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In this paper, we unify the theory of SSD spaces and the theory of strongly representable sets, and
we apply our results to the theory of the various classes of maximally monotone sets. In particular,
we prove that type (ED), dense type, type (D), type (NI) and strongly representable are equivalent
concepts and, consequently, that the known properties of strongly representable sets follow from
known properties of sets of type (ED).

1. Introduction

In Sections 2–4, we give a more complete version of the algebraic theory of SSD
spaces, as introduced in [18], and further developed in [20]. Apart from the fact that
we write “Pq� instead of “pos�, we use the notation of the latter of these references.
What distinguishes the three sections is the number of bilinear forms considered:
one in Section 2, two in Section 3, and three in Section 4. The concepts of SSD
space, q-positive set and the convex function, ΦA, associated with a q-positive set,
A, are introduced in Definition 2.2. The functions Φ are the generalizations to SSD
spaces of the Fitzpatrick functions of monotone sets. In Definition 2.8, we introduce
the q-positive set, Pq(f), associated with an appropriate convex function, f , and in
Definition 2.10, we introduce the intrinsic conjugate, f@, of a convex function, f .
The main result in this section is Theorem 2.14, though the results marked “Lemma�
will be used throughout the paper. In Section 3, we consider the situation of an SSD
space linked by a linear map to an external vector space. We then define another
convex function, ΨA, associated with a q-positive set, A, using a convex function, ΘA,
on the external space. The basic properties of these functions are collected together
in Lemma 3.2. In Theorem 3.3 and Corollaries 3.4 and 3.5, we discuss a maximal
property of the Ψ functions, which complements a minimal property of the Φ functions
in certain circumstances. While the material of Section 2 is essentially algebraic
(apart from the disguised differentiability argument of Lemma 2.12(a)), Theorem 3.3
uses the Fenchel–Moreau theorem from convex analysis, for a (possibly nonhausdorff)
locally convex space. Since we have not seen this result in the literature, we give a
proof of it for the convenience of the reader in Section 10. In Section 4, we consider
the special situation where the external space is also an SSD space, and the allied
concept of SSD-homomorphism. These are introduced in Definition 4.1. These ideas
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allow us to apply the analysis of Sections 2 and 3, with the SSD space replaced by
the external space. This enables us to generalize (in Definition 4.4 and Theorem 4.5)
to SSD spaces some concepts due to Gossez for maximally monotone multifunctions.

In Sections 5 and 6, we specialize to the situation in which the SSD spaces have
a Banach space structure also. In Definition 5.1, we introduce the concept of a
Banach SSD space, which is an SSD space with a Banach space structure satisfying
the compatibility condition (26), from which it follows that the Banach space dual
can be considered as a linked external space (see Remark 5.9). Section 5 is inspired
by Voisei–Zălinescu, [22]. In Definition 5.4, we introduce the concept of VZ function
on a Banach SSD space. Our main result on VZ functions, established in Theorems
5.6(d) and 5.8(b), is that if f is a lower semicontinuous VZ function then Pq(f) is
maximally q-positive, f@ is also a VZ function, and Pq(f

@) = Pq(f). The argument
in Theorem 5.6 uses completeness heavily, as well as the fact that a proper, con-
vex, lower semicontinuous function on a Banach space dominates a continuous affine
function. Theorem 5.7 contains a characterization of VZ functions in terms of the
concept of p-density introduced in Definition 5.5. We show in Theorem 5.11 that if f
is a lower semicontinuous VZ function on a Banach SSD space and A = Pq(f) then
f lies between ΨA and ΦA and, further, if h is a proper convex function on B that
lies between ΨA and ΦA then h and h@ are VZ functions. The rest of Section 5 is
devoted to some counterexamples. Section 5 uses the material of Sections 2 and 3,
but not Section 4. By contrast, Section 6 depends heavily on Section 4. Here we
consider the situation where the dual of a Banach SSD space can be made into a
Banach SSD space in its own right, satisfying the compatibility condition (49), and
we write q̃ for the function on the dual corresponding to the function q previously
defined on the original Banach space. In Definition 6.11, we work towards defining
an analog for SSD spaces of the concept of strongly representable multifunction, as
expounded by Voisei and Zălinescu in [22] and Marques Alves and Svaiter in [5], [6]
and [7]. In order to to this, we introduce the concept of MAS function in Definition
6.11. The first main result of Section 6 is Theorem 6.12 (which leads to Theorem 9.7),
in which we establish that, under a certain mild side condition, the concepts of MAS
function and VZ function are identical. The main tools here are Rockafellar’s formula
for the conjugate of the sum of convex functions, and the fact that the conjugate of
the function 1

2
‖ · ‖2 on a Banach space is the function 1

2
‖ · ‖2 on the dual space, which

are both used in Lemma 6.10. The other main result of Section 6 is Theorem 6.15
(which leads to Theorem 9.5), which depends on the concept of a compatible topology
on B∗ introduced in Definition 6.13, and describes the relationship between compat-
ible topologies and the Gossez extension of a maximally q-positive set introduced in
Definition 4.4.

Sections 7 and 8 are devoted to a discussion of certain esoteric topologies on the
bidual of a Banach space and the Banach SSD dual of a Banach SSD space. Here
is some background for the problem. Suppose that E is a nonzero Banach space,
and consider the function q̃ : (x∗, x∗∗) 7→ 〈x∗, x∗∗〉 from (E × E∗)∗ = E∗ × E∗∗ into
R. While it is true that the norm topology on E∗ × E∗∗ makes q̃ continuous, it has
been known since the work of Gossez on maximally monotone multifunctions that
the norm topology is too large to be of any practical use. The reason for this can
be traced to the fact that it is not generally compatible in the sense of Definition
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6.13. (See Remark 6.14.) In Section 8, we introduce the topologies TD on Banach
SSD duals, which have the properties that they are sufficiently small that they are
compatible and sufficiently large that Theorem 6.15 leads to significant results. The
topologies TD are based on the topologies TCLB on the bidual of a Banach space that
have been previously studied, the properties of which are stated in Section 7.

So far, we have been describing general theories, but we have not discussed any
particular examples. In Example 2.3, we give three examples of SSD spaces, of which
(c) is probably the most interesting. As we observe in Remark 5.2, Example 2.3(a,b,c)
are actually Banach SSD spaces. Example 2.4 is the example that leads to results
on monotonicity – it is shown in Example 5.3 how to norm this example so that it
becomes a Banach SSD space, and in Example 6.5 how to make its dual a Banach
SSD dual. We then show in Theorem 8.3 that q̃ is continuous with respect to the
topology TD, and so we are now in the position that we can apply Theorems 5.6, 6.12
and 6.15 to this example. This leads to the results on monotonicity that we give in
Section 9.

We start Section 9 with a brief history of various classes of maximally monotone
sets. We define type (D), dense type, type (NI), type (WD), type (ED) and strongly
representable in Definitions 9.1, 9.2, 9.3 and 9.6. The easy implications are that, for
maximally monotone sets, type (ED) =⇒ dense type =⇒ type (D) =⇒ type (WD)
=⇒ type (NI). Marques Alves and Svaiter proved recently in [7] that type (NI) =⇒
type (D). In Theorem 9.5, we show how the techniques discussed in this paper lead
to the stronger conclusion that type (NI) =⇒ type (ED). The obvious significance of
this is that Theorem 9.5 leads to solutions of several problems that have been open
for some time. These issues are discussed in the paragraph preceding Theorem 9.5.
However, Theorem 9.5 is significant for another reason. Strongly representable sets
were initially introduced in [5] and [22], and it was proved in [6] that a set is strongly
representable ⇐⇒ it is maximally monotone of type (NI). In Theorem 9.7, we show
how the techniques discussed in this paper lead to a proof of this equivalence. If
we now combine together the results discussed above, we see that a set is strongly
representable ⇐⇒ it is maximally monotone of type (ED). This enables us to use
the properties known for maximally monotone sets of type (ED) to obtain results
about strongly representable sets, which frequently improve on the results already
known. We give these results in Theorems 9.9 and 9.10, with references to what is
currently in the literature.

In the Appendix, Section 10, we give a proof of the Fenchel–Moreau theorem for a
(possibly nonhausdorff) locally convex space, which we used in Theorem 3.3.

The author would like to thank Constantin Zălinescu for making him aware of the
preprints [5] and [22], and Maicon Marques Alves and Benar Svaiter for making him
aware of the preprints [6] and [7]. He would also like to thank Radu Ioan Boţ and
Constantin Zălinescu for some very perceptive comments on earlier versions of this
paper. The author has learned that the acronym “SSD� has also been used to stand
for “strongly subdifferentiable�. He hopes that this will not cause any confusion.
Finally, he would like to thank the anonymous referees, whose insightful comments
resulted in great improvements.
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2. SSD spaces

Definition 2.1. If X is a nonzero real vector space and f : X → ]−∞,∞], we write
dom f for the set {x ∈ X : f(x) ∈ R}. dom f is the effective domain of f . We
say that f is proper if dom f 6= ∅. We write PC(X) for the set of all proper convex
functions from X into ]−∞,∞]. If X is a nonzero real Banach space, we write X∗

for the dual space of X (with the pairing 〈·, ·〉 : X ×X∗ → R).

Definition 2.2. We will say that (B, ⌊·, ·⌋) is a symmetrically self-dual space (SSD
space) if B is a nonzero real vector space and ⌊·, ·⌋ : B × B → R is a symmetric
bilinear form. In this case, we will always write q(b) := 1

2
⌊b, b⌋ (b ∈ B). (“q� stands

for “quadratic�.) We do not assume that ⌊·, ·⌋ separates the points of B, as was done
in [18] and [20]. With this caveat, the definitions and many of the results of this
section appear in [18] and [20].

Now let (B, ⌊·, ·⌋) be an SSD space and A ⊂ B. We say that A is q-positive if A 6= ∅
and

b, c ∈ A =⇒ q(b− c) ≥ 0.

In this case, since q(0) = 0,

b ∈ A =⇒ inf q(A− b) = 0. (1)

We then define ΦA : B → ]−∞,∞] by

ΦA(b) := supA[⌊·, b⌋ − q] (b ∈ B). (2)

ΦA is a generalization to SSD spaces of the “Fitzpatrick function� of a monotone
set, which was originally introduced in [2] in 1988, but lay dormant until it was
rediscovered by Mart́ınez-Legaz and Théra in [9] in 2001. We note then that, for all
b ∈ B,

ΦA(b) = q(b)− infa∈A[q(a)− ⌊a, b⌋+ q(b)]

= q(b)− infa∈A q(a− b) = q(b)− inf q(A− b).

}
(3)

From (1),
ΦA = q on A. (4)

Thus ΦA ∈ PC(B). We say that A is maximally q-positive if A is q-positive and
A is not properly contained in any other q-positive set. In this case, if b ∈ B and
inf q(A− b) ≥ 0 then clearly b ∈ A. In other words, (b ∈ B \A =⇒ inf q(A− b) < 0).
From (1), inf q(A− b) ≤ 0 and (inf q(A− b) = 0 ⇐⇒ b ∈ A). Thus, from (3)

ΦA ≥ q on B and (ΦA(b) = q(b) ⇐⇒ b ∈ A). (5)

We make the elementary observation that if b ∈ B and q(b) ≥ 0 then the linear span
Rb of {b} is q-positive.

We now give some examples of SSD spaces and their associated q-positive sets. These
examples are taken from [20, pp. 79–80].

Example 2.3. Let B be a Hilbert space with inner product (b, c) 7→ 〈b, c〉 and
T : B → B be a self-adjoint linear operator. Then (B, ⌊·, ·⌋) is an SSD space with
⌊b, c⌋ := 〈b, T c〉 and q(b) = 1

2
〈Tb, b〉. Here are three special cases of this example:
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(a) If, for all b ∈ B, Tb = b then ⌊b, c⌋ := 〈b, c〉, q(b) = 1
2
‖b‖2 and every subset of

B is q-positive.

(b) If, for all b ∈ B, Tb = −b then ⌊b, c⌋ := −〈b, c〉, q(b) = −1
2
‖b‖2 and the

q-positive sets are the singletons.

(c) If B = R
3 and T (b1, b2, b3) = (b2, b1, b3) then

⌊(b1, b2, b3), (c1, c2, c3)⌋ := b1c2 + b2c1 + b3c3,

and q(b1, b2, b3) = b1b2 +
1
2
b23. Here, if M is any nonempty monotone subset of

R × R (in the obvious sense) then M × R is a q-positive subset of B. The set
R(1,−1, 2) is a q-positive subset of B which is not contained in a set M ×R for
any monotone subset of R×R. The helix {(cos θ, sin θ, θ) : θ ∈ R} is a q-positive
subset of B, but if 0 < λ < 1 then the helix {(cos θ, sin θ, λθ) : θ ∈ R} is not.

