−, Q+ to
be out of reach of laminates ; but it got frustrated, when we came to the conclusion
(as proved in Section 3) that one may indeed obtain, as laminates,

Q−
0 = (100, 56), Q−

+ = (100, 94), Q+
0 = (156, 0), Q+

+ = (156, 66), (6)

showing that Q−, Q+ and the whole corresponding Q-segment are inside the set of
laminates.

Finally, for the barycenter

P0 =

(

1

2
,
1

2
, 0

)

,

we denote the weights of polyconvex measures by:

a 7→ (1, 1, 1), b 7→ (−1, 1, 1), c 7→ (1,−1, 1),

d = 288− a− b− c 7→ (−1,−1, 1),

a = 756− 3a− b− c 7→ (1, 1,−1), b = 2a+ c− 324 7→ (−1, 1,−1),

c = 2a+ b− 324 7→ (1,−1,−1), d = 180− a 7→ (−1,−1,−1).

Then, as shown below (see Section 4), the extreme points of the corresponding set of
polyconvex measures are:

A = (120, 84, 84),

B0 = (162, 0, 0) , B1 = (162, 126, 0) , B2 = (162, 0, 126) , (7)

C0 = (180, 0, 0) , C1 = (180, 108, 0) , C2 = (180, 0, 108)
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A = (120, 84)

R− = (135, 76.5)

P

R

Q− = Q
−

+
= (144, 72)

B = (162, 63)

Q
R

−

0
= (135, 54)

R

C = R+ = Q
+
+

= (180, 54)

Q
−

0
= (144, 36)

R

Q+ = (180, 36)

B0 = (162, 0) C0 = R
+
0

= Q
+
0

= (180, 0)

Figure 2.5: P0 = (1
2
, 1
2
, 0)

(yielding again: two opposite pyramids with the second one cut by a vertical plane);
so that its corresponding P-polygon is the convex hull of its vertices

A = (120, 84), B0 = (162, 0) , B = (162, 63) ,

C0 = (180, 0) , C = (180, 54) ,

see Figure 2.5. As to the Q-segment, it has now (see Section 5) extremities

Q− = (144, 72), Q+ = (180, 36); (8)

which, again, are convex combinations of the following laminates (see Section 3):

Q−
0 = (144, 36), Q−

+ = (144, 72), Q+
0 = (180, 0), Q+

+ = (180, 54). (9)

We may summarize the preceding discussion, on the possibility of obtaining as lami-
nates the points

Q−
0 , Q−

+, Q+
0 , Q+

+,

described in (11), (6), (9), in the next

Theorem 2.5. The following points belong to the R-polygon (defined in Definitions
2.3 and 2.2) generated by starting with the weight 576 from each barycenter P0:

Q−
0 = (36, 72), Q−

+ = (36, 126), Q+
0 = (108, 0), Q+

+ = (108, 54) for P0 = (0, 0, 0) ;

Q−
0 =(100, 56), Q−

+ =(100, 94), Q+
0 =(156, 0), Q+

+ =(156, 66) for P0 =
(

1
3
, 1
3
, 0
)

;

Q−
0 =(144, 36), Q−

+ =(144, 72), Q+
0 =(180, 0), Q+

+ =(180, 54) for P0 =
(

1
2
, 1
2
, 0
)

.

Theorem 2.5 is our first result (proved in Section 3), while our second (and main)
result (proved in Section 6) is
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Theorem 2.6. The extreme points of the R-polygon of Theorem 2.5 are, besides the
points B0, B listed above (see Figures 2.3, 2.4, 2.5):

for the barycenter P0 = (0, 0, 0),

R−
0 = (36, 72), R− = (36, 126),

R+
0 = (108, 0), R+ = (108, 54) ;

for the barycenter P0 =
(

1
3
, 1
3
, 0
)

,

R−
0 = (96, 64), R− = (96, 96),

R+
0 = (157.(09), 0), R+ = (158.4, 64.8);

and, for the barycenter P0 =
(

1
2
, 1
2
, 0
)

,

R−
0 = (135, 54), R− = (135, 76.5),

R+
0 = C0 = (180, 0), R+ = C = (180, 54).

3. Presenting the sets of points which generate Q−
0 , Q−

+, Q+
0 and Q+

+

As in [15], instead of providing the required sets of pairs (satisfying some (Hk) con-
dition) which generate a specific laminate, we provide a set of points from which one
can obtain univocally the mentioned set of pairs. Notice that these sets of points are
not unique in general.

