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Because of no Lipschitz condition for upper semi-continuous (USC for short) multifunctions and
some other technical difficulties, only the second order polynomial-like iterative equation with mul-
tifunctions was discussed but the general case of order n remains open. In this paper we consider
the general case for a special class of multifunctions, called unblended multifunctions. We investi-
gate the set of all jumps for iterates of those multifunctions and consider the piecewise Lipschitz
condition. Then we prove the existence of USC multi-valued solutions for a modified form of this
equation, which gives the existence of USC multi-valued solutions for this equation of general order
n in the inclusion sense.
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1. Introduction

As shown in [2, 9], the polynomial-like iterative equation

λ1f(x) + λ2f
2(x) + ...+ λnf

n(x) = g(x), (1)

is an interesting form of functional equations including iterates f i (i = 2, ..., n) of
the unknown function f . Here the i-th iterate f i is defined inductively by f i(x) =
f(f i−1(x)) and f 0(x) = x. Since iteration is an important object in both many
mathematical subjects such as dynamical systems and numerical computation and
many fields of natural science, in recent years great attentions have been paid to the
equation and its generalizations, see for example in [4, 5, 11, 12, 21, 26, 27, 29, 30, 31,
32]. On the other hand, being an important class of mappings, multifunction (called
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multi-valued function sometimes) have been extensively employed in control theory
[7], stochastics [3], artificial intelligence [10] and economics [25]. Many nice results
([13, 16, 24, 28]) were given for functional equations with multifunctions. Since
some efforts were made to iteration of multifunctions ([22]) and related problems
([6, 15, 17, 18, 19, 23]), it gets more interesting to study multi-valued solutions for
equation (1), i.e., the equation

λ1F (x) + λ2F
2(x) + · · ·+ λnF

n(x) = G(x), ∀x ∈ I := [a, b], (2)

where n ≥ 2 is an integer, λ1, λ2, ...λn are real constants, G is a given multifunction
and F is an unknown multifunction. Here the i-th iterate F i of the multifunction F
is defined recursively as

F i(x) := ∪{F (y) : y ∈ F i−1(x)}

and F 0(x) :≡ x for all x ∈ I. It is worthy mentioning that it is a trivial question to
find continuous multi-valued solutions for this equation with continuous multifunction
G because that can be simplified to discussing the corresponding equation with the
boundaries of G, which is well known as a single-value case ([30, 31]). In 2004
Nikodem and Zhang [14] discussed equation (2) for n = 2 with an increasing upper
semi-continuous (abbreviated by USC) multifunction G on I = [a, b]. They proved
the existence and uniqueness of USC solutions under the assumption that G has fixed
points a and b and λ1, λ2 are both constants such that λ1 > λ2 ≥ 0 and λ1 + λ2 = 1.

Actually, the generalization to USC multifunctions for equation (1) is rather difficult
even if we only consider n = 2. Firstly, the upper semi-continuity for multifunctions
is much weaker than the continuity for functions. The method used for continuous
solutions and smooth solutions in [30, 31] may be used for continuous multi-valued
solutions but does not work for USC multi-valued solutions. Secondly, according to
[30, 31], the authors of [14] considered solutions in a class of USC and increasing
multifunctions

Φ(I) := {F ∈ F(I) : F is USC, increasing, F (a) = {a}, F (b) = {b}},

where F(I) is the set of all multifunctions F : I → cc(I) and cc(I) denotes the family
of all nonempty closed subintervals of I, but many tools used in [30, 31] cannot be
applied because the class Φ(I) is not a Banach space. Fortunately, it was proved in
Lemma 1 of [14] that this class, being a metric space equipped with the distance

D(F1, F2) := sup{h(F1(x), F2(x)) : x ∈ I}, ∀F1, F2 ∈ Φ(I), (3)

is complete.

It is of great interests to discuss equation (2) for n ≥ 3. As pointed in the end of
[14], the greatest difficulty comes from Lipschitz condition. For n = 2 the operator L
defined in (3.10) of [14], i.e., the operator LF := λ1id+λ2F + · · ·+λnF

n−1 defined in
(3.2) of [31], is independent of iterates F i (i ≥ 2) and therefore the existence in [14]
can be proved without Lipschitz condition of F and G. Obviously, it is not the case
for n ≥ 3 when we want to employ the idea of [30, 31] because we have to estimate
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h(F 2
1 , F

2
2 ) with h(F1, F2), where h is the Hausdorff distance for sets. One can show

that a multifunction in Φ(I) with a Lipschitz condition has to be single-valued.