Example 2.4. Let E be a nonzero Banach space and B := E × E∗. For all (x, x∗)
and (y, y∗) ∈ B, we set ⌊(x, x∗), (y, y∗)⌋ := 〈x, y∗〉+ 〈y, x∗〉. Then (B, ⌊·, ·⌋) is an SSD
space with q(x, x∗) = 1

2
[〈x, x∗〉+〈x, x∗〉] = 〈x, x∗〉. Consequently, if (x, x∗), (y, y∗) ∈ B

then 〈x− y, x∗ − y∗〉 = q(x− y, x∗ − y∗) = q((x, x∗)− (y, y∗)). Thus if A ⊂ B then A
is q-positive exactly when A is a nonempty monotone subset of B in the usual sense,
and A is maximally q-positive exactly when A is a maximally monotone subset of B
in the usual sense. We point out that any finite dimensional SSD space of the form
described here must have even dimension. Thus cases of Example 2.3 with finite odd
dimension cannot be of this special form.

Example 2.5. (R3, ⌊·, ·⌋) is not an SSD space with

⌊(b1, b2, b3), (c1, c2, c3)⌋ := b1c2 + b2c3 + b3c1.

(The bilinear form ⌊·, ·⌋ is not symmetric.)

Lemma 2.6. Let (B, ⌊·, ·⌋) be an SSD space, f ∈ PC(B), f ≥ q on B and b, c ∈ B.
Then

−q(b− c) ≤
[√

(f − q)(b) +
√

(f − q)(c)
]2

.

Proof. We can and will suppose that 0 ≤ (f − q)(b) < ∞ and 0 ≤ (f − q)(c) < ∞.
Let

√
(f − q)(b) < β < ∞ and

√
(f − q)(c) < γ < ∞, so that β2 + q(b) > f(b) and

γ2 + q(c) > f(c). Then, writing α := β + γ,

βγ + (γq(b) + βq(c))/α = γ(β2 + q(b))/α+ β(γ2 + q(c))/α

> γf(b)/α+ βf(c)/α ≥ f((γb+ βc)/α)

≥ q((γb+ βc)/α) = (γ2q(b) + γβ⌊b, c⌋+ β2q(c))/α2.

Clearing of fractions, we obtain

α2βγ + α(γq(b) + βq(c)) > γ2q(b) + γβ⌊b, c⌋+ β2q(c),

from which α2βγ > −βγq(b) + βγ⌊b, c⌋ − βγq(c) = −βγq(b − c). If we now divide
by βγ, we obtain α2 > −q(b− c), and the result follows by letting β →

√
(f − q)(b)

and γ →
√
(f − q)(c).
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Remark 2.7. It follows from Lemma 2.6 and the Cauchy–Schwarz inequality that

−q(b− c) ≤ 2(f − q)(b) + 2(f − q)(c).

In the situation of Example 2.4, we recover [22, Proposition 1].

Definition 2.8. If (B, ⌊·, ·⌋) is an SSD space, f ∈ PC(B) and f ≥ q on B, we write

Pq(f) := {b ∈ B : f(b) = q(b)}.
We note then that (5) implies that

if A is maximally q-positive then A = Pq(ΦA). (6)

The following result is suggested by Burachik–Svaiter, [1, Theorem 3.1, pp. 2381–
2382] and Penot, [10, Proposition 4(h)=⇒(a), pp. 860–861].

Lemma 2.9. Let (B, ⌊·, ·⌋) be an SSD space, f ∈ PC(B), f ≥ q on B and Pq(f) 6= ∅.
Then Pq(f) is a q-positive subset of B.

Proof. This is immediate from Lemma 2.6.

We now introduce a concept of conjugate that is intrinsic to an SSD space without
any topological conditions.

Definition 2.10. If (B, ⌊·, ·⌋) is an SSD space and f ∈ PC(B), we write f@ for the
Fenchel conjugate of f with respect to the pairing ⌊·, ·⌋, that is to say,

for all c ∈ B, f@(c) := supB[⌊·, c⌋ − f ]. (7)

The next result gives some basic properties of ΦA
@ and ΦA

@@. It will be used in
Theorem 2.14, Lemma 4.2(e) and Lemma 4.3(c). The proof of Lemma 2.11(c) below
is due to Radu Ioan Boţ.

Lemma 2.11. Let (B, ⌊·, ·⌋) be an SSD space and A be a nonempty q-positive subset
of B. Then:

(a) ΦA
@ ≤ q on A.

(b) ΦA
@ ≥ ΦA ∨ q on B.

(c) ΦA
@@ = ΦA on B.

Proof. Let a ∈ A and b ∈ B. From (2), ⌊a, b⌋−q(a) ≤ ΦA(b). Thus ⌊b, a⌋−ΦA(b) ≤
q(a), and we obtain (a) by taking the supremum over b ∈ B. Let c ∈ B. Then, from
(4),

ΦA
@(c) = supB[⌊c, ·⌋ − ΦA] ≥ [⌊c, c⌋ − ΦA(c)] ∨ supA[⌊c, ·⌋ − ΦA]

= [2q(c)− ΦA(c)] ∨ supA[⌊c, ·⌋ − q] = [2q(c)− ΦA(c)] ∨ ΦA(c).

Now if ΦA(c) = ∞ then obviously [2q(c)−ΦA(c)] ∨ΦA(c) ≥ q(c), while if ΦA(c) ∈ R

then [2q(c) − ΦA(c)] ∨ ΦA(c) ≥ 1
2
[2q(c) − ΦA(c)] +

1
2
ΦA(c) = q(c). Thus ΦA

@(c) ≥
Φ(c) ∨ q(c). This completes the proof of (b). From (a), for all b ∈ B, ΦA

@@(b) =
supB[⌊·, b⌋−ΦA

@] ≥ supA[⌊b, ·⌋−ΦA
@] ≥ supA[⌊b, ·⌋− q] = ΦA(b). Thus ΦA

@@ ≥ ΦA

on B. However, it is obvious that ΦA
@@ ≤ ΦA on B, which completes the proof of

(c).
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Our next result represents an improvement of the result proved in [20, Lemma 19.12,
p. 82], and uses a disguised differentiability argument. Lemma 2.12 will be used in
Theorem 2.14, Corollary 3.4, Lemma 4.2 and Theorem 5.8(b). See Remark 2.13 below
for another proof of Lemma 2.12(a), due to Constantin Zălinescu.

Lemma 2.12. Let (B, ⌊·, ·⌋) be an SSD space, f ∈ PC(B) and f ≥ q on B. Then:

(a) a ∈ Pq(f) and b ∈ B =⇒ ⌊b, a⌋ ≤ q(a) + f(b).

(b) f@ = q on Pq(f).

(c) If Pq(f) 6= ∅ then f ≥ ΦPq(f) on B.

Proof. Let a ∈ Pq(f) and b ∈ B. Let λ ∈ ]0, 1[ . For simplicity in writing, let
µ := 1− λ ∈ ]0, 1[ . Then

λ2q(b) + λµ⌊b, a⌋+ µ2q(a) = q(λb+ µa) ≤ f(λb+ µa)

≤ λf(b) + µf(a) = λf(b) + µq(a).

Thus λ2q(b) + λµ⌊b, a⌋ ≤ λf(b) + λµq(a). We now obtain (a) by dividing by λ and
letting λ → 0. Now let a ∈ Pq(f). From (a), b ∈ B =⇒ ⌊a, b⌋ − f(b) ≤ q(a), and it
follows by taking the supremum over b ∈ B that f@(a) ≤ q(a). On the other hand,
f@(a) ≥ ⌊a, a⌋ − f(a) = 2q(a)− q(a) = q(a), completing the proof of (b). Finally, let
b ∈ B and a ∈ Pq(f). Then, from (a), f(b) ≥ ⌊b, a⌋ − q(a). Taking the supremum
over a ∈ Pq(f) and using (2), f(b) ≥ ΦPq(f)(b). Thus f ≥ ΦPq(f) on B, giving (c).

Remark 2.13. The author is grateful to Constantin Zălinescu for pointing out to
him the following alternative proof of Lemma 2.12(a). From Lemma 2.6, with c
replaced by a, −q(b)+⌊b, a⌋−q(a) = −q(b−a) ≤ (f−q)(b). Thus ⌊b, a⌋−q(a) ≤ f(b),
as required.

Theorem 2.14. Let (B, ⌊·, ·⌋) be an SSD space and A be a maximally q-positive
subset of B. Then ΦA

@ ≥ ΦA ≥ q on B and Pq(ΦA
@) = Pq(ΦA) = A.

Proof. The first assertion follows from Lemma 2.11(b) and (5). It is clear from this
and (6) that Pq(ΦA

@) ⊂ Pq(ΦA) = A. On the other hand, we can apply Lemma
2.12(b) to f := ΦA and obtain Pq(ΦA) ⊂ Pq(ΦA

@), which gives the second assertion.

3. SSD spaces with a linked external space

A word is in order about the conjugate of a convex function. If a vector space is paired
with itself by a bilinear form, we use the notation @ to denote the conjugate with
respect to this pairing. We have already seen an example of this in (7), and we will
see another one in (23). If a vector space X is paired with another vector space Y by
a bilinear form 〈·, ·〉 : X × Y → R and f ∈ PC(X), we write f ∗ for the conjugate of
f with respect to this pairing, that is to say, for all y ∈ Y , f ∗(y) := supX [〈·, y〉 − f ].
We will have an example of this in (9): we will come to another case in the first
paragraph of Section 7.
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We now introduce an important situation, in which an SSD space (B, ⌊·, ·⌋) supports
a second duality other than that defined by ⌊·, ·⌋.
Definition 3.1. Let (B, ⌊·, ·⌋) be an SSD space. We say that (D, ι, 〈·, ·〉) is a linked
external space if D is a nonzero real vector space, ι : B → D is a linear map and
〈·, ·〉 : B ×D → R is a bilinear form such that

for all b, c ∈ B, 〈b, ι(c)〉 = ⌊b, c⌋. (8)

If (B, ⌊·, ·⌋) is an SSD space and ι is the identity map on B then (B, ι, ⌊·, ·⌋) is a
linked external space. We will discuss more interesting examples of totally differing
characters in Definition 4.1 and Remark 5.9.

Let (D, ι, 〈·, ·〉) be a linked external space. If f ∈ PC(B) and d ∈ D then we have

f ∗(d) := supB[〈·, d〉 − f ]. (9)

It is clear from (9), (8) and (7) that if f ∈ PC(B) then

f ∗ ◦ ι = f@. (10)

Now let A be a nonempty q-positive subset of B. We then define the function
ΘA : D → ]−∞,∞] by,

for all d ∈ D, ΘA(d) := supA[〈·, d〉 − q] = supA[〈·, d〉 − ΦA] (11)

(the equality of the two expressions follows from (4)). It is clear from the first
expression in (11), (8) and (2) that

ΘA ◦ ι = ΦA, (12)

and so (4) implies that ΘA ∈ PC(D). We define the function ΨA : B → ]−∞,∞] by

ΨA := supd∈D[〈·, d〉 −ΘA(d)]. (13)

In the following lemma, we collect together the basic properties of the functions ΘA

and ΨA. The proof of Lemma 3.2(c) below is due to Radu Ioan Boţ.

Lemma 3.2. Let (B, ⌊·, ·⌋) be an SSD space, (D, ι, 〈·, ·〉) be a linked external space
and A be a nonempty q-positive subset of B. Then:

(a) ΨA ≤ q on A. (Compare Lemma 2.11(a).)

(b) ΨA ∈ PC(B).

(c) ΦA
∗ ≥ ΘA = ΨA

∗ on D. (Compare Lemma 2.11(c).)

(d) ΦA = ΨA
@.

(e) ΨA ≥ ΦA
@ ≥ q on B.

(f) A ⊂ Pq(ΨA) ⊂ Pq(ΦA
@).

Proof. (a) Let d ∈ D. Then the first expression in (11) implies that 〈·, d〉 − q ≤
ΘA(d) on A and so 〈·, d〉−ΘA(d) ≤ q on A. (a) follows by taking the supremum over
d ∈ D and using (13), and (b) is immediate from (a).
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(c) We note from (9) and the second expression in (11) that, for all d ∈ D,

ΦA
∗(d) = supB[〈·, d〉 − ΦA] ≥ supA[〈·, d〉 − ΦA] = ΘA(d),

thus ΦA
∗ ≥ ΘA on D. From (a) and the second expression in (12), for all d ∈ D,

ΨA
∗(d) = supB[〈·, d〉 −ΨA] ≥ supA[〈·, d〉 −ΨA] ≥ supA[〈·, d〉 − q] = ΘA(d).

Thus ΨA
∗ ≥ ΘA on B. However, it is obvious that ΨA

∗ ≤ ΘA on B, which completes
the proof of (c). (d) follows by composing the equality in (c) with ι and using (12)
and (10). (d) implies that ΨA

@@ = ΦA
@, and since ΨA ≥ ΨA

@@ on B, we obtain the
first inequality in (e). The second inequality in (e) follows from Lemma 2.11(b).