Proof of Theorem 2.5. A set of points which gives Q−
0 for the barycenter zero is

([15])

P0 = (0, 0, 0), P1 =

(

−
1

2
, 1, 1

)

, P2 =

(

1

10
,−

1

5
,−

1

5

)

,

P3 =

(

1,−
5

7
, 1

)

, P4 =

(

−
1

11
,−

1

11
,−

5

11

)

, (10)

P5 = (1, 1,−1), P6 = (−1,−1, 0),

see Figure 3.1. Indeed, starting with the weight 576 from the barycenter P0 = (0, 0, 0),
the above set of points generates the measure (a, b, c) = (36, 72, 72), hence (a, c, b) =
(36, 72, 72) and (a, b+c

2
) = (36, 72). Similarly one reaches the measures

(36, 180, 72), (36, 72, 180), (108, 0, 0), (108, 108, 0), (108, 0, 108).

This shows that, for this barycenter, the following points indeed belong (as stated in
Theorem 2.5) to the R-polygon:

Q−
0 = (36, 72), Q−

+ = (36, 126), Q+
0 = (108, 0), Q+

+ = (108, 54). (11)

This is a result of [15], which we have included here for convenience of the reader.
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P0

P1

P2

P3

P4

P5

P6

Figure 3.1: P0 = (0, 0, 0)

For the barycenter P0 =
(

1
3
, 1
3
, 0
)

, we have: the measure associated with the set of
points

P0 =

(

1

3
,
1

3
, 0

)

, P1 =

(

1, 1,−
1

3

)

, P2 =

(

−
3

29
,−

3

29
,
19

87

)

,

P3 =

(

−
23

41
, 1, 1

)

, P4 =

(

1

65
,−

431

1105
,
1

65

)

,

P5 =

(

1,−
15

17
, 1

)

, P6 =

(

−1,
2

17
,−1

)

is (100, 132, 56), thus yielding the point (100, 94) of the R-polygon.

Similarly for the other measures associated to this barycenter, as follows: the measure
(100, 56, 56), hence the point (100, 56), is generated by

P0 =

(

1

3
,
1

3
, 0

)

, P1 =

(

1,−
1

15
, 1

)

, P2 =

(

29

157
,
199

471
,−

35

157

)

,

P3 =

(

−
11

53
, 1, 1

)

, P4 =

(

25

89
,
25

89
,−

791

1513

)

,

P5 =

(

1, 1,
15

17

)

, P6 =

(

−1,−1,
2

17

)

;

the measure (156, 0, 0), hence the point (156, 0), is generated by

P0 =

(

1

3
,
1

3
, 0

)

, P1 =

(

19

21
,−1,−1

)

, P2 =

(

347

1293
,
209

431
,
49

431

)

,

P3 =

(

−
89

129
, 1,−1

)

, P4 =

(

151

369
,
151

369
,
3787

13653

)

,

P5 =

(

1, 1,−
2

111

)

, P6 =

(

−1,−1,
109

111

)

;
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and the measure (156, 132, 0), hence the point (156, 66), is generated by

P0 =

(

1

3
,
1

3
, 0

)

, P1 =

(

−1,
19

21
,−1

)

, P2 =

(

583

1497
,
463

1497
,
21

499

)

,

P3 =

(

32

33
,−1,−1

)

, P4 =

(

1

12
, 1,

29

49

)

,

P5 =

(

1, 1,
29

49

)

, P6 =

(

−1, 1,
29

49

)

.

Similarly for the measures associated to the barycenter P0 =
(

1
2
, 1
2
, 0
)

: the measure
(144, 36, 36), hence the point (144, 36), is generated by

P0 =

(

1

2
,
1

2
, 0

)

, P1 =

(

1

6
, 1, 1

)

, P2 =

(

19

34
,
7

17
,−

3

17

)

,

P3 =

(

1,
1

11
, 1

)

, P4 =

(

9

19
,
9

19
,−

23

57

)

,

P5 =

(

1, 1,−
2

3

)

, P6 =

(

−1,−1,
1

3

)

;

the measure (144, 36, 108), hence the point (144, 72), is generated by

P0 =

(

1

2
,
1

2
, 0

)

, P1 =

(

1, 1,−
1

4

)

, P2 =

(

0, 0,
1

4

)

,

P3 =

(

−
3

7
, 1, 1

)

, P4 =

(

1

11
,−

7

33
,
1

11

)