In this paper we discuss the iterative equation

λ1F (x) = G(x)− λ2F
2(x)− · · · − λnF

n(x), ∀x ∈ I, (4)

a modified form of (2), for the general n ≥ 3. We specially consider the class of
unblended multifunctions and investigate the set of all jumps for iterates of those
multifunctions. Then we introduce the concept of piecewise Lipschitz condition and
use it to prove the existence of USC multi-valued solutions of equation (4) in the
class of unblended multifunctions. As a corollary, our this result of existence for (4)
implies the existence of a USC multifunction F satisfying

λ1F (x) + λ2F
2(x) + · · ·+ λnF

n(x) ⊃ G(x), ∀x ∈ I, (5)

which can be regarded as a weak form of equation (2) in inclusion sense, as considered
in [17, 19] for set-valued iterative roots. In the end of this paper we indicate that
equation (4) is equivalent to equation (2) only in the case of single-valued F . It
implies that the existence of USC set-valued solutions of the weak form (5) is the
best result which we can obtain from (4).

2. Unblended Multifunctions

As mentioned in the Introduction, the family cc(I) endowed with the Hausdorff metric
h, defined by

h(A,B) = max{sup{d(x,B) : x ∈ A}, sup{d(y, A) : y ∈ B}} (6)

where d(x,B) = inf{|x − y| : y ∈ B}, is a complete metric space (cf. [8, Corollary
4.3.12]). Some useful properties are summarized in the following lemma (cf. [20, 24]).

Lemma 2.1. For A,B,C,D ∈ cc(I) and for an arbitrary real λ, the following prop-
erties hold:

(a) h(A+ C,B + C) = h(A,B),

(b) h(λA, λB) = |λ|h(A,B),

(c) h(A+ C,B +D) ≤ h(A,B) + h(C,D).

As defined in [1, Definition 3.5.1], a multifunction F : I → cc(I) is increasing (resp.
strictly increasing) if maxF (x1) ≤ minF (x2) (resp. maxF (x1) < minF (x2)) for all
x1, x2 ∈ I with x1 < x2. A multifunction F : I → cc(I) is upper semi-continuous
(abbreviated by USC) at a point x0 ∈ I if for every open set V ⊂ R with F (x0) ⊂ V
there exists a neighborhood Ux0

of x0 such that F (x) ⊂ V for every x ∈ Ux0
. F is

USC on I if it is USC at every point in I. For convenience, let

USI(I) := {F ∈ F(I) : F is USC and strictly increasing}.

Lemma 2.2. F1 ◦ F2 ∈ USI(I) for F1, F2 ∈ USI(I).
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Fig. 2.1: F is blended
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Fig. 2.2: F is unblended
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Proof. Obviously, F1 ◦F2 ∈ F(I) and F1 ◦F2 is USC (cf. [8, Theorem 7.3.11]). Since
F1 and F2 is strictly increasing, we see that maxF2(x1) < minF2(x2) and therefore
maxF1(maxF2(x1)) < minF1(minF2(x2)) for all x1, x2 ∈ I with x1 < x2. Clearly,

maxF1(maxF2(x1)) = maxF1 ◦ F2(x1),

minF1(minF2(x2)) = minF1 ◦ F2(x2).

It follows that maxF1 ◦F2(x1) < minF1 ◦F2(x2) for all x1, x2 with x1 < x2, implying
that F1 ◦ F2 is strictly increasing. Thus F1 ◦ F2 ∈ USI(I).

If a function F ∈ USI(I) is not single-valued, there exists at least a point ξ ∈ I such
that the cardinal of the set F (ξ) is more than 1, i.e., cardF (ξ) ≥ 2. Actually, F (ξ) is
a nontrivial interval because F (ξ) ∈ cc(I). Since F is strictly increasing, there exist
two small open intervals V −

δ (ξ) := {x ∈ I | ξ− δ < x < ξ} and V +
δ (ξ) := {x ∈ I | ξ <

x < ξ + δ} such that F is single-valued in both of them and satisfies

minF (ξ) > F (x) ∀x ∈ V −
δ (ξ) and maxF (ξ) < F (x) ∀x ∈ V +

δ (ξ).