(f) is immediate from (a) and (e).

Our next result, which gives a useful maximal property of ΨA, is motivated by results
originally proved by Burachik and Svaiter in [1] for maximally monotone multifunc-
tions. We will return to this topic in Theorem 5.11. We note that the argument used
in Theorem 3.3 is similar to that already used in Lemma 3.2(c).

Theorem 3.3. Let (B, ⌊·, ·⌋) be an SSD space, (D, ι, 〈·, ·〉) be a linked external space,
A be a nonempty q-positive subset of B, f ∈ PC(B) be w(B,D)-lower semicontin-
uous and f ≤ q on A. Then f ∗ ≥ ΘA on D and ΨA is the largest w(B,D)-lower
semicontinuous element of PC(B) that is dominated by q on A.

Proof. From (9) and the first expression in (11), for all d ∈ D,

f ∗(d) = supB[〈·, d〉 − f ] ≥ supA[〈·, d〉 − f ] ≥ supA[〈·, d〉 − q] = ΘA(d),

thus f ∗ ≥ ΘA on D, as required. Since f is w(B,D)-lower semicontinuous, using
the Fenchel–Moreau theorem for the (possibly nonhausdorff) locally convex space
(B,w(B,D)) (see Theorem 10.1), what we have already proved, and (13),

f = supd∈D[〈·, d〉 − f ∗(d)] ≤ supd∈D[〈·, d〉 −ΘA(d)] = ΨA on B,

thus f ≤ ΨA on B. The result follows from Lemma 3.2(a), since ΨA is obviously
w(B,D)-lower semicontinuous.

Corollary 3.4. Let (B, ⌊·, ·⌋) be an SSD space, (D, ι, 〈·, ·〉) be a linked external space,
f ∈ PC(B) be w(B,D)-lower semicontinuous f ≥ q on B, and A := Pq(f) 6= ∅. Then

ΨA ≥ f ≥ ΦA on B and ΦA
∗ ≥ f ∗ ≥ ΘA on D. (14)

If, further, A is maximally q-positive then

Pq(ΨA) = Pq(ΦA
@) = Pq(ΦA) = A. (15)

Proof. It is clear from Lemmas 2.9 and 2.12(c) that A is a q-positive subset of B
and f ≥ ΦA on B, from which ΦA

∗ ≥ f ∗ on D. Theorem 3.3 implies that f ∗ ≥ ΘA on
D and ΨA ≥ f on B, which completes the proof of (14). If we use Theorem 2.14 to
strengthen Lemma 3.2(f), we obtain A ⊂ Pq(ΨA) ⊂ Pq(ΦA

@) = Pq(ΦA) = A, which
completes the proof of (15).
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Our next result is a partial converse to Corollary 3.4. We note that f is not required
to be w(B,D)-lower semicontinuous.

Corollary 3.5. Let (B, ⌊·, ·⌋) be an SSD space, (D, ι, 〈·, ·〉) be a linked external space,
A be a maximally q-positive subset of B, f ∈ PC(B) and

ΨA ≥ f ≥ ΦA on B. (16)

Then f ≥ q on B, f@ ≥ q on B and

Pq(f) = Pq(f
@) = A = Pq(ΨA) = Pq(ΦA

@) = Pq(ΦA).

Proof. From (16) and (5), ΨA ≥ f ≥ ΦA ≥ q on B. Thus, using Lemma 3.2(f),

A ⊂ Pq(ΨA) ⊂ Pq(f) ⊂ Pq(ΦA). (17)

Taking conjugates in (16) and using Lemma 3.2(d) and (5), ΦA
@ ≥ f@ ≥ ΨA

@ =
ΦA ≥ q on B. Thus, using Lemma 3.2(f),

A ⊂ Pq(ΦA
@) ⊂ Pq(f

@) ⊂ Pq(ΦA). (18)

The result now follows from (17), (18) and Theorem 2.14.

4. SSD–homomorphisms and the Gossez extension

The main result in this section is Theorem 4.5, in which we extend to SSD spaces a
concept originally due to Gossez for maximally monotone multifunctions.

Definition 4.1. Let (B, ⌊·, ·⌋) and (D, ⌈·, ·⌉) be SSD spaces. In this case, we will
always write q̃(d) := 1

2
⌈d, d⌉ (d ∈ D). We say that ι : B → D is a SSD-homomorphism

if ι is linear and,
for all b, c ∈ B, ⌈ι(b), ι(c)⌉ = ⌊b, c⌋, (19)

from which
q̃ ◦ ι = q. (20)

Let ι : B → D be an SSD-homomorhism. We define the bilinear map 〈·, ·〉ι : B×D →
R by

〈b, d〉ι := ⌈ι(b), d⌉ ((b, d) ∈ B ×D). (21)

We note then from (21) and (19) that if b, c ∈ B then 〈b, ι(c)〉ι = ⌈ι(b), ι(c)⌉ = ⌊b, c⌋,
and so (D, ι, 〈·, ·〉ι) is a linked external space (see Definition 3.1). If C is a nonempty
q̃-positive subset of D then, as in (2), (3) and (4),

ΦC(d) := supC [⌈·, d⌉ − q̃] = q̃(d)− inf q̃(C − d) (d ∈ D) and ΦC = q̃ on C. (22)

If f ∈ PC(D) and d ∈ D then, as in (7),

f@(d) := supD[⌈·, d⌉ − f ]. (23)

The next two lemmas contain the preliminary results that we will need. We obtain
Lemma 4.2 by transcribing Lemmas 2.9, 2.12(b) and 2.11(b, c) to our present situation.



S. Simons / Banach SSD Spaces and Classes of Monotone Sets 237

Lemma 4.2.

(a) Let f ∈ PC(D), f ≥ q̃ on D and Pq̃(f) 6= ∅. Then Pq̃(f) is a q̃-positive subset
of D and f@ = q̃ on Pq̃(f).

(b) If C is a nonempty q̃-positive subset of D then ΦC
@ ≥ ΦC and ΦC

@@ = ΦC on
D.

Lemma 4.3. Let (B, ⌊·, ·⌋) and (D, ⌈·, ·⌉) be SSD spaces, ι : B → D be an SSD-
homomorphism and A be a nonempty q-positive subset of B. Then:

(a) ι(A) is a nonempty q̃-positive subset of D and Φι(A) ∈ PC(D).

(b) For all d ∈ D, ΘA(d) = Φι(A)(d) = q̃(d)− inf q̃(ι(A)− d).

(c) ΘA
@ ≥ ΦA

∗ ≥ ΘA on D and ΘA
@ ≥ ΦA

∗@ ≥ ΘA on D.

Proof. If b, c ∈ A then (20) gives q̃(ι(b) − ι(c)) = q̃ ◦ ι(b − c) = q(b − c) ≥ 0, and
(a) follows from (22). If d ∈ D then the first expression in (11), (21) and (20) give
ΘA(d) = supA[〈·, d〉ι − q] = supA[⌈ι(·), d⌉ − q̃ ◦ ι] = supι(A)[⌈·, d⌉ − q̃], and (b) follows
from (22).

Of course, it is immediate from (b) and Lemma 4.2(b) that ΘA
@ = Φι(A)

@ ≥ Φι(A) =
ΘA on D, but for (c) we need the extra information about ΦA

∗ and ΦA
∗@. So let

d ∈ D. Then, from (23), (21), (12), (9) and the second expression in (11),

ΘA
@(d) = supD[⌈·, d⌉ −ΘA] ≥ supB[⌈ι(·), d⌉ −ΘA ◦ ι] = supB[〈·, d〉ι − ΦA]

= ΦA
∗(d) = supB[〈·, d〉ι − ΦA] ≥ supA[〈·, d〉ι − ΦA] = ΘA(d).

This completes the proof of the first assertion in (c). It is clear from this, (b), and
Lemma 4.2(b) that ΘA

@ ≥ ΦA
∗@ ≥ ΘA

@@ = Φι(A)
@@ = Φι(A) = ΘA on D, which gives

the second assertion in (c).

The next concept is a generalization to SSD spaces of an idea originally introduced
by Gossez in [3] for maximally monotone multifunctions. The use of the word “ex-
tension� in Definition 4.4 will be justified in Theorem 4.5(a).

Definition 4.4. Let (B, ⌊·, ·⌋) and (D, ⌈·, ·⌉) be SSD spaces, ι : B → D be an SSD-
homomorphism and A be a nonempty q-positive subset of B. It is clear from Lemma
4.3(b) that if d ∈ D then ΘA(d) ≤ q̃(d) ⇐⇒ inf q̃(ι(A) − d) ≥ 0. We define the
Gossez extension of A in D to be the set

AG = {d ∈ D : inf q̃(ι(A)− d) ≥ 0} = {d ∈ D : ΘA(d) ≤ q̃(d)}. (24)

Theorem 4.5 will be used in Theorem 6.15, which will be used, in turn, in Theorem
9.5, where we prove that for a maximally monotone set, type (ED), dense type,
type (D), type (WD) and type (NI) are all equivalent. Theorem 9.5 will be used in
Theorems 9.9 and 9.10.

Theorem 4.5. Let (B, ⌊·, ·⌋) and (D, ⌈·, ·⌉) be SSD spaces, ι : B → D be an SSD-
homomorphism and A be a nonempty q-positive subset of B. Then:

(a) ι(A) ⊂ AG.
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(b) If, for all d ∈ AG, inf q̃(ι(A)− d) ≤ 0 then

ΘA ≥ q̃ on D. (25)

(c) If (25) is satisfied then AG = Pq̃(ΦA
∗@) = Pq̃(ΦA

∗) = Pq̃(ΘA
@) = Pq̃(ΘA).

Proof. If a ∈ A then, from (12), (4) and (20), ΘA(ι(a)) = ΦA(a) = q(a) = q̃ ◦ ι(a) =
q̃(ι(a)), and so the second expression in (24) implies that ι(a) ∈ AG. This gives (a).
(b) is immediate from Lemma 4.3(b). Suppose, finally, that (25) is satisfied. It is
obvious from (a) and the second expression in (24) that ∅ 6= AG = Pq̃(ΘA) and, from
Lemma 4.3(c), that

Pq̃(ΘA
@) ⊂ Pq̃(ΦA

∗) ⊂ Pq̃(ΘA) and Pq̃(ΘA
@) ⊂ Pq̃(ΦA

∗@) ⊂ Pq̃(ΘA).

(c) follows since Lemma 4.2(a) with f := ΘA gives Pq̃(ΘA) ⊂ Pq̃(ΘA
@).

5. VZ functions on Banach SSD spaces

We note that we do not use anything from Section 4 in this section – we will combine
this section with Section 4 in Section 6. The other comment is that the dual of
a Banach space is not mentioned explicitly until Remark 5.9, though there is an
implicit use of the dual in Theorem 5.6(b) (in the observation that a proper convex
lower semicontinuous function dominates a continuous affine function). If X is a
nonzero real Banach space, we write PCLSC(X) for the set

{f ∈ PC(X) : f is lower semicontinuous on X}.

Definition 5.1. We say that (B, ⌊·, ·⌋, ‖ · ‖) is a Banach SSD space if (B, ⌊·, ·⌋) is an
SSD space and ‖ · ‖ is a norm on B with respect to which B is a Banach space and

for all b, c ∈ B, |⌊b, c⌋| ≤ ‖b‖‖c‖. (26)

If we take c = b, we derive that

1
2
‖ · ‖2 + q ≥ 0 on B. (27)

Then, for all d, e ∈ B,

|q(d)− q(e)| = 1
2
|⌊d, d⌋ − ⌊e, e⌋| = 1

2
|⌊d− e, d+ e⌋| ≤ 1

2
‖d− e‖‖d+ e‖. (28)

We define the continuous even functions g and p on B by g := 1
2
‖ · ‖2 and p := g+ q,

so that p ≥ 0 on B. Since p(0) = 0, in fact

infB p = 0. (29)

Also, for all d, e ∈ B, |g(d)− g(e)| = 1
2
|‖d‖− ‖e‖|(‖d‖+ ‖e‖) ≤ 1

2
‖d− e‖(‖d‖+ ‖e‖).

Combining this with (28), for all d, e ∈ B,

|p(d)− p(e)| ≤ ‖d− e‖(‖d‖+ ‖e‖). (30)
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Remark 5.2. It is clear from (26) that Example 2.3 is a Banach SSD space if, and
only if ‖T‖ ≤ 1, which is the case with (a), (b) and (c). Looking ahead to Remark
5.9, it then follows from (43) that ι = T .

Example 5.3. We now continue our discussion of Example 2.4. We suppose that
E is a nonzero Banach space, B = E × E∗ and, for all (x, x∗) ∈ B, ‖(x, x∗)‖2 :=√
‖x‖2 + ‖x∗‖2. It is clear from the Cauchy–Schwarz inequality that (26) is satisfied,

and so (E × E∗, ⌊·, ·⌋, ‖ · ‖2) is a Banach SSD space.