,

P5 =

(

−1,
1

3
,−1

)

, P6 =

(

1,−
2

3
, 1

)

;

the measure C0 = (180, 0, 0), hence the point C0 = (180, 0), is generated by

P0 =

(

1

2
,
1

2
, 0

)

, P1 =

(

1,−
1

2
,−1

)

, P2 =

(

5

11
,
13

22
,
1

11

)

,

P3 =

(

−
1

5
, 1,−1

)

, P4 =

(

7

13
,
7

13
,
3

13

)

,

P5 = (−1,−1, 1), P6 = (1, 1, 0) ;

and the measure C1 = (180, 108, 0), hence the point C = (180, 54), is generated by

P0 =

(

1

2
,
1

2
, 0

)

, P1 =

(

−
1

2
, 1,−1

)

, P2 =

(

1,
1

4
,
1

2

)

,

P3 =

(

1, 1,
1

2

)

, P4 =

(

1,−1,
1

2

)

.

The proof is complete.
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The reader should be aware of the fact that what is difficult here is not to prove
Theorem 2.5, but to find adequate points Pi to generate the stated measures.

Notice also that all the sets of points presented in this work have all their odd points
(i.e. P1, P3, P5, P6) on edges of the [−1, 1]3 cube: this makes sense for someone
searching extreme laminates.

4. Characterization of the sets of polyconvex measures

In this section and the next one we consider polyconvex measures and gradient Young
measures not as probability measures but as measures having total mass= p2; as
pointed out in Section 2 with p = 24, this is convenient to avoid many cumbersome
fractions when treating concrete examples.

Here we wish to determine the set of all the possible polyconvex measures supported
on the vertices of [−1, 1]3, with barycenter P0 = (α1 , α2 , α3).

Denoting again by a, b, c, d the weights generated on the four upper vertices

(1, 1, 1), (−1, 1, 1), (1,−1, 1), (−1,−1, 1)

of [−1, 1]3; and by a, b, c, d the weights generated on its four lower vertices,

(1, 1,−1), (−1, 1,−1), (1,−1,−1), (−1,−1,−1);

and defining the parameters

si :=
1

2
( 1 + αi) ,

γ := p2
[(

s1 −
1

2

) (

s2 −
1

2

)

+ s1s3 + s2s3

]

,

one easily reaches the following characterization:

Proposition 4.1. The set of possible weights of polyconvex measures can be repre-
sented as the set in (a, b, c)-space described by the restrictions

a ≥ 0, b ≥ 0, c ≥ 0,

d := p2s3 − a− b− c ≥ 0

a := γ +
p2

2

(

s1 + s2 −
1

2

)

− 3a− b− c ≥ 0

b := −γ +
p2

2

(

1

2
− s1 + s2

)

+ 2a+ c ≥ 0

c := −γ +
p2

2

(

1

2
+ s1 − s2

)

+ 2a+ b ≥ 0

d := γ −
p2

2

(

s1 + s2 + 2s3 −
3

2

)

− a ≥ 0.

In particular, for p = 24 and for α3 = 0, α1 = α2, the P-polyhedron is the convex
hull of its extreme points (2), (4), (7) (for α1 = 0, 1

3
, 1

2
, respectively).



52 Lúıs Bandeira, António Ornelas / On the Characterization of a Class of ...

As was recalled in the introduction, (for each fixed barycenter) the set of polyconvex
measures contains the set of gradient Young measures, which in turn contains the
set of laminates. Consequently, the P-polygon contains both the Q-segment and the
R-polygon.

5. Characterization of the gradient Young measures generated by Dχ

deformations

Each deformation u(·) ∈ Dχ (see Definition 2.1) generates (as described in the proof
below) weights a, b, c, d, a, b, c, d as in Section 4. Or, in other words, each such defor-
mation u(·) generates a gradient Young measure with barycenter P0, represented by
the triple (a, b, c), consisting of the weights generated on the first 3 of these vertices,

(1, 1, 1), (−1, 1, 1), (1,−1, 1);

which may be compared with laminates (a, b, c) having weights a, b, c generated, on
these vertices, by sets of points contained in [−1, 1]3 and having barycenter P0. In
particular, if one fixes P0 := (α, α, 0), with α = 0, 1

3
, 1
2
, then examples of such sets of

points appear in the proof of Theorem 2.5.