We call ξ a jump-point of F or a jump simply. For every F ∈ USI(I), let J(F ) denote
the set of all jumps of F . We easily see that each F ∈ USI(I) has at most countably
infinite many jumps, i.e., the cardinal cardJ(F ) ≤ ℵ0. In fact, for each ξ ∈ J(F ),
the set F (ξ) is a nontrivial compact subinterval of I. By the strict monotonicity,
{F (ξ) : ξ ∈ J(F )} is a set of disjoint nonempty compact subintervals of I. Choose
a rational number r(ξ) ∈ F (ξ) for each ξ ∈ J(F ). Then card J(F ) ≤ cardQ = ℵ0.
It is easy to construct an example in USI(I) which has infinitely many jumps. For
example, the multifunction

F (x) =























0, x = 0,

x+ 1
(n+1)2

, x ∈ ( 1
n+1

, 1
n
), n = 2, 3, ...,

[ 1
n
+ 1

(n+1)2
, 1
n
+ 1

n2 ], x = 1
n
, n = 2, 3, ...,

1
2
x+ 1

2
, x ∈ (1

2
, 1],

is in the class USI([0, 1]) and J(F ) is infinite.
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The main purpose in this section is to find a “good� class of multifunctions for
each of which either the number of jumps does not increase under iteration (i.e.,
J(F k) ⊂ J(F )) or all jumps of iterates remain in a given set. A multifunction
F ∈ USI(I) is said to be unblended on a sequence S := {ζk}k≥0 in I if ζk+1 ∈ F (ζk)
(i.e., ζk+1 ∈ [minF (ζk),maxF (ζk)]) for each k. Otherwise, F ∈ USI(I) is said to be
blended on S. We show this in Figures 2.1 and 2.2.

Since functions in USI(I) are strictly increasing, it suffices to discuss multifunctions
F in USI(I) which satisfy either minF (x) > x for all x ∈ int I or maxF (x) < x
for all x ∈ int I. Let USI∗(I) and USI∗(I) denote the two classes of multifunctions
respectively.

Lemma 2.3. Suppose that F ∈ USI∗(I) (resp. ∈ USI∗(I)) is unblended on the
strictly increasing (resp. decreasing) sequence S = {ζk}

∞
k≥0. If S ⊃ J(F ) and satisfies

that ξ0 = a and limk→∞ ζk = b (resp. ξ0 = b and limk→∞ ζk = a), then for each integer
i ≥ 1,

(i) J(F i) ⊂ S, and

(ii) F i((ζk, ζk+1)) ⊂ (ζk+i, ζk+1+i) (resp. F
i((ζk+1, ζk)) ⊂ (ζk+1+i, ζk+i)), ∀k ≥ 0.

Proof. We only prove this lemma for F ∈ USI∗(I). The other case is similar.

Suppose that there exists a point ξ ∈ J(F 2) \S. Then F (ξ) ∈ J(F ). Since J(F ) ⊂ S
and F ∈ USI∗(I), there exists a ζk with k ≥ 1 such that F (ξ) = ζk. Noting that F
is unblended, we have F (ξ) = ζk ∈ F (ζk−1). Because F is strictly increasing in I, we
infer that ξ = ζk−1, a contradiction to the assumption of ξ. Hence J(F 2) ⊂ S. We
can similarly prove (i) for general i.

For (ii), we note that F is single-valued on x and F (x) ∈ (maxF (ζk),minF (ζk+1))
for every x ∈ (ζk, ζk+1) because F ∈ USI∗(I) and J(F ) ⊂ S. Since F is unblended
on S, we have ζk+1 ≤ maxF (ζk) and ζk+2 ≥ minF (ζk+1), implying that

F ((ζk, ζk+1)) = (maxF (ζk),minF (ζk+1)) ⊂ (ζk+1, ζk+2).

We can similarly prove (ii) for general i.

For a strictly increasing sequence S = {ζk}
∞
k≥0 in I such that ξ0 = a and limk→∞ ζk =

b, define

USI∗u(I, S) := {F ∈ USI∗(I) : F is unblended on S and J(F ) ⊂ S}.

Similarly, for a strictly decreasing sequence S = {ζk}
∞
k≥0 in I such that ξ0 = b and

limk→∞ ζk = a, define

USIu∗(I, S) := {F ∈ USI∗(I) : F is unblended on S and J(F ) ⊂ S}.