We now introduce the concept of inf-convolution. This certainly goes back as far as
[13], but we emphasize that we will be using it here for nonconvex functions.

Definition 5.4. Let X be a vector space and h, k : X → ]−∞,∞]. The inf-convo-
lution of h and k is defined by (h∇ k)(x) := infy∈X [h(y) + k(x − y)] (x ∈ X). It is
clear that

infX k = 0 =⇒ infX [h∇ k] = infX h. (31)

Now let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space and f ∈ PC(B). We say that f is a
VZ function if

(f − q)∇ p = 0 on B. (32)

It follows from (29) and (31) that

if f is a VZ function then infB[f − q] = 0. (33)

“VZ� stands for “Voisei–Zălinescu�, since (32) is an extension to Banach SSD spaces
of a condition introduced in [22, Proposition 3]. The following simple inequality will
be useful: suppose that f ∈ PC(B) and f ≥ q on B; then, for all c ∈ B,

((f − q)∇ p)(c) = infb∈B[(f − q)(b) + p(c− b)]

≤ infa∈Pq(f)[(f − q)(a) + p(c− a)]

= inf p(c− Pq(f)) = inf p(Pq(f)− c).





(34)

Definition 5.5. Let A be a subset of a Banach SSD space (B, ⌊·, ·⌋, ‖ · ‖). We say
that A is p-dense in B if, for all c ∈ B, inf p(A− c) = 0.

We now come to our main results on VZ functions on Banach SSD spaces. We shall
see in Remark 5.12 that the constant

√
2 in (36) is sharp, and also that (36) leads

to a strict strengthening of (35). If we take Theorem 5.6(a) into account then a
double induction is used to prove Theorem 5.6(c). We do not know if this is actually
necessary. Theorem 5.6(d) is an extension to Banach SSD spaces of [22, Theorem
8]. Theorem 5.6 is related to some results proved by Zagrodny in [23]. These are
discussed more fully in the comments preceding Problem 9.8.

Theorem 5.6. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space and f ∈ PCLSC(B) be a
VZ function. Then:

(a) Pq(f) is a q-positive subset of B and

d ∈ dom f =⇒ dist(d,Pq(f)) ≤ 5
√

(f − q)(d). (35)
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(b) Pq(f) is p-dense in B.

(c) For all c ∈ B, inf q(Pq(f)− c) ≤ 0 and

c ∈ B =⇒ dist(c,Pq(f)) ≤
√
2
√
− inf q(Pq(f)− c). (36)

(d) Pq(f) is a maximally q-positive subset of B.

Proof. (a) (33) implies that f ≥ q on B, and so Pq(f) is defined. Let d ∈ dom f .
We first prove that there exists a Cauchy sequence {bn}n≥1 such that, for all n ≥ 1,

(f − q)(bn) ≤ (f − q)(d)/4n and ‖d− bn‖ ≤ 5
√
(f − q)(d). (37)

Since we can take bn = d if (f − q)(d) = 0, we can and will suppose that

α :=
√

(f − q)(d) > 0. (38)

Write b0 := d. Then we can choose inductively b1, b2, · · · ∈ B (using the fact that
((f − q)∇ p)(bn−1) = 0) such that, for all n ≥ 1, (f − q)(bn)+p(bn−1− bn) ≤ (α/2n)2.
It follows from (33), (38) and (29) that,

for all n ≥ 1, p(bn−1 − bn) ≤ (α/2n)2, (39)

and
for all n ≥ 0, (f − q)(bn) ≤ (α/2n)2. (40)

Substituting this into Lemma 2.6, for all n ≥ 1,

−q(bn−1 − bn) ≤
[√

(f − q)(bn−1) +
√
(f − q)(bn)

]2
≤ [α/2n−1 + α/2n]2 = 9(α/2n)2.

Consequently, since g(bn−1 − bn) = p(bn−1 − bn)− q(bn−1 − bn), (39) gives,

for all n ≥ 1, g(bn−1 − bn) ≤ (α/2n)2 + 9(α/2n)2 = 10(α/2n)2,

and so, for all n ≥ 1, ‖bn−1−bn‖ ≤ 5α/2n. Adding up this inequality for n = 1, . . . ,m
and using (38), we derive that, for all m ≥ 1, ‖d − bm‖ ≤ 5α = 5

√
(f − q)(d), and

(37) now follows from (40). Now set a = limn bn, so that ‖d − a‖ ≤ 5
√
(f − q)(d).

(37) and the lower semicontinuity of f − q now imply that (f − q)(a) ≤ 0, that is to
say, a ∈ Pq(f). Since dom f 6= ∅, it follows that Pq(f) 6= ∅ and so, from Lemma 2.9,
Pq(f) is a q-positive subset of B, and obviously (35) is satisfied. This completes the
proof of (a).

(b) Let c ∈ B. Since ((f − q)∇ p)(c) = 0, we can choose inductively d1, d2, · · · ∈ B
such that, for all n ≥ 1,

f(dn) + g(c− dn) + q(c)− ⌊c, dn⌋ = (f − q)(dn) + p(c− dn) < 1/n2.

Consequently, using (29), (33) and (26), for all n ≥ 1,

(f − q)(dn) < 1/n2, p(c− dn) < 1/n2 (41)
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and
f(dn) + g(c− dn) + q(c)− ‖c‖‖dn‖ < 1/n2. (42)

Since f ∈ PCLSC(B), f dominates a continuous affine function, and so (42) and the
usual coercivity argument imply that K := supn≥1 ‖dn‖ < ∞. From (a) and (41), for
all n ≥ 1, there exists an ∈ Pq(f) such that ‖an − dn‖ ≤ 5/n. Now, from (30), for all
n ≥ 1,

|p(c− an)− p(c− dn)| ≤ ‖an − dn‖(2‖c‖+ ‖an‖+ ‖dn‖)
≤ (2‖c‖+ (K + 5) +K)5/n.

Thus limn→∞[p(c− an)− p(c− dn)] = 0, and (b) follows by combining this with (41).

(c) Let c ∈ B. Then, from (b),

inf g(Pq(f)− c) + inf q(Pq(f)− c) ≤ inf(g + q)(Pq(f)− c) = inf p(Pq(f)− c) = 0.

Thus 1
2
dist(c,Pq(f))

2 = inf g(Pq(f) − c) ≤ − inf q(Pq(f) − c), from which (36) is an
immediate consequence.

(d) We suppose that c ∈ B and inf q(Pq(f) − c) ≥ 0, and we must prove that
c ∈ Pq(f). From (c), in fact inf q(Pq(f) − c) = 0 and dist(c,Pq(f)) = 0. The lower
semicontinuity of f implies that Pq(f) is closed, and so c ∈ Pq(f). This completes
the proof of (d).

The interest of Theorem 5.7 below is that it tells us that we can determine whether
f is a VZ function by simply inspecting Pq(f).

Theorem 5.7. Let (B, ⌊·, ·⌋, ‖·‖) be a Banach SSD space and f ∈ PCLSC(B). Then
f is a VZ function ⇐⇒ f ≥ q on B and Pq(f) is p-dense in B.

Proof. (=⇒) is immediate from (33) and Theorem 5.6(b). Suppose, conversely, that
f ≥ q on B and Pq(f) is p-dense in B. Then from (34), for all c ∈ B, we get
((f − q)∇ p)(c) ≤ inf p(Pq(f) − c) = 0, from which (f − q)∇ p ≤ 0 on B. On the
other hand, since f −q ≥ 0 on B and, from (29), p ≥ 0 on B, we have (f −q)∇ p ≥ 0
on B. Thus f is a VZ function, as required.

We point out that the function h in Theorem 5.8(a) is not required to be lower
semicontinuous, so we cannot simply apply Theorem 5.7 with f replaced by h.

Theorem 5.8. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space and f ∈ PCLSC(B) be a
VZ function. Then:

(a) Let h ∈ PC(B), h ≥ q on B, and Pq(h) ⊃ Pq(f). Then Pq(h) = Pq(f) and h
is a VZ function.

(b) f@ ∈ PCLSC(B), f@ is a VZ function and Pq(f
@) = Pq(f).

Proof. (a) It is clear from Theorem 5.6(d) that Pq(h) = Pq(f). From (34) and
Theorem 5.6(b), for all c ∈ B, ((h−q)∇ p)(c) ≤ inf p(Pq(h)−c) = inf p(Pq(f)−c) = 0,
from which (h− q)∇ p ≤ 0 on B. On the other hand, since h− q ≥ 0 on B and p ≥ 0
on B, we have (h− q)∇ p ≥ 0 on B. Thus h is a VZ function.
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(b) Let c ∈ B. Then, since q ≤ p on B, Definition 2.10 gives

q(c)− f@(c) = infb∈B[f(b)− ⌊b, c⌋+ q(c)] = ((f − q)∇ q)(c) ≤ ((f − q)∇ p)(c) = 0,

and so f@ ≥ q on B. It now follows from Lemma 2.12(b) that Pq(f
@) ⊃ Pq(f), and

so (a) implies that f@ is a VZ function and Pq(f
@) = Pq(f). Since Pq(f) 6= ∅, it is

evident that f@ ∈ PCLSC(B).

Remark 5.9. Up to this point, we have not mentioned the Banach space dual, B∗,
of B. It is easy to see from (26) and standard algebraic arguments that there exists
a linear map ι : B → B∗ such that ‖ι‖ ≤ 1 and

for all b, c ∈ B, 〈b, ι(c)〉 = ⌊b, c⌋. (43)

It follows that (B∗, ι, 〈·, ·〉) is a linked external space (see Definition 3.1) and, if A is
a nonempty q-positive subset of B, we define ΘA ∈ PC(B∗) and ΨA ∈ PC(B) by (11)
and (13), with D replaced by B∗.

The proof of Theorem 5.8 relies heavily on the lower semicontinuity of f . We will
show in Corollary 5.10 below that part of Theorem 5.8(b) can be recovered even if f
is not assumed to be lower semicontinuous.

Corollary 5.10. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space and f ∈ PC(B) be a VZ
function. Then f@ ∈ PCLSC(B), f@ is a VZ function and Pq(f

@) is a maximally
q-positive subset of B.

Proof. Let f be the lower semicontinuous envelope of f . Since q is continuous and
f ≥ q on B, it follows that f ≥ f ≥ q on B. Thus, from (29),

0 = (f − q)∇ p ≥ (f − q)∇ p ≥ 0∇ p = 0 on B,

and so f is a VZ function. Since f ∈ PCLSC(B), Theorem 5.8(b) implies that f
@

is a VZ function also. It is well known that f
∗
= f ∗ on B∗ thus, composing with ι

and using (10), f
@
= f@ on B. The result now follows from Theorem 5.6(d), with f

replaced by f@.

Theorem 5.11. Let (B, ⌊·, ·⌋, ‖ ·‖) be a Banach SSD space, f ∈ PCLSC(B) be a VZ
function and A := Pq(f). Then

ΨA ≥ f ≥ ΦA ≥ q on B and ΦA
∗ ≥ f ∗ ≥ ΘA on B∗, (44)

Pq(ΨA) = Pq(ΦA
@) = Pq(ΦA) = A, (45)

and
ΦA,ΦA

@ and ΨA are all VZ functions. (46)

Now let h ∈ PC(B) and ΨA ≥ h ≥ ΦA on B. Then h and h@ are VZ functions.

Proof. We first note from (33) and Theorem 5.6(d) that f ≥ q on B and A is a
maximally q-positive subset of B. From standard normed space theory, f is w(B,B∗)-
lower semicontinuous and so (44) and (45) follow from Corollary 3.4 and (5). The
first assertion in (44), (45) and Theorem 5.7 imply that ΨA and ΦA are VZ functions,
and (46) now follows from Theorem 5.8(b), with f replaced by ΦA. The assertions
about h and h@ follow from Theorem 5.8(a) and Corollary 5.10.
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Remark 5.12. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space and f ∈ PCLSC(B) be a
VZ function. We know from Theorem 5.11 that Pq(ΦPq(f)) = Pq(f), ΦPq(f) is a VZ
function and ΦPq(f) ≤ f on B. Combining this with (3), for all c ∈ B,

− inf q(Pq(f)− c) = (ΦPq(f) − q)(c) ≤ (f − q)(c). (47)

Thus Theorem 5.6(c) implies that, for all c ∈ B,

dist(c,Pq(f)) = dist(c,Pq(ΦPq(f))) ≤
√
2
√
(ΦPq(f) − q)(c) ≤

√
2
√
(f − q)(c). (48)

This shows that Theorem 5.6(c) is stronger than Theorem 5.6(a). Now consider
the Banach SSD space (R × R, ⌊·, ·⌋, ‖ · ‖2), where the notation is as in Examples
5.3. Define f ∈ PCLSC(B) by f(x1, x2) := 1

2
(x2

1 + x2
2). Then (f − q)(x1, x2) =

1
2
(x2

1 + x2
2) − x1x2 = 1

2
(x1 − x2)

2 and p(x1, x2) = 1
2
(x2

1 + x2
2) + x1x2 = 1

2
(x1 + x2)

2.
Let c := (z1, z2) ∈ B and b := (1

2
(z1 + z2),

1
2
(z1 + z2)) ∈ B. Then (f − q)(b) = 0 and

p(c− b) = 0. Consequently, f is a VZ function. Now Pq(f) is the diagonal of R
2 and

so, by direct computation, for all c = (x1, x2) ∈ R
2, − inf q(Pq(f)− c) = 1

4
(x1 − x2)

2.
Since 1

4
(x1 − x2)

2 < 1
2
(x1 − x2)

2 when x1 6= x2, the inequality in (47) is generally
strict.