Proposition 5.1. The gradient Young measures generated by deformations u(·) ∈
Dχ are all the points of a segment, namely the convex hull of its extremities Q−, Q+:

Q− := (a−, d2 − a−, d3 − a−), Q+ := (a+, d2 − a+, d3 − a+),

with

d2 := p2 s2 s3 , d3 := p2 s1 s3 , si :=
1

2
(1 + αi) ,

a− := p2
(

[s1 + s2 + s3 − 1]+

2

)2

, a+ := p2

[

s1 s2 −

(

[s1 + s2 − s3]
+

2

)2
]

,

where

[x]+ := max{0, x}.

In particular, for p = 24 and for α3 = 0, α1 = α2, the Q-segment is the convex hull
of its extreme points (3), (5), (8) (for α1 = 0, 1

3
, 1

2
, respectively).

Proof. To compute the weights a, b, c, d and a, b, c, d generated by this general de-
formation u(·) ∈ Dχ, one has to compute the areas of the corresponding regions
(denoted by the same letters a, b, c, . . . ) determined on the square [0, p]2 by the lines

x = p δ1, x = p δ1 + p s1, y = p δ2, y = p δ2 + p s2,

x+ y = p δ3, x+ y = p δ3 + p s3,

x+ y = p+ p δ3, x+ y = p+ p δ3 + p s3.

One easily checks, geometrically, that

a = p2 s1 s2 − a, b = p2 (1− s1) s2 − b, c = p2 s1 (1− s2)− c
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and

d = p2 s3 − a− b− c, d = p2 [(1− s1) (1− s2)− s3] + a+ b+ c.

On the other hand, we must have

b = p2 s2 s3 − a, c = p2 s1 s3 − a.

In this way one expresses the coordinates b, c, d, . . . as affine functions of a (dependent
on the chosen P0). Therefore the gradient Young measures generated by deformations
u(·) ∈ Dχ form a segment; and to characterize it and thus end the proof, we only
need to obtain its extreme values. But these are obtained by plugging in the extreme
values a−, a+ of a, whose expressions are those stated above.

Remark 5.2. The results of Sections 4, 5 can be easily extended from the cube
[−1, 1]3 to a rectangular parallelepiped

[−A1, A1]× [−A2, A2]× [−A3, A3],

where A1, A2, A3 ∈ (0,+∞).

6. Characterization of the 3-edge-laminates

One easily checks that the three P-polygons considered in Section 2 all have the same
form, their only difference being that the vertices C0, C collapse, in the case of the
barycenter zero, into the unique vertex C. (One may also observe the following: for
the other 2 barycenters, if one extends the edges B0C0, BC then they meet at the
point (288, 0) which is, however, out of reach for the polyconvex measures.) We leave
the proof of the next proposition to the interested reader; it is similar to the proof
of Theorem 2.5, but considerably easier, since it involves only the discovery of 3 first
order laminates and 2 second order laminates:

Proposition 6.1. For each one of the above 3 barycenters, the points B0, B of the
P-polygon always belong to the corresponding R-polygon (see Figures 2.3, 2.4, 2.5).

But the main aim of this section is the determination of the extreme points R−
0 , R−

of the R-polygon along the edges E−
0 , E− (i.e. those joining the vertices B0A, BA);

and also of the extreme points R+
0 , R+ of the R-polygon along the edges E+

0 , E+

(i.e. B0C0, BC assuming, in case P0 = (0, 0, 0), C0 := C), see Figures 2.3, 2.4, 2.5.

In reality, more precisely, what we do below is the determination of the extreme points
R−

0 , R−
1 , R−

2 (respectively R+
0 , R+

1 , R+
2 ) along the edges E−

0 , E−
1 , E−

2 (respectively
E+

0 , E
+
1 , E

+
2 ) of the convex hull of the set of all 3-edge-laminates, see e.g. Figure 2.2.

We believe these (together with B0, B1, B2) to be also the extreme points of the set
of all the laminates, but were unable to prove it.

One remarkable feature here is that, for some barycenters, the Q-segment is entirely
contained in the interior of the corresponding R-polygon, hence does not reach at least
its boundary, as one would expect. This is what happens for the barycenter

(

1
3
, 1
3
, 0
)

;
while for

(

1
2
, 1
2
, 0
)

the lower value of the coordinate a along the laminate is strictly
smaller than its lower value along the Q-segment. This situation is unfortunate for
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the search of counterexamples, but we were unable to improve it, as remarked at the
end of the introduction.

Proof of Theorem 2.6. (a) For the barycenter P0 = (0, 0, 0) the points R−
0 , R

−,

R+
0 , R

+ are generated by (10).