By Lemma 2.3, we assert that iteration of an unblended multifunction, which belongs
to USI∗u(I, S) or USIu∗(I, S), may increase the number of jumps but always keep all
jumps in S. In particular, we can assert that the number of jumps does not increase
under iteration when S = J(F ).
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3. Piecewise Lipschitz Condition

Suppose that Λ is a strictly monotonic sequence in I such that int(I)\Λ is a union of
disjoint open intervals, i.e.,

int(I)\Λ =
⋃

k≥0

(ηk, ηk+1), (7)

where each ηk is either an element of Λ or an endpoint of I.

A function F ∈ USI(I) is said to be piecewise Lipschitzian on I with the sequence
Λ and constants M > m > 0 if for each k ≥ 0,

(L1) J(F ) ⊂ Λ, i.e., the restriction of F to each interval (ηk, ηk+1) is single-valued,
continuous and strictly increasing,

(L2) m(x2 − x1) ≤ F (x2) − F (x1) ≤ M(x2 − x1) ∀x1, x2 ∈ (ηk, ηk+1) with x1 < x2,
and

(L3) maxF (ηk+1)−minF (ηk) ≤ M(ηk+1 − ηk) ∀ηk, ηk+1 ∈ Λ.

LetUSI(I,Λ,m,M) be the set of all those piecewise Lipschitzian functions inUSI(I)
with the sequence Λ and constants M > m > 0.

Lemma 3.1. USI(I,Λ,m,M) is a complete metric space equipped with the distance
D, defined in (3).

Proof. Let {Fj} be a Cauchy sequence in USI(I,Λ,m,M). Similarly to Lemma 1
of [14], we can prove that the limit F (x) := limj→∞ Fj(x) is well defined for every
fixed x ∈ I and that F is USC and increasing on I. Since Fj ∈ USI(I,Λ,m,M), we
have J(F ) ⊂ Λ and

0 < m(x2 − x1) ≤ F (x2)− F (x1) = lim
j→∞

(

Fj(x2)− Fj(x1)
)

≤ M(x2 − x1)

for all x1, x2 ∈ (ηk, ηk+1) with x1 < x2. In the sequel we prove that F satisfies (L3).
For a reduction to absurdity, suppose that there exists an integer k ≥ 0 such that
maxF (ηk+1)−minF (ηk) > M(ηk+1 − ηk). Put

ε := maxF (ηk+1)−minF (ηk)−M(ηk+1 − ηk).

Since Fj(ηk) → F (ηk) and Fj(ηk+1) → F (ηk+1) as j → ∞, we can find j0 ∈ N such
that F (ηk) ⊂ Fj0(ηk) + (−ε/2, ε/2) and F (ηk+1) ⊂ Fj0(ηk+1) + (−ε/2, ε/2). Hence

minF (ηk) > minFj0(ηk)−
ε

2
, maxF (ηk+1) < maxFj0(ηk+1) +

ε

2
.

It implies that

maxFj0(ηk+1)−minFj0(ηk)

> maxF (ηk+1)− ε/2−
(

minF (ηk) + ε/2
)

= maxF (ηk+1)−minF (ηk)− ε

= M(ηk+1 − ηk),

a contradiction to the fact that Fj0 satisfies (L3).
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Define

USI∗(I, S,m,M) := USI∗(I) ∩USI(I, S,m,M)

USI∗(I, S,m,M) := USI∗(I) ∩USI(I, S,m,M)

USI∗u(I, S,m,M) := USI∗u(I, S) ∩USI(I, S,m,M),

USIu∗(I, S,m,M) := USIu∗(I, S) ∩USI(I, S,m,M).

Clearly, USI∗(I, S,m,M),USI∗(I, S,m,M),USI∗u(I, S,m,M) and USIu∗(I, S,m,
M) are all closed subsets of USI(I, S,m,M).

Lemma 3.2. F i ∈ USI∗(I, S,mi,M i) (resp. USI∗(I, S,m
i,M i)) if F ∈ USI∗u(I, S,

m,M) (resp. USIu∗(I, S,m,M)).

Proof. We only prove the case that F ∈ USI∗u(I, S,m,M). In the other case the
proof will be similar.