Now let h := ΦPq(f). (3) gives us that, for all (x1, x2) ∈ B,

√
(h− q)(x1, x2) =

√
1
4
(x1 − x2)

2 = 1
2
|x1 − x2|.

On the other hand, by direct computation, dist((x1, x2),Pq(h)) =
1√
2
|x1 − x2|. Thus

the constant
√
2 in the inequalities in (48) is sharp. The genesis of this argument

and example can be found in the results of Mart́ınez-Legaz and Théra in [8].

Remark 5.13. The following result follows by applying the inequality between the
first and last terms in (48) to Example 5.3: Let E be a nonzero Banach space, and f
be a lower semicontinuous VZ function on E × E∗. Then, for all (x, x∗) ∈ E × E∗,

inf(y,y∗)∈Pq(f)

√
‖y − x‖2 + ‖y∗ − x∗‖2 ≤

√
2
√
f(x, x∗)− 〈x, x∗〉.

This strengthens the result proved in [22, Theorem 4], namely that

inf(y,y∗)∈Pq(f)

√
‖y − x‖2 + ‖y∗ − x∗‖2 ≤ 2

√
f(x, x∗)− 〈x, x∗〉.

As we observed in Remark 5.12, the constant
√
2 is sharp.

Remark 5.14. We note that the inequality for B in (44) has four functions, while
the inequality for B∗ has only three. The reason for this is that we do not have a
function on B∗ that plays the role that the function q plays on B. The function q̃,
which plays such a role, will be introduced in this context in Definition 6.1.
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6. Banach SSD duals

If X is a nonzero real Banach space, we write X∗∗ for the bidual of X (with the
pairing 〈·, ·〉 : X∗ ×X∗∗ → R). If x ∈ X, we write x̂ for the canonical image of x in
X∗∗, that is to say

x ∈ X and x∗ ∈ X∗ =⇒ 〈x∗, x̂〉 = 〈x, x∗〉.

Definition 6.1. Let (B, ⌊·, ·⌋, ‖ ·‖) be a Banach SSD space, (B∗, ‖ ·‖) be the Banach
space dual of B and the bounded linear map ι : B → B∗ be defined as in (43). Let
(B∗, ⌈·, ·⌉, ‖ · ‖) also be a Banach SSD space. We say that (B∗, ⌈·, ·⌉, ‖ · ‖) is a Banach
SSD dual of (B, ⌊·, ·⌋, ‖ · ‖) if 〈·, ·〉ι = 〈·, ·〉 on B ×B∗ (see (21)), that is to say

for all b ∈ B and c∗ ∈ B∗, ⌈ι(b), c∗⌉ = 〈b, c∗〉. (49)

We have not required explicitly that ι be an SSD-homomorphism from (B, ⌊·, ·⌋) into
(B∗, ⌈·, ·⌉) (see (19)): this is automatically satisfied since (49) and (43) imply that,
for all b, c ∈ B, ⌈ι(b), ι(c)⌉ = 〈b, ι(c)〉 = ⌊b, c⌋.
Thus if (B, ⌊·, ·⌋, ‖ · ‖) is a Banach SSD space with Banach SSD dual (B∗, ⌈·, ·⌉, ‖ · ‖),
we can use all the results of Sections 3 and 4 (with “D� replaced by “B∗�) and
Section 5.

By analogy with (43), we define the bounded linear map ι̃ : B∗ → B∗∗ so that

for all c∗, b∗ ∈ B∗, 〈c∗, ι̃(b∗)〉 = ⌈c∗, b∗⌉ (50)

and the function p̃ : B∗ → R by p̃ := 1
2
‖ · ‖2 + q̃. Thus we have

p̃ ≥ 0 on B∗. (51)

We now show that Definition 6.1 also leads to an automatic factorization of the
canonical map from B into B∗∗. Lemma 6.2 will be used in Lemma 8.2.

Lemma 6.2. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space with Banach SSD dual

(B∗, ⌈·, ·⌉, ‖ · ‖). Then, for all b ∈ B, b̂ = ι̃ ◦ ι(b).

Proof. Let b ∈ B and c∗ ∈ B∗. Then, from the definition of b̂, (49) and (50),

〈c∗, b̂〉 = 〈b, c∗〉 = ⌈ι(b), c∗⌉ = ⌈c∗, ι(b)⌉ = 〈c∗, ι̃ ◦ ι(b)〉.

This gives the required result.

Remark 6.3. In this remark, we suppose that the notation is as in Example 2.3,
and that (B, ⌊·, ·⌋, ‖ · ‖) is a Banach SSD space with Banach SSD dual (B, ⌈·, ·⌉, ‖ · ‖).
We shall show that ⌊·, ·⌋ = ⌈·, ·⌉ on B ×B.

We know already from Remarks 5.2 and 5.9 that ι = T and ‖ι‖ ≤ 1. We write IB for
the identity map on B.

It is clear from Lemma 6.2 that ι̃ ◦ ι = IB. Now from (50), for all b, c ∈ B, 〈ι̃(b), c〉 =
〈c, ι̃(b)〉 = ⌈c, b⌉ = ⌈b, c⌉ = 〈b, ι̃(c)〉, so ι̃ is self-adjoint. For all b ∈ B, we have
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‖ι̃(b)−ι(b)‖2 = 〈ι̃(b), ι̃(b)〉−2〈ι̃(b), ι(b)〉+〈ι(b), ι(b)〉 = ‖ι̃(b)‖2−2〈b, ι̃◦ι(b)〉+‖ι(b)‖2 =
‖ι̃(b)‖2 − 2〈b, b〉 + ‖ι(b)‖2 = ‖ι̃(b)‖2 − 2‖b‖2 + ‖ι(b)‖2. Since ‖ι‖ ≤ 1 and ‖ι̃‖ ≤ 1,
‖ι̃(b) − ι(b)‖2 ≤ 0, from which ι̃(b) = ι(b). Thus ι̃ = ι, from which ⌈·, ·⌉ = ⌊·, ·⌋ as
required. In other words, (B, ⌊·, ·⌋, ‖ · ‖) is its own Banach SSD dual.

The following concept will be critical in Theorem 6.12.

Definition 6.4. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space with Banach SSD dual
(B∗, ⌈·, ·⌉, ‖ · ‖). In line with Definition 5.5, we say that ι(B) is p̃-dense in B∗ if

for all b∗ ∈ B∗, inf p̃(ι(B)− b∗) = 0. (52)

Example 6.5. We now show that the Banach SSD space (B, ⌊·, ·⌋, ‖ ·‖2) of Example
5.3 has a Banach SSD dual, and

ι(B) is p̃-dense in B∗. (53)

(See Definition 6.4.) We recall that E is a nonzero Banach space and B = E×E∗. We
represent B∗ by E∗ × E∗∗, under the pairing 〈(x, x∗), (y∗, y∗∗)〉 := 〈x, y∗〉 + 〈x∗, y∗∗〉.
Then, for all (x, x∗) ∈ B, q(x, x∗) = 〈x, x∗〉 and, from (43), ι(x, x∗) = (x∗, x̂). The
dual norm on E∗ × E∗∗ is given by ‖(y∗, y∗∗)‖2 :=

√
‖y∗‖2 + ‖y∗∗‖2.

Replacing E by E∗ in Example 5.3, we define the symmetric bilinear form ⌈·, ·⌉ : B∗×
B∗ → R by ⌈(x∗, x∗∗), (y∗, y∗∗)⌉ := 〈y∗, x∗∗〉 + 〈x∗, y∗∗〉. Then (B∗, ⌈·, ·⌉, ‖ · ‖2) is
a Banach SSD space. We represent B∗∗ = (B∗)∗ by E∗∗ × E∗∗∗ under the pair-
ing 〈(y∗, y∗∗), (w∗∗, w∗∗∗)〉 := 〈y∗, w∗∗〉 + 〈y∗∗, w∗∗∗〉. Then, for all (y∗, y∗∗) ∈ B∗,
q̃(y∗, y∗∗) = 〈y∗, y∗∗〉 and ι̃(y∗, y∗∗) = (y∗∗, ŷ∗).

We next show that (B∗, ⌈·, ·⌉, ‖ · ‖2) is a Banach SSD dual of (B, ⌊·, ·⌋, ‖ · ‖2), that
is to say (49) is satisfied. To this end, let (x, x∗) ∈ B and (y∗, y∗∗) ∈ B∗. Then
⌈ι(x, x∗), (y∗, y∗∗)⌉ = ⌈(x∗, x̂), (y∗, y∗∗)⌉ = 〈y∗, x̂〉 + 〈x∗, y∗∗〉 = 〈x, y∗〉 + 〈x∗, y∗∗〉 =
〈(x, x∗), (y∗, y∗∗)〉, which gives (49), as required.

We now establish (53). To see this, let (y∗, y∗∗) ∈ B∗ and ε > 0. From the definition
of ‖y∗∗‖, there exists z∗ ∈ E∗ such that ‖z∗‖ ≤ ‖y∗∗‖ and 〈z∗, y∗∗〉 ≥ ‖y∗∗‖2 − ε. But
then

ι(0, y∗ + z∗)− (y∗, y∗∗) = (y∗ + z∗, 0)− (y∗, y∗∗) = (z∗,−y∗∗) ∈ B∗.

Since

p̃(z∗,−y∗∗) = 1
2
(‖z∗‖2 + ‖y∗∗‖)− 〈z∗, y∗∗〉 ≤ ‖y∗∗‖2 − 〈z∗, y∗∗〉 ≤ ε,

we have established (53), as required.

The following observation will be useful in our discussion of monotone sets in Section
9: if (a, a∗) ∈ B and (y∗, y∗∗) ∈ B∗ then q̃(ι(a, a∗)−(y∗, y∗∗)) = q̃((a∗, â)−(y∗, y∗∗)) =
q̃(a∗ − y∗, â− y∗∗) = 〈a∗ − y∗, â− y∗∗〉. As a consequence, if ∅ 6= A ⊂ B then

inf q̃(ι(A)− (y∗, y∗∗)) = inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉. (54)
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Remark 6.6. In the situation of Example 6.5, there are norms ‖ · ‖ on B other than
‖ · ‖2 under which (B, ⌊·, ·⌋, ‖ · ‖) has a Banach SSD dual, and ι(B) is p̃-dense in B∗.
We refer the reader to [21, Example 2.4, p. 6] and [21, Example 4.4, pp. 14–15] for
more details. Looking ahead, in all these cases, Theorem 8.3(b) remains true.

Remark 6.7. Let (B1, ⌊·, ·⌋1, ‖ · ‖1) be a Banach SSD space with Banach SSD dual
(B∗

1 , ⌈·, ·⌉1, ‖·‖1) and (B2, ⌊·, ·⌋2, ‖·‖2) be a Banach SSD space with Banach SSD dual
(B∗

2 , ⌈·, ·⌉2, ‖·‖2). We define ‖·‖ : B1×B2 → R and ⌊·, ·⌋ : (B1×B2)×(B1×B2) → R

by ‖(b1, b2)‖ :=
√

‖b1‖21 + ‖b2‖22 and ⌊(b1, b2), (c1, c2)⌋ := ⌊b1, c1⌋1+⌊b2, c2⌋2. Similarly,
we define ‖ · ‖ : B∗

1 ×B∗
2 → R and ⌈·, ·⌉ : (B∗

1 ×B∗
2)× (B∗

1 ×B∗
2) → R by ‖(b∗1, b∗2)‖ :=√

‖b∗1‖21 + ‖b∗2‖22 and ⌈(b∗1, b∗2), (c∗1, c∗2)⌉ := ⌈b∗1, c∗1⌉1+⌈b∗2, c∗2⌉2. Then (B1×B2, ⌊·, ·⌋, ‖·‖)
is a Banach SSD space with Banach SSD dual (B∗

1 ×B∗
2 , ⌈·, ·⌉, ‖ · ‖).

As an example of this construction, we could take (B1, ⌊·, ·⌋1, ‖ · ‖1) to be a Banach
SSD space of the kind considered in Remark 6.3, and (B2, ⌊·, ·⌋2, ‖·‖2) to be a Banach
SSD space of the kind considered in Example 6.5. If B1 is odd-dimensional and E
is finite-dimensional then B is odd-dimensional, and so cannot itself be of the form
considered in Example 6.5. Example 2.3(c) is of this form, and a glance at that
example shows how pathological the q-positive sets can be.