For the barycenter P0 =
(

1
3
, 1
3
, 0
)

the measure R−
0 = (96, 64, 64), hence the point

R−
0 = (96, 64), is generated by

P0 =

(

1

3
,
1

3
, 0

)

, P1 =

(

−
1

15
, 1, 1

)

, P2 =

(

25

57
,
3

19
,−

5

19

)

,

P3 =

(

1,−
3

13
, 1

)

, P4 =

(

3

11
,
3

11
,−

7

11

)

,

P5 = (−1,−1, 0), P6 = (1, 1,−1) ;

while R−
1 = (96, 128, 64), hence R−

2 = (96, 64, 128) and the point R− = (96, 96), is
generated by

P0 =

(

1

3
,
1

3
, 0

)

, P1 =

(

1,−
1

15
, 1

)

, P2 =

(

3

19
,
25

57
,−

5

19

)

,

P3 =

(

1, 1,−
3

5

)

, P4 =

(

−
1

2
, 0, 0

)

,

P5 = (0,−1,−1), P6 = (−1, 1, 1).

Still for the barycenter P0 =
(

1
3
, 1
3
, 0
)

, the measure R+
0 = (157.(09), 0, 0), hence the

point R+
0 = (157.(09), 0), is generated by

P0 =

(

1

3
,
1

3
, 0

)

, P1 =

(

19

21
,−1,−1

)

, P2 =

(

47

117
,
29

59
,
7

59

)

,

P3 =

(

−
2

3
, 1,−1

)

, P4 =

(

7

17
,
7

17
,
5

17

)

,

P5 = (1, 1, 0), P6 = (−1,−1, 1) ;

while R+
1 = (158.4, 129.6, 0), hence R+

2 = (158.4, 0, 129.6) and the point R+ =
(158.4, 64.8), is generated by

P0 =

(

1

3
,
1

3
, 0

)

, P1 =

(

19

21
,−1,−1

)

, P2 =

(

101

339
,
47

113
,

7

113

)

,

P3 = (−1, 1,−1), P4 =

(

139

301
,
103

301
,
59

301

)

,

P5 =

(

1,−
7

11
,−1

)

, P6 =

(

1

10
, 1, 1

)

.

For the barycenter P0 =
(

1
2
, 1
2
, 0
)

the measure R−
0 = (135, 54, 54), hence the point
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R−
0 = (135, 54), is generated by

P0 =

(

1

2
,
1

2
, 0

)

, P1 =

(

1

6
, 1, 1

)

, P2 =

(

37

62
,
11

31
,−

9

31

)

,

P3 =

(

1,
1

21
, 1

)

, P4 =

(

17

37
,
17

37
,−

27

37

)

,

P5 = (−1,−1, 0), P6 = (1, 1,−1);

while R−
1 = (135, 99, 54), hence R−

2 = (135, 54, 99) and the point R− = (135, 76.5), is
generated by

P0 =

(

1

2
,
1

2
, 0

)

, P1 =

(

1, 1,−
1

4

)

, P2 =

(

−
1

9
,−

1

9
,
11

36

)

,

P3 =

(

−
7

13
, 1, 1

)

, P4 =

(

1

21
,−

11

21
,
1

21

)

,

P5 = (−1, 0,−1), P6 = (1,−1, 1).

Finally, for the barycenter P0 =
(

1
2
, 1
2
, 0
)

, the measures R+
0 = C0, R+ = C are

generated as indicated in the proof of Theorem 2.5.

(b) It remains only to show that these measures are extreme, in the sense explained
after Proposition 6.1.

Consider the barycenter P0 =
(

1
3
, 1
3
, 0
)

. One wishes to show that the measure
(96, 128, 64) is R−

1 , namely the extreme point along the segment which is the con-
vex hull of (74 + 2

3
, 106 + 2

3
, 106 + 2

3
) and (128, 160, 0) (i.e. along the edge E−

1 of the
corresponding set of polyconvex measures).

Parametrize the part of this edge E−
1 having a < 96 :

(a, b, c) = (a, 32 + a, 256− 2 a), a ∈

[

74 +
2

3
, 96

)

.

For each a, the weights obtained on the remaining vertices of the cube are:

d = 0 7→ (−1,−1, 1), a = 352− 2a 7→ (1, 1,−1), b = 0 7→ (−1, 1,−1),

c = 3a− 224 7→ (1,−1,−1), d = 160− a 7→ (−1,−1,−1).

