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1. Introduction

The problem of characterizing the effective yield set of a polycrystal has received
considerable attention in recent years. In particular, the issue of the optimality of
the classical Sachs and Bishop-Hill-Taylor bounds [1], [16], [19], which provide natural
inner and outer estimates for the effective yield set, has been recently studied by many
authors (see, e.g., Garroni & Kohn [10], Goldsztein [12], [13], Kohn & Little [14]).
A new approach for this type of problems has been proposed by Garroni, Nesi, &
Ponsiglione in [11], where an efficient mathematical derivation of the (first-failure)
dielectric breakdown model as a limiting case of the power-law model via De Giorgi’s
Γ-convergence is provided, leading to a new variational principle for the effective
yield set (in the context of dielectric breakdown) which is less degenerate than the
traditional one. The Γ-convergence results in [11], which concern power-law type
functionals acting on gradients, have been recently generalized by Bocea & Nesi [2]
to more general linear PDE constraints on the underlying fields in the framework of
A-quasiconvexity. In particular, this leads to variational characterizations of the yield
(strength) set in the setting of electrical resistivity (where the underlying fields are
divergence-free). The aim of this paper is to extend the results in [2] to a framework
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which is relevant to treating models of Polycrystal Plasticity, where the underlying
fields take values in stress space M

3×3
sym, are divergence free and, as described below,

not just one, but several (depending on the number of slip systems present in the
basic crystal) distinct pointwise constraints need to be simultaneously verified. In
what follows we provide, for the convenience of the reader, a brief description of the
physical context. More details can be found for example in [10], [11], [12], [14], and
references therein.

A polycrystal is a collection of grains, or single crystals, which are bonded together
in different orientations. The yield of a single crystal is determined by a closed
convex subset K of the space of symmetric 3×3 real matrices M3×3

sym. The shapes and
orientations of the grains in a polycrystal (this is called the texture of the polycrystal)
are described by a piecewise constant rotation-valued function R : Ω → SO(3), where
R(x) is constant in each grain and indicates the orientation of the grain which contains
the point x ∈ Ω. If the yield set of the basic crystal is K, the stress in the polycrystal
occupying the region Ω ⊂ R

3 must satisfy the constraint

σ(x) ∈ R(x)KRT (x), x ∈ Ω. (1)

The set of all average stresses σ :=
∫

Ω
σ(x)dx, where σ satisfies the pointwise con-

straint (1) and the equilibrium equation

Div σ = 0 in Ω, (2)

is called the effective yield set of the polycrystal. It is given by

Keff :=

{

σ :=

∫

Ω

σ(x)dx : (1) and (2) hold

}

.

Yield in a crystalline solid is associated with a finite number of slip systems which
depend on the atomic lattice, each being determined by a pair (nk,mk) of orthogonal
vectors, where nk is the normal to the slip plane, and mk is the direction of slip. In
this case, we have

K =
{

A ∈ M
3×3
sym : 〈A, µk〉 ≤ τ criticalk , k = 1, · · · , s

}

,

where s stands for the number of slip systems, τ criticalk is the critical shear stress for
the k-th slip system, and µk, defined by

µk :=
1

2
(mk ⊗ nk + nk ⊗mk) ,

is the k-th slip tensor. Describing the yield set Keff, given K and some information
on the texture of the polycrystal, is the main goal of Polycrystal Plasticity.

The plan of the paper is as follows. In Section 2 we give the necessary background on
A-quasiconvexity and Γ-convergence needed in the sequel. In Section 3 we state and
prove a Γ-convergence result for a general class of power-law functionals. Section 4 of
the paper is devoted to the characterization of the effective yield set of a polycrystal
in terms of a variational principle in L∞. In addition, we show that our results apply
in the model settings of antiplane shear and plane stress polycrystal plasticity.
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2. A-quasiconvexity and Γ-convergence

Let N, d, l ∈ N be given, Ω ⊂ R
N open and bounded, 1 < p < ∞, and let

p′ := p/(p − 1) be the Hölder conjugate exponent of p. Consider a family of lin-
ear operators A(1), A(2), · · · , A(N) ∈ Lin(Rd;Rl), and define the differential operator
A : Lp(Ω;Rd) → W−1,p(Ω;Rl) by