We now recall Rockafellar’s formula for the conjugate of a sum:

Lemma 6.8. Let X be a nonzero real Banach space and f ∈ PC(X), and let h ∈
PC(X) be real-valued and continuous. Then, for all x∗ ∈ X∗,

(f + h)∗(x∗) = miny∗∈X∗ [f ∗(y∗) + h∗(x∗ − y∗)].

Proof. See Rockafellar, [12, Theorem 3(a), p. 85], Zălinescu, [24, Theorem 2.8.7(iii),
p. 127], or [20, Corollary 10.3, p. 52].

Remark 6.9. [20, Theorem 7.4, p. 43] contains a version of the Fenchel duality
theorem with a sharp lower bound on the norm of the functional obtained.

Lemma 6.10. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space with Banach SSD dual
(B∗, ⌈·, ·⌉, ‖ · ‖). Define the function g on B by g := 1

2
‖ · ‖2. Let f ∈ PC(B). Then

−((f − q)∇ p) = ((f ∗ − q̃)∇ p̃) ◦ ι on B.

Proof. Let c ∈ B. Define h : B → R by h(b) := g(c− b). Then, by direct computa-
tion using the fact that g is an even function,

for all c∗ ∈ B∗, h∗(c∗) = g∗(c∗) + 〈c, c∗〉. (55)

Then, from (21), the continuity of h, Lemma 6.8, (55), (20) and the fact that, for all
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c∗ ∈ B∗, g∗(c∗) = 1
2
‖c∗‖2,

−((f − q)∇ p)(c) = supb∈B[−(f − q)(b)− p(c− b)]

= supb∈B[〈b, ι(c)〉 − f(b)− h(b)]− q(c) = (f + h)∗(ι(c))− q(c)

= minb∗∈B∗ [f ∗(b∗) + h∗(ι(c)− b∗)]− q(c)

= minb∗∈B∗ [f ∗(b∗) + g∗(ι(c)− b∗) + 〈c, ι(c)− b∗〉]− q(c)

= minb∗∈B∗ [f ∗(b∗) + g∗(ι(c)− b∗)− ⌈ι(c), b∗⌉+ q̃(ι(c))]

= minb∗∈B∗ [(f ∗ − q̃)(b∗) + p̃(ι(c)− b∗)]

= ((f ∗ − q̃)∇ p̃)(ι(c)).

This completes the proof of Lemma 6.10.

Definition 6.11. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space with Banach SSD dual
(B∗, ⌈·, ·⌉, ‖ · ‖) and f ∈ PC(B). We say that f is an MAS function if f ≥ q on
B and f ∗ ≥ q̃ on B∗. This is an extension to Banach SSD spaces of the concept
introduced by Marques Alves and Svaiter in [5, Theorem 4.2, pp. 702–704] for the
situation described in Example 6.5.

It is clear from the layout of Section 5 that the main results on VZ functions (that
is, up to and including Theorem 5.8) do not depend explicitly on B∗. By contrast,
a knowledge of B∗ is absolutely essential for even the definition of MAS function.
As a consequence, Theorem 6.12 below is rather suprising. Theorem 6.12(a) and its
partial converse Theorem 6.12(b) are motivated by various results scattered through
[22, Section 2]. Theorem 6.12(c) is motivated by [6]. We recall from (53) that the
p̃-density condition is satisfied in the situation of Example 6.5, and we will discuss
the implications of Theorem 6.12 to this example (via Theorem 6.15) in Theorems
9.5, 9.7, 9.9 and 9.10.

Theorem 6.12. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space with Banach SSD dual
(B∗, ⌈·, ·⌉, ‖ · ‖).
(a) Let f ∈ PC(B) be an MAS function. Then f is a VZ function.

(b) Let ι(B) be p̃-dense in B∗ and f ∈ PC(B) be a VZ function. Then f is an
MAS function.

(c) Let ι(B) be p̃-dense in B∗ and A ⊂ B. Then there exists an MAS function
f ∈ PCLSC(B) such that A = Pq(f) ⇐⇒ A is maximally q-positive and
ΘA ≥ q̃ on B∗.

Proof. (a) Taking together (29), (51) and our hypothesis that f is an MAS function,
we have infB[f − q] ≥ 0, infB p ≥ 0, infB∗ [f ∗ − q̃] ≥ 0 and infB∗ p̃ ≥ 0. Consequently,
infB[(f − q)∇ p] ≥ 0 and infB[((f

∗ − q̃)∇ p̃) ◦ ι] ≥ 0, and (a) follows from Lemma
6.10.

(b) We know from (33) that f ≥ q on B. Now let b∗ ∈ B∗ and c ∈ B. Then, from
Lemma 6.10 again,

(f ∗ − q̃)(b∗) + p̃(ι(c)− b∗) ≥ ((f ∗ − q̃)∇ p̃)(ι(c)) = −((f − q)∇ p)(c) = 0.

Taking the infimum over c ∈ B and using (52), (f ∗ − q̃)(b∗) ≥ 0 on B∗. Since this
holds for all b∗ ∈ B∗, f is an MAS function, giving (b).
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(c) (=⇒) Let f ∈ PCLSC(B) be an MAS function and A = Pq(f). From (a), f is
a VZ function, and so Theorem 5.6(d) implies that A is maximally q-positive. From
(46) and (b), ΨA is an MAS function, consequently ΨA

∗ ≥ q̃ on B∗, thus Lemma
3.2(c) implies that ΘA ≥ q̃ on B∗, as required.

(⇐=) Suppose, conversely, that A is maximally q-positive and ΘA ≥ q̃ on B∗. From
(5), Lemma 3.2(c) and (6), ΦA ≥ q on B, ΦA

∗ ≥ q̃ on B∗ and Pq(ΦA) = A, and the
result follows with f := ΦA. (We could also use ΨA for this part of (c).)

Definition 6.13. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space with Banach SSD dual
(B∗, ⌈·, ·⌉, ‖ · ‖). We say that a topology T on B∗ is compatible if it satisfies the
conditions (a)–(c) below:

(a) T ⊃ w(B∗, B∗). (w(B∗, B∗) is the weak topology induced on B∗ by the bilinear
form ⌈·, ·⌉.)

(b) If f ∈ PCLSC(B) and b∗ ∈ B∗ then there exists a net {bγ} of elements of B
such that ι(bγ) → b∗ in T and f(bγ) → f ∗@(b∗).

(c) If {bγ} and {aγ} are nets of elements of B, b∗ ∈ B∗, ι(bγ) → b∗ in T and
‖aγ − bγ‖ → 0 then ι(aγ) → b∗ in T .

Remark 6.14. Definition 6.13(a) says that T is not too small, Definition 6.13(b)
says that T is not too large, and Definition 6.13(c) says that T behaves well under
norm perturbations in B. It follows from Lemma 8.2 below that w(B∗, B∗) is com-
patible. If the norm topology of B∗ is compatible then, from (b) above with f := 0,
ι(B) is norm-dense in B∗.

Theorem 6.12 leads to the following fundamental result on the Gossez extension of a
maximally q-positive set (see Definition 4.4), which will be used in Theorem 9.5, and
thus indirectly in Theorems 9.9 and 9.10, which depend on Theorem 9.5. It is actually
Theorem 6.15 that provides the incentive for the investigation of the continuity of q̃
that we will perform in Section 8.

Theorem 6.15. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space with Banach SSD dual
(B∗, ⌈·, ·⌉, ‖ · ‖), T be a compatible topology on B∗, q̃ be T -continuous and A be a
maximally q-positive subset of B. Then the conditions (a)–(c) below are equivalent.

(a) AG ⊂ ι(A)T , the closure of ι(A) in the topology T .

(b) For all b∗ ∈ AG, inf q̃(ι(A)− b∗) ≤ 0.

(c) ΘA ≥ q̃ on B∗.

Proof. Suppose that (a) is satisfied and b∗ ∈ AG. Then there exists a net {aγ}
of elements of A such that ι(aγ) → b∗ in T . From Definition 6.13(a), ι(aγ) → b∗

in w(B∗, B∗) and so ⌈ι(aγ), b∗⌉ → ⌈b∗, b∗⌉ = 2q̃(b∗). From the T -continuity of q̃,
q̃(ι(aγ)) → q̃(b∗). Thus

q̃(ι(aγ)− b∗) = q̃(ι(aγ))− ⌈ι(aγ), b∗⌉+ q̃(b∗) → q̃(b∗)− 2q̃(b∗) + q̃(b∗) = 0,

and so (a) =⇒ (b). It follows from Theorem 4.5(b) that (b) =⇒ (c). So it remains to
prove that (c) =⇒ (a).
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So suppose that (c) is satisfied and b∗ ∈ AG. (4) implies that ΦA ∈ PCLSC(B).
From Theorem 4.5(c), ΦA

∗@(b∗) = q̃(b∗). Definition 6.13(b) now gives us a net {bγ}
of elements of B such that

ι(bγ) → b∗ in T and ΦA(bγ) → ΦA
∗@(b∗) = q̃(b∗). (56)

It now follows from (20), the first assertion in (56) and the T -continuity of q̃ that
q(bγ) = q̃ ◦ ι(bγ) → q̃(b∗) and so, using the second assertion in (56),

(ΦA − q)(bγ) = ΦA(bγ)− q(bγ) → q̃(b∗)− q̃(b∗) = 0. (57)

Now (5) implies that ΦA ≥ q on B, and, from Lemma 3.2(c), ΦA
∗ ≥ ΘA ≥ q̃ on

B∗, from which ΦA is an MAS function. Thus, from Theorem 6.12(a), ΦA is a VZ
function. Since ΦA is lower semicontinuous on B, (6) and (48) imply that, for all γ,

dist(bγ, A) = dist(bγ,Pq(ΦA)) ≤
√
2
√
(ΦA − q)(bγ).

(We interpret
√∞ to be ∞.) (57) now gives us aγ ∈ A such that ‖aγ − bγ‖ → 0, and

so (a) follows from the first assertion in (56) and Definition 6.13(c).

7. CLB(X) and TCLB(X∗∗)

Let X be a nonzero real Banach space. Corresponding to the usage outlined in the
first paragraph of Section 3, if f ∈ PC(X) and f ∗ ∈ PC(X∗), we define f ∗∗ : X∗∗ →
]−∞,∞] by f ∗∗(x∗∗) := supX∗ [〈·, x∗∗〉−f ∗]. We write CLB(X) for the set of all convex
functions f : X → R that are Lipschitz on the bounded subsets of X, or equivalently,
bounded above on the bounded subsets of X, and we define the topology TCLB(X∗∗)
on X∗∗ to be the coarsest topology on X∗∗ making all the functions h∗∗ : X∗∗ →
R (h ∈ CLB(X)) continuous. (See [20, Definition 38.1, p, 155].) We write T‖ ‖(X)
for the norm-topology on X. We collect together in the following lemma the basic
properties of TCLB(X∗∗) that we will use. We will discuss subtler properties of the
topologies TCLB in Lemma 7.3.

Lemma 7.1. Let X be a nonzero real Banach space.

(a) Let {x∗∗
γ } be a net of elements of X∗∗, x∗∗∈X∗∗ and x∗∗

γ → x∗∗ in TCLB(X∗∗). Then
{x∗∗

γ } is eventually bounded and x∗∗
γ → x∗∗ in the weak∗-topology w(X∗∗, X∗).

(b) Let f ∈ PCLSC(X) and x∗∗ ∈ X∗∗. Then there exists a net {xγ} of elements
of X such that x̂γ → x∗∗ in TCLB(X∗∗) and f(xγ) → f ∗∗(x∗∗). (We note from
the Fenchel–Moreau theorem that f ∗ ∈ PC(X∗).)

(c) Let {x∗∗
γ } and {y∗∗γ } be nets of elements of X∗∗, x∗∗ ∈ X∗∗, x∗∗

γ → x∗∗ in
TCLB(X∗∗) and ‖y∗∗γ − x∗∗

γ ‖ → 0. Then y∗∗γ → x∗∗ in TCLB(X∗∗).

Proof. (a) See [20, Lemma 38.2(b,f), p. 156].

(b) See [20, Lemma 45.9(a), p. 175].

(c) See [20, Lemma 45.15, p. 177].

Remark 7.2. Despite the nice properties of TCLB(X∗∗) exhibited in Lemma 7.1, it
is nevertheless quite a pathological topology. For instance, if (B∗∗, TCLB(X∗∗)) is a
topological vector space then X is reflexive. See [20, Remark 45.13, p. 177].
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Lemma 7.3(b) was originally developed in a study of the subdifferentials of saddle
functions.

Lemma 7.3. Let E be a nonzero Banach space.

(a) The map q̃ is continuous from (E∗ × E∗∗, T‖ ‖(E∗)× TCLB(E∗∗)) into R.