Our aim is to show that there exists no set of points generating weights (a, b, c) ∈ E−
1

having a ∈
[

74 + 2
3
, 96

)

. We begin by choosing the edges of the cube upon which one

could place each one of the 4 points P1, P3, P5, P6. Since d = 0 = b, only the edges
Sab, Saa, Scc, Sa c, Scd may be used. (Here Sab, say, is the edge of the cube which joins
the vertices holding weights a, b; i.e. Sab = co {(1, 1, 1), (−1, 1, 1)}.)

We begin by choosing an edge to hold P1, so that P0P1 is rank-one. We have two
possibilities:

− either (b1) (P1 ∈ Sab or P1 ∈ Scd ) ;

− or else (b2) (P1 ∈ Saa or P1 ∈ Sac ) .
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Then it suffices to convince oneself that none of these choices works, by exploring
wisely all the available possibilities. Indeed, each one of them leads to a situation in
which one of the restrictions to apply simply turns out to be impossible to satisfy.

For the other edges, one shows similarly that the extreme points on the edges are the
ones shown in part (a) above.

The proof is complete.

7. A computational attempt to characterize the 3 sets of laminates

After having computed the extreme points stated in Theorem 2.6, the following
question comes naturally to one’s mind: are the vertical segments S− := [R−

0 , R
−],

S+ := [R+
0 , R

+] (see Figures 2.3, 2.4, 2.5) extreme in the intersection of the bisec-
tor plane with the corresponding general set of laminates, in each case? (Or, more
precisely, considering the 3-dimensional picture and using the same notation as in
the proof of Theorem 2.5: are the vertical triangles T− := co{R−

0 , R
−
1 , R

−
2 } and

T+ := co{R+
0 , R

+
1 , R

+
2 } extreme faces of the set of laminates?) If one could ensure

this, then the intersection of the set of laminates with the bisector plane, in each
case, would become completely characterized as the convex hull of the 3 vertical seg-
ments S−, S+ and S := {B0, B}. (Or, in the 3-dimensional picture: then each set
of laminates would be exactly the convex hull of the 3 vertical triangles T−, T+ and
T := co{B0, B1, B2}, see e.g. Figure 2.2.)

To show the plausibility of this conjecture, we have tried to characterize the extreme
values of the first coordinate a (the weight on the vertex (1, 1, 1) of [−1, 1]3), in each
one of the above set of laminates (independently of the weights on the other vertices
of the cube). Or, in other words, to find the extreme values of the coordinate a,
regardless of restricting attention to edges of the corresponding set of laminates. To
avoid any bias coming from wishful thinking, we have constructed (in a personal
computer) exact samples of all the possible third order laminates. Since all the
corresponding sets of points constructed here have all their odd points on edges
of [−1, 1]3, in trying to construct a third order laminate starting from one of the
chosen barycenters ((a, a, 0) with a = 0, a = 1

3
, a = 1

2
), the choices one has to

make, concerning each odd point (namely P1, P3, P5 or P6) lead to less than a
dozen possibilities. On the contrary, concerning each even point (i.e. P2 or P4) the
possibilities are, instead, all the points of a straight-line segment, which we call an
even segment; and our strategy has been to divide each such segment into n = 100
pieces, all with equal length. In this way we have generated blindly many hundreds
of thousands of different third order laminates for each barycenter.

(Notice: the expression "exact samples" is used above – see middle of the preceding
paragraph – in the following sense: our coordinates have been represented as quo-
tients of integers with 16 decimal digits, so that the sets of points we have generated
have exact coordinates and exact weight-distributions, hence yield exact – i.e. not
approximate – laminate points.)

One might also wonder whether by using fourth order laminates it would be possible
to obtain a more extreme value of a, namely a value not reachable by third order
laminates only. In order to try and discard such possibility, we have also generated
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fourth order laminates on the computer. But since we have, in this case, 3 even
segments instead of 2, we had to reduce the number n of divisions from 100 to just
30, due to computer memory limitations.

The computations thus performed tend to indicate that it is sufficient to consider
third order laminates.

The conclusions we have reached from all these computations simply confirmed the
validity of the conjecture stated at the beginning of this section, namely that any
laminate is a convex combination of 3-edge-laminates (in the 2× 2 symmetric case).
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(1997).

[17] P. Pedregal: Laminates and microstructure, Eur. J. Appl. Math. 4(2) (1993) 121–149.
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