Av :=
N
∑

i=1

A(i) ∂v

∂xi

. (3)

Precisely,

〈Av, u〉 :=
〈

N
∑

i=1

A(i) ∂v

∂xi

, u

〉

= −
N
∑

i=1

∫

Ω

A(i)v
∂u

∂xi

dx for all u ∈ W 1,p′

0 (Ω;Rl). (4)

Here W−1,p(Ω;Rl) stands for the dual of W 1,p′

0 (Ω;Rl); it is well known that F belongs
to W−1,p(Ω;Rl) if and only if there exist f1, f2, · · · , fN ∈ Lp(Ω;Rl) such that

〈F, u〉 =
N
∑

i=1

∫

Ω

fi
∂u

∂xi

dx for all u ∈ W 1,p′

0 (Ω;Rl).

We assume that the operator A satisfies the following constant rank property:

there exists r ∈ N such that rank(A(w)) = r for all w = (w1, · · · , wN) ∈ SN−1, (5)

where

A(w) :=
N
∑

i=1

wiA
(i) ∈ Lin(Rd;Rl).

The constant rank property plays an important role in the theory of compensated
compactness developed by Murat and Tartar (see, e.g., [15], [17], and [18]). Let
Q = (0, 1)N be the unit cube in R

N .

Definition 2.1. A function g : Rd → R is said to be A-quasiconvex if

g(A) ≤
∫

Q

g(A+ w(x))dx

for all A ∈ R
d, and all Q-periodic w ∈ C∞(Q;Rd) such that Aw = 0 and

∫

Q
w(x)dx =

0.

The notion of A-quasiconvexity (without the periodicity assumption on the test func-
tions) has been first investigated by Dacorogna [5]. Fonseca & Müller have shown in
[9] that if A satisfies constant rank property (5), Ω ⊂ R

N is an open, bounded set,
(u, v) : Ω → R

m ×R
d is measurable, and g : Ω×R

m ×R
d → R is a normal integrand
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then, under suitable growth assumptions, A-quasiconvexity of g(x, u, ·) is a necessary
and sufficient condition for the sequential lower semicontinuity of integral functionals
of the form

(u, v) 7→
∫

Ω

g(x, u(x), v(x))dx

along sequences such that un → u in measure, vn → v in Lp, and Avn → 0 in W−1,p.
In particular, we have the following

Proposition 2.2 (see [9, Theorem 3.7]). Let 1 ≤ p ≤ +∞ and suppose that

g : Ω × R
m × R

d → [0,+∞) is a normal integrand such that z 7→ g(x, u, z) is

A-quasiconvex and continuous for LN -a.e. x ∈ Ω, and all u ∈ R
d. If 1 ≤ p < +∞,

assume further that there exists a locally bounded function a : Ω×R
d → [0,+∞) such

that

0 ≤ g(x, u, v) ≤ a(x, u)(1 + |v|p),

for LN -a.e. x ∈ Ω, and all (u, v) ∈ R
m × R

d. If

un → u in measure,

vn ⇀ v in Lp(Ω;Rd), (6)

and

Avn → 0 in W−1,p(Ω;Rl) (7)

then
∫

Ω

g(x, u(x), v(x))dx ≤ lim inf
n→∞

∫

Ω

g(x, un(x), vn(x))dx. (8)

If p = +∞, then (8) still holds provided that in (6) the weak convergence of vn to v
in Lp(Ω;Rd) is replaced by the weak* convergence in L∞(Ω;Rd), and in (7) Avn → 0
in W−1,p(Ω;Rl) is replaced by Avn = 0.

Next we recall the definition of De Giorgi’s Γ-convergence (see [7], [8]) in metric
spaces. For a comprehensive introduction to the subject we refer to [6]. See also [3],
and [4].