The assertion is trivial for i = 1. Assume that F i ∈ USI∗(I, S,mi,M i) holds for some
i. Since F ∈ USI∗u(I, S,m,M), we have F ◦F i = F i+1 ∈ USI∗(I) by Lemma 2.2 and
that J(F i+1) ⊂ S and F i

(

(ζk, ζk+1)
)

⊂ (ζk+i, ζk+1+i) by Lemma 2.3. Therefore, the
fact that F i ∈ USI∗(I, S,mi,M i) implies that

F (F i(x2))− F (F i(x1)) ≥ m(F i(x2)− F i(x1)) ≥ mi+1(x2 − x1), (8)

F (F i(x2))− F (F i(x1)) ≤ M(F i(x2)− F i(x1)) ≤ M i+1(x2 − x1) (9)

for all x1, x2 ∈ (ζk, ζk+1) with x2 > x1. Since F is unblended on S, we have ζj+i ∈
F i(ζj) for all j ≥ 0, which implies that ζj+i ≤ maxF i(ζj) < minF i(ζj+1) ≤ ζj+1+i.
It follows that

maxF (F i(ζk+1))−minF (F i(ζk))

= maxF (maxF i(ζk+1))−minF (minF i(ζk))

= maxF (maxF i(ζk+1))−maxF (ζk+1+i) + maxF (ζk+1+i)−minF (ζk+i)

+ minF (ζk+i)−minF (minF i(ζk))

≤ M(maxF i(ζk+1)− ζk+1+i) +M(ζk+1+i − ζk+i) +M(ζk+i −minF i(ζk))

= M(maxF i(ζk+1)−minF i(ζk))

≤ M i+1(ζk+1 − ζk). (10)

From those inequalities (8)–(10) we get that F i+1 ∈ USI∗(I, S,mi+1,M i+1) and there-
fore the lemma is proved by induction.

Lemma 3.3. If either F1, F2 ∈ USI∗u(I, S,m,M) or F1, F2 ∈ USIu∗(I, S,m,M),
then

D(F i
1, F

i
2) ≤

(

i−1
∑

j=0

M j

)

D(F1, F2). (11)
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Proof. We only prove the case that F1, F2 ∈ USI∗u(I, S,m,M). The other case
can be proved similarly. The result is trivial for i = 1. Assume that the result
holds for some integer i ≥ 1. Since Fp ∈ USI∗u(I, S,m,M) for p = 1, 2, we have
F i
p((ζk, ζk+1)) ⊂ (ζk+i, ζk+1+i) by Lemma 2.3 and F i

p ∈ USI∗(I, S,mi,M i) by Lemma
3.2. By the definitions of h and D, for every integer k ≥ 0 and x ∈ (ζk, ζk+1),

h(F i+1
1 (x), F i+1

2 (x)) = h(F1(F
i
1(x)), F2(F

i
2(x)))

≤ h(F1(F
i
1(x)), F1(F

i
2(x))) + h(F1(F

i
2(x)), F2(F

i
2(x)))

≤ Mh(F i
1(x), F

i
2(x)) +D(F1, F2)

≤ MD(F i
1, F

i
2) +D(F1, F2)

≤ M

(

i−1
∑

j=0

M j

)

D(F1, F2) +D(F1, F2)

=

(

i
∑

j=0

M j

)

D(F1, F2).

On the other hand, for each integer k ≥ 0 and x = ζk, there is no loss of generality
in assuming that minF i

1(ζk) ≤ minF i
2(ζk). Since F1, F2 ∈ USI∗u(I, S,m,M), we have

ζk−1+i ≤ maxF i
1(ζk−1) < minF i

1(ζk) ≤ minF i
2(ζk) ≤ ζk+i.

It follows that

minF1(F
i
2(ζk))−minF1(F

i
1(ζk))

= minF1(minF i
2(ζk))−minF1(minF i

1(ζk))

≤ M(minF i
2(ζk)−minF i

1(ζk)).