(b) Let H also be a nonzero Banach space, (y∗∗, z) ∈ E∗∗ ×H and {(y∗∗γ , zγ)} be a
net of elements of E∗∗ ×H. Then (y∗∗γ , ẑγ) → (y∗∗, ẑ) in TCLB(E∗∗ ×H∗∗) ⇐⇒
(y∗∗γ , zγ) → (y∗∗, z) in TCLB(E∗∗)× T‖ ‖(H).

Proof. (a) See [20, Lemma 38.2(e), p. 156]. (We note that B∗ in that reference was
defined to be E∗∗ ×E∗ rather than E∗ ×E∗∗ as we have done here, and the topology
TCLBN (B∗) was defined to be TCLB(E∗∗)× T‖ ‖(E∗).)

(b) See [20, Theorem 49.4, pp. 194].

8. TD(B∗)

We suppose throughout this section that (B, ⌊·, ·⌋, ‖ · ‖) is a Banach SSD space with
Banach SSD dual (B∗, ⌈·, ·⌉, ‖ · ‖). In order to apply Theorem 6.15, we need a com-
patible topology on B∗ with respect to which q̃ is continuous. To get some insight
into this problem, we consider the case of Example 6.5, that is to say, B∗ = E∗×E∗∗

and q̃ : (x∗, x∗∗) 7→ 〈x∗, x∗∗〉. It has been known since Gossez’s work in [3] that
T‖ ‖(E∗ × E∗∗) is too large to be of any practical use. (The root of the problem
can be found in Remark 6.14.) Gossez considers the topology T‖ ‖(E∗)×w(E∗∗, E∗),
but this topology does not seem to generalize easily to the case of SSD spaces. In
Definition 8.1, we introduce the topology TD(B∗) on B∗. We will see in Lemma 8.2
that TD(B∗) is sufficiently small that it is compatible, and we will see in Theorem
8.3(b) that TD(B∗) is sufficiently large that Theorem 6.15 leads to significant results.

Definition 8.1. Let (B, ⌊·, ·⌋, ‖ · ‖) be a Banach SSD space with Banach SSD dual
(B∗, ⌈·, ·⌉, ‖ · ‖). We define the topology TD(B∗) on B∗ to be the coarsest topology
on B∗ making the function ι̃ : B∗ → (B∗∗, TCLB(B∗∗)) continuous. This means that
if {b∗γ} is a net of elements of B∗ and b∗ ∈ B∗ then

b∗γ → b∗ in TD(B
∗) ⇐⇒ ι̃(b∗γ) → ι̃(b∗) in TCLB(B

∗∗). (58)

Now suppose that {bγ} is a net of elements of B and b∗ ∈ B∗. Combining (58) with
Lemma 6.2, we have

ι(bγ) → b∗ in TD(B
∗) ⇐⇒ b̂γ → ι̃(b∗) in TCLB(B

∗∗). (59)

Lemma 8.2. We suppose that (B, ⌊·, ·⌋, ‖ · ‖) is a Banach SSD space with Banach
SSD dual (B∗, ⌈·, ·⌉, ‖ · ‖). Then TD(B∗) is a compatible topology on B∗.

Proof. We first verify Definition 6.13(a). Let {b∗γ} be a net of elements of B∗, b∗ ∈ B∗

and b∗γ → b∗ in TD(B∗). (58) implies that ι̃(b∗γ) → ι̃(b∗) in TCLB(B∗∗) and so, from
Lemma 7.1(a), ι̃(b∗γ) → ι̃(b∗) in w(B∗∗, B∗). (50) now gives us that

for all c∗ ∈ B∗, ⌈c∗, b∗γ⌉ = 〈c∗, ι̃(b∗γ)〉 → 〈c∗, ι̃(b∗)〉 = ⌈c∗, b∗⌉,
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and so b∗γ → b∗ in w(B∗, B∗). This completes the proof of Definition 6.13(a).

We next verify Definition 6.13(b). To this end, let f ∈ PCLSC(B) and b∗ ∈ B∗.

Lemma 7.1(b) provides us with a net {bγ} of elements of B such that b̂γ → ι̃(b∗) in
TCLB(B∗∗) and f(bγ) → f ∗∗ ◦ ι̃(b∗). (59) gives ι(bγ) → b∗ in TD(B∗), and the analog
of (10) gives f ∗∗ ◦ ι̃(b∗) = f ∗@(b∗). This completes the proof of Definition 6.13(b).

Finally, we verify Definition 6.13(c). To this end, let {bγ} and {aγ} be nets of elements

of B, b∗ ∈ B∗, ι(bγ) → b∗ in TD(B∗) and ‖aγ − bγ‖ → 0. From (59), b̂γ → ι̃(b∗) in

TCLB(B∗∗). Since ̂ is a norm-isometry, ‖âγ − b̂γ‖ → 0, and so Lemma 7.1(c) implies
that âγ → ι̃(b∗) in TCLB(B∗∗). It now follows from another application of (59) that
ι(aγ) → b∗ in TD(B∗). This completes the proof of Definition 6.13(c). (In fact, one
can prove in a similar way, using (58) instead of (59), the stronger result that if {b∗γ}
and {a∗γ} are nets of elements of B∗, b∗ ∈ B∗, b∗γ → b∗ in TD(B∗) and ‖a∗γ − b∗γ‖ → 0
then a∗γ → b∗ in TD(B∗).)

Theorem 8.3 below will be used in Theorems 9.5, 9.9, and 9.10.

Theorem 8.3. LetE be a nonzeroBanach space and (B,⌊·, ·⌋,‖·‖2) and (B∗,⌈·, ·⌉,‖·‖2)
be as in Example 6.5.

(a) The topologies TD(B∗) and T‖ ‖(E∗)×TCLB(E∗∗) on B∗ = E∗×E∗∗ are identical.
(b) q̃ is TD(B∗)-continuous.

Proof. We recall from Example 6.5 that, for all (y∗, y∗∗) ∈ B∗, ι̃(y∗, y∗∗) = (y∗∗, ŷ∗)
and q̃(y∗, y∗∗) = 〈y∗, y∗∗〉. Let {(y∗γ, y∗∗γ )} be a net of elements of B∗ and (y∗, y∗∗) ∈ B∗.
Then, from (58),

(y∗γ, y
∗∗
γ ) → (y∗, y∗∗) in TD(B

∗) ⇐⇒ (y∗∗γ , ŷ∗γ) → (y∗∗, ŷ∗) in TCLB(B
∗∗).

(a) is now immediate from Lemma 7.3(b) with H := E∗, and (b) is immediate from
(a) and Lemma 7.3(a).

Remark 8.4. A hidden bonus of Theorem 8.3 is that, despite the fact that B∗∗ =
E∗∗ × E∗∗∗, we do not actually have to deal with E∗∗∗.

9. Classes of monotone sets

We suppose in this section that E is a nonzero Banach space. For most of the time
it will be convenient to work in terms of subsets of E×E∗ and E∗ ×E∗∗ rather than
multifunctions E ⇉ E∗ and E∗∗

⇉ E∗, and we leave it to the reader to verify the
consistence between our versions and the multifunction versions.

The motivation for the consideration of the various classes of sets described below was
to see how many of the properties of maximally monotone sets on reflexive spaces can
be recovered in the nonreflexive case. Historically, the first such classes of sets were
the class of sets of “dense type� and “type (D)�. These were essentially introduced
by Gossez in [3, Lemme 2.1, p. 375] – see Phelps, [11, Section 3] for an exposition. If
A is a monotone subset of E × E∗, Gossez defines A ⊂ E∗ × E∗∗ by:

A := {(y∗, y∗∗) ∈ E∗ × E∗∗ : inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉 ≥ 0}. (60)
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Definition 9.1. Let A ⊂ E × E∗. We say that A is maximally monotone of type
(D) if A is maximally monotone and, for all (y∗, y∗∗) ∈ A, there exists a bounded net
{(aγ, a∗γ)} of elements of A such that (a∗γ, âγ) → (y∗, y∗∗) in T‖ ‖(E∗) × w(E∗∗, E∗).
We say that A is maximally monotone of dense type if the topology w(E∗∗, E∗) in
the definition above is replaced by the topology T1 defined to be the upper bound of
w(E∗∗, E∗) and the coarsest topology making the function ‖·‖ : E∗∗ → R continuous.

The next classes of monotone sets in our discussion are the classes of sets of type (NI)
and (WD), which were introduced in [14, Definition 10, p. 183] and [14, Definition
14, p. 187].

Definition 9.2. Let A ⊂ E × E∗. We say that A is maximally monotone of type
(NI) if A is maximally monotone and,

for all (y∗, y∗∗) ∈ E∗ × E∗∗, inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉 ≤ 0.

We say that A is maximally monotone of type (WD) if A is maximally monotone and,
for all (y∗, y∗∗) ∈ A, there exists a bounded net {(aγ, a∗γ)} of elements of A such that
a∗γ → y∗ in T‖ ‖(E∗). Clearly,

if A is maximally monotone of type (D) then A is of type (WD), (61)

and it was proved in [14, Lemma 15, pp. 187–188] that

if A is maximally monotone of type (WD) then A is of type (NI). (62)

The next class of monotone sets in our discussion is the class of sets of type (ED),
which was introduced in [15, Definition 35.1, p. 138] under the name “type (DS)�.

Definition 9.3. Let A ⊂ E×E∗. We say that A ismaximally monotone of type (ED)
if A is maximally monotone and, for all (y∗, y∗∗) ∈ A, there exists a net {(aγ, a∗γ)} of
elements of A such that (a∗γ, âγ) → (y∗, y∗∗) in T‖ ‖(E∗)× TCLB(E∗∗). It is clear from
Lemma 7.1(a) and Definition 9.1 that

if A is maximally monotone of type (ED) then A is of dense type. (63)

We now recast the above definitions in the more compact notation of SSD spaces,
using the notation of Example 6.5.

Lemma 9.4. Let A be a maximally monotone subset of E × E∗. Then:

(a) A = AG.
(b) A is of type (NI) ⇐⇒ ΘA ≥ q̃ on E∗ × E∗∗.
(c) A is of type (ED) ⇐⇒ for all (y∗, y∗∗) ∈ AG, there exists a net {(aγ, a∗γ)} of

elements of A such that ι(aγ, a
∗
γ) → (y∗, y∗∗) in TD(E∗ × E∗∗).

Proof. (a) is immediate from (60), (54) and the first expression in (24), and (b) is
immediate from Definition 9.2, (54) and Lemma 4.3(b). As for (c), from Definition
9.3 and (a), A is of type (ED) exactly when, for all (y∗, y∗∗) ∈ AG, there exists a net
{(aγ, a∗γ)} of elements of A such that (a∗γ, âγ) → (y∗, y∗∗) in T‖ ‖(E∗)×TCLB(E∗∗), and
(c) follows from Theorem 8.3(a).
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Now it is clear from (63), (61) and (62) that, for maximally monotone sets,

type (ED) =⇒ dense type =⇒ type (D) =⇒ type (WD) =⇒ type (NI),

and the question arises naturally whether there are any result in the reverse direction.
Considerable progress was made recently by Marques Alves and Svaiter in [7, Theorem
4.4, pp. 10–11], where it was established that

if A is maximally monotone of type (NI) then A is of type (D), (64)

thus for maximally monotone sets, type (D), type (WD) and type (NI) are equivalent.
Consequently, the conjecture on [14, p. 187] and the first conjecture on [14, p. 188]
are false while, as we will see in Theorem 9.9(f), the second conjecture on [14, p. 188]
(on the convexity of the closure of the range) is true. This latter result was actually
established by Zagrodny in [23] (see [20, Problem 43.3, p. 168]). (64) also provides a
positive answer to [20, Problem 36.4, p. 149]. The following result extends (64), and
provides an (unexpected positive) answer to [16, Problem 4.3, p. 268]:

Theorem 9.5. Let E be a nonzero Banach space. Then for maximally monotone
subsets of E × E∗, type (ED), dense type, type (D), type (WD) and type (NI) are
equivalent.

Proof. By virtue of the remarks above, we only have to prove that type (NI) =⇒
type (ED). So let A be a maximally monotone subset of E×E∗ of type (NI). Lemma
9.4(b) implies that ΘA ≥ q̃ on E∗ ×E∗∗, and then, from Lemma 9.4(a) and Theorem
6.15((c) =⇒ (a)), for all (y∗, y∗∗) ∈ AG, there exists a net {(aγ, a∗γ)} of elements of A
such that ι(aγ, a

∗
γ) → (y∗, y∗∗) in TD(E∗ × E∗∗). Thus, from Lemma 9.4(c), A is of

type (ED).

The next class of monotone sets in our discussion is the class of strongly representable
sets, which was introduced and studied in [5], [6] and [22].

Definition 9.6. Let E be a nonzero Banach space and A ⊂ E ×E∗. We say that A
is strongly representable if there exists an MAS function f ∈ PCLSC(E × E∗) such
that A = Pq(f).