Clearly, minF1(F
i
2(ζk))−minF1(F

i
1(ζk)) ≥ 0. Thus, for every ζk,

|minF1(F
i
2(ζk))−minF1(F

i
1(ζk))| ≤ M |minF i

2(ζk)−minF i
1(ζk))|. (12)

Similarly, we have

|maxF1(F
i
2(ζk))−maxF1(F

i
1(ζk))| ≤ M |maxF i

2(ζk)−maxF i
1(ζk))|. (13)

Therefore, by (12) and (13),

h(F i+1
1 (ζk), F

i+1
2 (ζk)) = h(F1(F

i
1(ζk)), F2(F

i
2(ζk)))

≤ h(F1(F
i
1(ζk)), F1(F

i
2(ζk))) + h(F1(F

i
2(ζk)), F2(F

i
2(ζk)))

= max{|minF1(F
i
2(ζk))−minF1(F

i
1(ζk))|, |maxF1(F

i
2(ζk))−maxF1(F

i
1(ζk))|}

+ h(F1(F
i
2(ζk)), F2(F

i
2(ζk)))

≤ M max{|minF i
1(ζk)−minF i

2(ζk)|, |maxF i
1(ζk)−maxF i

2(ζk)|}+D(F1, F2)

= Mh(F i
1(ζk), F

i
2(ζk)) +D(F1, F2)

≤ MD(F i
1, F

i
2) +D(F1, F2)

≤

(

i
∑

j=0

M j

)

D(F1, F2).



B.Xu, K.Nikodem,W. Zhang / On a Multivalued Iterative Equation of Order n 681

This completes the proof of (11) by induction.

4. Main Results

Theorem 4.1. Suppose that λ1 > 0, λi ≤ 0 (i = 2, .., n) and
∑n

i=1 λi = 1 and that
G ∈ USI∗(I, S,m0,M0) with M0 > m0 > 0, where the sequence S = {ζk}

∞
k≥0 in I is

strictly increasing and satisfies ζ0 = a, limk→∞ ζk = b and

n
∑

i=1

λiζk+i ∈ G(ζk) ∀k ≥ 0. (14)

Then, for arbitrary constants M > m > 0 satisfying

m ≤
m0 +

∑n

i=2 |λi|m
i

λ1

, M ≥
M0 +

∑n

i=2 |λi|M
i

λ1

, (15)

equation (4) has a unique solution F ∈ USI∗u(I, S,m,M) if

d :=
1

λ1

n
∑

i=2

|λi|
i−1
∑

j=0

M j < 1. (16)

Proof. Since the sequence S = {ζk}
∞
k≥0 is strictly increasing in I and satisfies that

ζ0 = a and limk→∞ ζk = b, we have int(I)\S =
⋃

k≥0(ζk, ζk+1). Define the mapping
T : USI∗u(I, S,m,M) → F(I) by

T F (x) =
1

λ1

(

G(x)−
n
∑

i=2

λiF
i(x)

)

, ∀x ∈ I, (17)

where F ∈ USI∗u(I, S,m,M). Note that λ1 > 0, λi ≤ 0 (i = 2, .., n) and G ∈
USI∗(I, S,m0,M0). We can check that

T F ∈ USI

(

I, S,
1

λ1

(

m0 +
n
∑

i=2

|λi|m
i
)

,
1

λ1

(

M0 +
n
∑

i=2

|λi|M
i
)

)

(18)

by Lemma 3.2. Obviously, T F ∈ USI∗(I) because
∑n

i=1 λi = 1. Moreover, since
F ∈ USI∗u(I, S,m,M) and

∑n

i=1 λiζk+i ∈ G(ζk) for each k, we have

ζk+1 ∈
1

λ1

(

G(ζk)−
n
∑

i=2

λiζk+i

)

⊂
1

λ1

(

G(ζk)−
n
∑

i=2

λiF
i(ζk)

)

= T F (ζk), ∀k ≥ 0,

implying that T F ∈ USI∗u(I, S,m,M) by (15).

Furthermore, by (17) and Lemma 2.1, for every F1, F2 ∈ USI∗u(I, S,m,M),

D(T F1, T F2) = sup
x∈I

h

(

1

λ1

(

G(x)−
n
∑

i=2

λiF
i
1(x)

)

,
1

λ1

(

G(x)−
n
∑

i=2

λiF
i
2(x)

)

)

≤
1

λ1

n
∑

i=2

|λi| sup
x∈I

h(F i
1(x), F

i
2(x)). (19)
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By Lemma 3.3,

D(T F1, T F2) ≤
1

λ1

n
∑

i=2

|λi|D(F i
1, F

i
2)

≤
1

λ1

n
∑

i=2

|λi|
i−1
∑

j=0

M jD(F1, F2)

≤ dD(F1, F2). (20)

Thus, under condition (16) the mapping T is a contraction. By Banach’s fixed point
principle, T has a unique fixed point F in USI∗u(I, S,m,M), i.e.,

F (x) =
1

λ1

(

G(x)−
n
∑

i=2

λiF
i(x)

)

, ∀x ∈ I. (21)

This completes the proof.