We now give a proof using SSD spaces of the following result, which was established
by Marques Alves and Svaiter in [5, Theorem 4.2, pp. 702–704] and [6, Theorem 1.2].

Theorem 9.7. Let E be a nonzero Banach space and A ⊂ E × E∗. Then A is
strongly representable ⇐⇒ A is maximally monotone of type (NI).

Proof. This is immediate from (53), Theorem 6.12(c) and Lemma 9.4(b).

The “maximally monotone� assertion of Theorem 9.9(a) below was obtained in [22,
Theorem 8] under the VZ hypothesis and, in [5, Theorem 4.2(2)] under the MAS
hypothesis.

Theorem 9.9(c) extends the result proved in [22, Corollary 25] that Pq(f) is of type
(ANA).
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Theorem 9.9(d) extends the result proved in [5, Theorem 4.2(2)].

Theorem 9.9(f) was obtained in [22, Corollary 7]. This is a very significant result,
because maximally monotone sets A of E × E∗ are known such that πE∗(A) is not
convex. (The first such example was given by Gossez in [4, Proposition, p. 360]).
Thus (as was first observed in [22]) Theorem 9.9(f) implies that there exist maximally
monotone sets A that are not of the form Pq(f) for any lower semicontinuous VZ
function on E×E∗ or, equivalently, not of the form Pq(f) for any lower semicontinuous
MAS function on E × E∗.

In [23, Section 3, pp. 775–783], Zagrodny considers subsets S of E × E∗ such that,
writing ϕS for the Fitzpatrick function of S, ϕS ∈ PC(E × E∗), ϕS ≥ q on E × E∗

and

(a∗, a∗∗) ∈ ∂ϕS(x, x
∗) =⇒ ϕS(x, x

∗) ≤ 〈x, a∗〉+ 〈x∗, a∗∗〉 − 〈a∗, a∗∗〉. (65)

Since the analysis in [23] leans heavily on ε-enlargements, it is hard to correlate it
on a step by step basis with what we have presented here. Nevertheless, we note the
following consequences if A is a maximally monotone subset of E ×E∗ of type (NI):

• In [23, (20), p. 776], Zagrodny deduces the second assertion in (66).

• In [23, Corollary 3.4, p. 780], Zagrodny deduces that A is p-dense in E×E∗ and an
additional boundedness conclusion on the approximants. (Compare Theorem 5.6(b).)

• In [23, Corollary 3.5, pp. 781–782] and [23, Corollary 3.6, pp. 782–783], Zagrodny
deduces that the sets πE(A) and πE∗(A) are convex. As we have already noted, this
is a very significant result.

Problem 9.8. We note from the definition of ∂ϕS that (65) can be put in the form
(a∗, a∗∗)∈ ∂ϕS(x, x

∗) =⇒ ϕS
∗(a∗, a∗∗) ≥ 〈a∗, a∗∗〉 that is to say (a∗, a∗∗)∈R(∂ϕS) =⇒

ϕS
∗(a∗, a∗∗) ≥ 〈a∗, a∗∗〉. This leads to the following question: is Theorem 6.12(a) true

if, instead of assuming that f is an MAS function, we assume that f ≥ q on B and
f ∗ ≥ q̃ on R(∂f)? Given the applications of Theorem 6.12(a) that we make, it is
probably no restriction to assume that f ∈ PCLSC(B).

Theorem 9.9. Let E be a nonzero Banach space and f ∈ PCLSC(E×E∗). Assume
either that f is a VZ function or, equivalently (bearing in mind (53) and Theorem
6.12(a, b)), an MAS function, and let A := Pq(f). Then:

(a) A is a maximally monotone subset of E × E∗ of type (ED).

(b) Let (x, x∗) ∈ E × E∗ and α, β > 0. Then there exists a unique value of τ ≥ 0
for which there exists a bounded sequence {(yn, y∗n)}n≥1 of elements of A such
that,

lim
n→∞

‖yn−x‖ = ατ, lim
n→∞

‖y∗n−x∗‖ = βτ and lim
n→∞

〈yn−x, y∗n−x∗〉 = −αβτ 2.

(c) Let (x, x∗) ∈ E × E∗ \ A and α, β > 0. Then there exists a bounded sequence
{(yn, y∗n)}n≥1 of elements of A ∩ [(E \ {x})× (E∗ \ {x∗})] such that,

lim
n→∞

‖yn − x‖
‖y∗n − x∗‖ =

α

β
and lim

n→∞
〈yn − x, y∗n − x∗〉
‖yn − x‖‖y∗n − x∗‖ = −1. (66)
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In particular, A is of type (ANA) (see [20, Definition 36.11, p. 152]).

(d) Let (x, x∗) ∈ E ×E∗ \A, α, β > 0 and inf(y,y∗)∈A〈y − x, y∗ − x∗〉 > −αβ. Then
there exists a bounded sequence {(yn, y∗n)}n≥1 in A ∩ [(E \ {x}) × (E∗ \ {x∗})]
such that (66) is satisfied, limn→∞ ‖yn − x‖ < α and limn→∞ ‖y∗n − x∗‖ < β. In
particular, A is of type (BR) (see [20, Definition 36.13, p. 153]).

(e) Let (x, x∗) ∈ E×E∗\A, α, β > 0 and f(x, x∗) < 〈x, x∗〉+αβ. Then there exists
a bounded sequence {(yn, y∗n)}n≥1 of elements of A ∩ [(E \ {x}) × (E∗ \ {x∗})]
such that (66) is satisfied, limn→∞ ‖yn − x‖ < α and limn→∞ ‖y∗n − x∗‖ < β.

(f) We define the projection maps πE : E × E∗ → E and πE∗ : E × E∗ → E∗ by
πE(x, x

∗) := x and πE∗(x, x∗) := x∗. Then πE(A) = πE(dom f) and πE∗(A) =
πE∗(dom f). Consequently, the sets πE(A) and πE∗(A) are convex.

Proof. (a) is immediate from Theorems 5.6(d), 9.7 and 9.5.

(b), (c) and (d) are immediate from (a) and either [16, Theorem 8.6, pp. 277–278] or
[20, Theorem 42.6, pp. 163–164].

(e) is immediate from (d) and the observation in (47) that, for all (x, x∗) ∈ E × E∗,
− inf(y,y∗)∈A〈y − x, y∗ − x∗〉 ≤ f(x, x∗)− 〈x, x∗〉.
(f) If x ∈ πE(dom f) then there exists x∗ ∈ E∗ such that f(x, x∗) < ∞, and so it
follows from (e) that there exists (y, y∗) ∈ A such that ‖y−x‖ < 1/n. Consequently,
x ∈ πE(A). Thus we have proved that πE(dom f) ⊂ πE(A). On the other hand,
A ⊂ dom f , and so πE(A) = πE(dom f). We can prove in an exactly similar way
that πE∗(A) = πE∗(dom f). The convexity of the sets πE(A) and πE∗(A) now follows
immediately.

In the final results of this section, which are more conveniently stated in terms of
multifunctions, we give other consequences of Theorem 9.5. “Type (FP)� (= “locally
maximally monotone�) was defined in [17, Definition 6, p. 394] and [20, Definition
36.5, p. 149], “type (FPV)� (= “maximally monotone locally�) was defined in [17,
Definition 7, p. 395] and [20, Definition 36.7, p. 150], “strongly maximally monotone�
was defined in [17, Definition 8, pp. 395–396] and [20, Definition 36.9, p. 151], and
the statement “S + λJη is surjective� was defined in [20, (42.2), p. 164]. The facts
that strongly representable maximally monotone multifunctions are of type (FP)
(type (FPV) and strongly maximally monotone, respectively) were observed in [22,
Theorem 22], ([22, Remark 6] and [22, Theorem 23], respectively). In the above
acronyms, “F� stands for “Fitzpatrick�, “P� stands for “Phelps� and “V� stands for
“Veronas�.

Theorem 9.10. Let E be a nonzero Banach space, and S : E ⇉ E∗ be maximally
monotone of type (NI). Then:

(a) S is of type (FP).

(b) S is of type (FPV).

(c) S is strongly maximally monotone. If, further, S−1 : E∗
⇉ E is coercive, that

is to say inf〈S−1x∗, x∗〉/‖x∗‖ → ∞ as ‖x∗‖ → ∞, then D(S) = E.

(d) For all λ, η > 0, S + λJη is surjective.
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Proof. (a) follows from Theorem 9.5 and [20, Theorem 37.1, pp. 153–154]. (b)
follows from Theorem 9.5 and [20, Theorem 39.1, pp. 157–158]. The first assertion
in (c) follows from Theorem 9.5 and [20, Theorem 40.1, pp. 158–159], and the second
assertion in (c) follows from [20, Corollary 41.2, p. 160]. (d) follows from Theorem
9.5 and [20, Theorem 42.8, pp. 164].

10. Appendix: a nonhausdorff Fenchel–Moreau theorem

In Theorem 3.3, we referred to the Fenchel–Moreau theorem for (possibly nonhaus-
dorff) locally convex spaces. We shall give a proof of this result in Theorem 10.1.
When we say that X is a locally convex space, we mean that X is a nonzero real vector
space endowed with a topology compatible with its vector structure and a base of
neighborhoods of 0 of the form {x ∈ X : S(x) ≤ 1}S∈S(X), where S(X) is a family of
seminorms on X such that if S1 ∈ S(X) and S2 ∈ S(X) then S1 ∨ S2 ∈ S(X); and
if S ∈ S(X) and λ ≥ 0 then λS ∈ S(X). If L is a linear functional on X then L is
continuous if, and only if, there exists S ∈ S(X) such that L ≤ S on X.

As an example of the construction above, we can suppose that X and Y are vector
spaces paired by a bilinear form 〈·, ·〉. Then (X,w(X, Y )) is a locally convex space
with determining family of seminorms {|〈·, y1〉| ∨ · · · ∨ |〈·, yn〉|}n≥1, y1,...,yn∈Y .

The author is grateful to Constantin Zălinescu for showing him a proof of Theorem
10.1 based on the standard (Hausdorff) result and a quotient construction. The
proof we give here is a simplification of the result on Fenchel–Moreau points of [19,
Theorem 5.3, pp. 157–158] or [20, Theorem 12.2, pp. 59–60] (which is also valid in
the nonhausdorff setting).

Theorem 10.1. Let X be a locally convex space with defining family of seminorms
S(X), and f ∈ PC(X) be lower semicontinuous. Write X∗ for the set of continuous
linear functionals on X. If L ∈ X∗, define f ∗(L) := supX [L− f ]. Let y ∈ X. Then

f(y) = supL∈X∗ [L(y)− f ∗(L)]. (67)

Proof. Since, for all L ∈ X∗, L(y)−f ∗(L) = infx∈X [L(y)−L(x)+f(x)] = (f ∇L)(y)
and the inequality “≥� in (67) is obvious from the definition of f ∗(L), we only have
to prove that

f(y) ≤ supL∈X∗(f ∇L)(y)]. (68)

Let λ ∈ R and λ < f(y). Since f is proper, there exists z ∈ dom f . Choose Q ∈ S(X)
such that

Q(z − x) ≤ 1 =⇒ f(x) > f(z)− 1 (69)

and

Q(y − x) ≤ 1 =⇒ f(x) > λ. (70)

We first prove that

(f ∇Q)(z) ≥ f(z)− 1. (71)

To this end, let x be an arbitrary element of X. If Q(z − x) ≤ 1 then (69) implies
that f(x) + Q(z − x) ≥ f(x) > f(z) − 1. If, on the other hand, Q(z − x) > 1, let
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γ := 1/Q(z−x) ∈ ]0, 1[ and put u := γx+(1− γ)z. Then Q(z−u) = γQ(z−x) = 1
and so, from the convexity of f , and (69) with x replaced by u,

γf(x) + (1− γ)f(z) ≥ f(γx+ (1− γ)z) = f(u) > f(z)− 1.

Substituting in the formula for γ and clearing of fractions yields f(x) +Q(z − x) ≥
f(z). This completes the proof of (71).

Now let M ≥ 1 and M ≥ λ+ 2 +Q(z − y)− f(z). We will prove that

(f ∇MQ)(y) ≥ λ. (72)

To this end, let x be an arbitrary element of X. If Q(y − x) ≤ 1 then (70) implies
that f(x) +MQ(y − x) ≥ f(x) > λ. If, on the other hand, Q(y − x) > 1 then, from
(71),

f(x) +MQ(y − x) = f(x) +Q(y − x) + (M − 1)Q(y − x)

≥ f(x) +Q(z − x)−Q(z − y) + (M − 1)

≥ f(z)− 1−Q(z − y) +M − 1 ≥ λ,

which completes the proof of (72). The Hahn–Banach–Lagrange theorem of [19, The-
orem 2.9, p. 153] or [20, Theorem 1.11, p. 21] now provides us with a linear functional
L on X such that L ≤ MQ on X and (f ∇L)(y) ≥ λ, and (68) follows by letting
λ → f(y).
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