In order to answer to equation (2), we note the fact that A + B ⊃ C if the sets
A,B,C satisfy A = C − B. The special choice that A = [−1, 2], B = [0, 1] and
C = [0, 2] demonstrates that the equality A + B = C does not hold. It implies that
every solution F of equation (4) satisfies

n
∑

i=1

λiF
i(x) ⊃ G(x), ∀x ∈ I,

i.e., we obtain the following:

Corollary 4.2. Under the same conditions as in Theorem 4.1, there exists a multi-
function F ∈ USI∗u(I, S,m,M) such that (5) holds.

For multifunctions in the other class USI∗(I, S,m0,M0) we have a similar result to
Theorem 4.1. It can be proved similarly.

Theorem 4.3. Suppose that λ1 > 0, λi ≤ 0 (i = 2, .., n) and
∑n

i=1 λi = 1 and
that G ∈ USI∗(I, S,m0,M0) with M0 > m0 > 0, where the sequence S = {ζk}

∞
k≥0

in I is strictly decreasing and satisfies ζ0 = b, limk→∞ ζk = a and (14). Then for
arbitrary constants M > m > 0 satisfying (15) equation (4) has a unique solution
F ∈ USIu∗(I, S,m,M) if condition (16) holds.

Corollary 4.4. Under the same conditions as in Theorem 4.3, there exists a multi-
function F ∈ USIu∗(I, S,m,M) such that (5) holds.

In general, for G ∈ USI(I), let P (G) := {x ∈ I : x ∈ G(x)}. Then int(I)\P (G) is a
union of disjoint open intervals, i.e.,

int(I)\P (G) =
⋃

r

(αr, βr),



B.Xu, K.Nikodem,W. Zhang / On a Multivalued Iterative Equation of Order n 683

where αr (or βr) either belongs to P (G) or is an endpoint of I. It is obvious that the
restriction Gr := G|Ir to the subinterval Ir := [αr, βr] belongs to either USI∗(Ir) or
USI∗(Ir). Thus we can also obtain the existence of solutions for equation (4) with
G ∈ USI(I) by Theorems 4.1 and 4.3. Results corresponding to Corollaries 4.2 and
4.4 can also be given.

5. Some Remarks

In order to demonstrate conditions in our theorems, consider the equation

9

8
F (x) = G(x) +

1

8
F 3(x), x ∈ I := [0, 1], (22)

where n = 3, λ1 =
9
8
, λ2 = 0, λ3 = −1

8
and

G(x) =



























[

53
128

, 29
64

]

, x = 0, ,

11
32
x+ 29

64
, x ∈

(

0, 1
2

)

,
[

5
8
, 93
128

]

, x = 1
2
,

35
64
x+ 29

64
, x ∈

(

1
2
, 1
)

.

Clearly, G ∈ USI∗(I, S,m0,M0), where

m0 = min

{

11

32
,
35

64

}

=
11

32
, M0 = max

{

11

32
,
35

64
,

93
128

− 53
128

1
2
− 0

}

=
5

8
,

and S = {ζk}
∞
k≥0 with ζk := 1− 2−k for each k ≥ 0. Note that

9

8
(1− 2−1)−

1

8
(1− 2−3) =

29

64
∈ G(0)

and
9

8
(1− 2−(k+1))−

1

8
(1− 2−(k+3)) =

29

64
+

35

64
(1− 2−k) ∈ G(1− 2−k)

for each k ≥ 1. It implies that the condition (14) holds, i.e.,
∑n

i=1 λiζk+i ∈ G(ζk)
for every k ≥ 0. Let m = 11/36 and M = 1. It is easy to check that both (15)
and (16) hold. Thus, by Theorem 4.1, equation (22) has a unique solution F ∈
USI∗u(I, S,m,M).

Remark that we have to discuss solutions in the class of strictly increasing USC
multifunctions for n ≥ 3 because the second order iterate of a USC multifunction
which is increasing but not strictly increasing may not be increasing. For example,
the multifunction

F (x) =















































2x, x ∈
[

0, 1
4

)

,

1
2
, x ∈

[

1
4
, 1
3

)

,
[

1
2
, 2
3

]

, x = 1
3
,

2
3
, x ∈ (1

3
, 1
2
),

[

2
3
, 3
4

]

, x = 1
2
,

1
2
x+ 1

2
, x ∈ (1

2
, 1]
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obviously lies in the class Φ([0, 1]) and J(F ) = {1
3
, 1
2
}. Its second order iterate

F 2(x) =















































































4x, x ∈ [0, 1
8
),

1
2
, x ∈ [1

8
, 1
6
),

[1
2
, 2
3
], x = 1

6
,

2
3
, x ∈ (1

6
, 1
4
),

[2
3
, 3
4
], x ∈ [1

4
, 1
3
),

[2
3
, 5
6
], x = 1

3
,

5
6
, x ∈ (1

3
, 1
2
),

[5
6
, 7
8
], x = 1

2
,

1
4
x+ 3

4
, x ∈ (1

2
, 1],

does not increase because F 2(x) = [2
3
, 3
4
] for every x ∈ [1

4
, 1
3
). Thus, unlike [14], we

prefer discussing in USI(I) rather than in Φ(I). For this reason in this paper we
cannot construct the contraction mapping T in the same form T F := L−1

F ◦ G as
that in [14] because such a T F may not be strictly increasing (and in USI(I)) even
if both F and G are chosen to be strictly increasing (and in USI(I)).

In contrast, the above mentioned difficulty is overcome by the new construction (17) of
contraction mapping T in this paper, but we only obtain the existence of multi-valued
solutions for equation (4), a modified form of equation (2). This result of existence
gives the existence of multi-valued solutions for equation (5), a weak version of (2)
in inclusion sense as considered in [17, 19] for set-valued iterative roots. Actually,
equation (4) is equivalent to equation (2) only in the case of single-valued F . In
fact, if F is a solution of equation (4) with cardinal cardF (x1) ≥ 2, we see that
card(

∑n

i=2 λiF
i(x1)) ≥ 2 and therefore

−
n
∑

i=2

λiF
i(x1) +

n
∑

i=2

λiF
i(x1) ) {0}, (23)

which implies that

λ1F (x1) +
n
∑

i=2

λiF
i(x1) = G(x1)−

n
∑

i=2

λiF
i(x1) +

n
∑

i=2

λiF
i(x1) ) G(x1),

i.e., the equality of (2) does not hold. On the contrary, if F is a solution of equation
(2) with cardinal cardF (x1) ≥ 2, we similarly see from (23) that

λ1F (x1) ( λ1F (x1) +
n
∑

i=2

λiF
i(x1)−

n
∑

i=2

λiF
i(x1) = G(x1)−

n
∑

i=2

λiF
i(x1),

i.e., the equality of (4) does not hold.

The above assertion also implies that the setting of equation (4) is better than the
original (2). Note that if F,G ∈ USI(I) satisfy (2) with λ1 > 0, λi ≤ 0 (i = 2, .., n),
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then both F and G must be single-valued. Indeed, by (2) we have

λ1F (x) ⊂ λ1F (x) +
n
∑

i=2

λiF
i(x)−

n
∑

i=2

λiF
i(x) = G(x)−

n
∑

i=2

λiF
i(x).

Since both λ1F and G−
∑n

i=2 λiF
i belong to USI(I), by Lemma 2 in [14] we get

λ1F (x) = G(x)−
n
∑

i=2

λiF
i(x),

i.e., (4) holds. However, as shown in the above paragraph, it holds if and only if F
is single-valued. Then, G is also single-valued by (2). In spite of this, our theorems
indicate that there exist multi-valued solutions of (4).

In addition, we remark that our theorems do not require G to fix endpoints of the
interval I, which relaxes the restriction of the theorem in [14] at endpoints. Since we
require that λ2 ≤ 0 in this paper, our theorems do not cover the result in [14] for
n = 2 even if we considered the result in [14] in the weak sense.

Similarly to [31], one can prove the stability of the solution under the same condition
as in Theorem 4.1 or 4.3.

Acknowledgements. The authors thank for the referee’s encouragement and helpful

comments.
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