Definition 2.3. Let X be a metric space. A sequence {Ip} of functionals Ip : X →
R := R∪{+∞} is said to Γ(X)-converge to I : X → R (we write Γ(X)− limp→∞ Ip =
I) if

(i) for every u ∈ X and {up} ⊂ X such that up → u in X, we have

I(u) ≤ lim inf
p→∞

Ip(up);

(ii) for every u ∈ X there exists a sequence {up} ⊂ X such that up → u in X, and

I(u) = lim
p→∞

Ip(up).
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3. Γ-convergence of power-law functionals

Let m ∈ N be a positive integer, Ω an open, bounded domain in R
N(N ≥ 1) and, for

i = 1, 2, · · · ,m, consider Carathéodory integrands fi : Ω× R
d → [0,+∞) such that

fi(x, ·) is A−quasiconvex for LN−a.e. x ∈ Ω, i ∈ {1, 2, · · · ,m}. (9)

Assume that there exists a constant C > 0 such that for every i ∈ {1, 2, · · · ,m} we
have

fi(x, v) ≤ C (1 + |v|) for LN−a.e. x ∈ Ω, and all v ∈ R
d. (10)

Moreover, we assume that

m
∑

i=1

fi(x, v) ≥ c|v| for LN−a.e. x ∈ Ω, and all v ∈ R
d, (11)

where c > 0 is a positive constant.

Theorem 3.1. Let Ω be an open, bounded domain in R
N(N ≥ 1) and, for i =

1, 2, · · · ,m, let fi : Ω × R
d → [0,+∞) be Carathéodory integrands satisfying (9),

(10), and (11). Define Jm,p, Jm,∞ : L1(Ω;Rd) → [0,+∞] by

Jm,p(w) :=























∫

Ω

(

m
∑

i=1

fi(x,w(x))
p

)

dx





1/p

if w ∈ Lp(Ω;Rd) and Aw = 0

+∞ otherwise,

and

Jm,∞(w) :=







max
i∈{1,··· ,m}

ess sup
x∈Ω

fi(x,w(x)) if w ∈ L∞(Ω;Rd) and Aw = 0

+∞ otherwise,

respectively. Then

(i) for every w ∈ L1(Ω;Rd), and {wp} ⊂ L1(Ω;Rd) such that wp ⇀ w weakly in

L1(Ω;Rd), we have

Jm,∞(w) ≤ lim inf
p→∞

Jm,p(wp). (12)

(ii) for every w ∈ L1(Ω;Rd), there exists a sequence {wp} ⊂ L1(Ω;Rd) such that

wp → w strongly in L1(Ω;Rd), and

lim sup
p→∞

Jm,p(wp) ≤ Jm,∞(w). (13)

In particular,

Γ(L1(Ω;Rd))− lim
p→∞

Jm,p = Jm,∞.
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Proof. Let {wp} ⊂ L1(Ω;Rd) be such that wp ⇀ w weakly in L1(Ω;Rd). We need
to show that (12) holds. After eventually passing to a subsequence we may assume,
without loss of generality, that

wp ∈ Lp(Ω;Rd), Awp = 0, (14)

and

lim inf
p→∞

Jm,p(wp) = lim
p→∞

Jm,p(wp) < +∞. (15)

In view of (9) and Jensen’s inequality, for any i ∈ {1, · · · ,m} and q ≥ 1, fi(x, ·)q is
A-quasiconvex for LN -a.e. x ∈ Ω. In addition, by (10),

fi(x, v)
q ≤ 2q−1Cq (1 + |v|q) , (16)

for i ∈ {1, · · · ,m}, LN -a.e. x ∈ Ω, and all v ∈ R
d. For any p > q > 1, we have, by

Hölder’s inequality,

‖wp‖Lq(Ω;Rd) ≤ ‖wp‖Lp(Ω;Rd)

(

LN(Ω)
)

p−q

pq .

In addition, the coercivity condition (11) yields

‖wp‖Lp(Ω;Rd) ≤
1

c





∫

Ω

(

m
∑

i=1

fi(x,wp(x))

)p

dx





1

p

≤ 1

c
Jm,p(wp)m

p−1

p .

We deduce that

‖wp‖Lq(Ω;Rd) ≤
(

LN(Ω)
)

p−q

pq

c
m

p−1

p Jm,p(wp) ≤ CJm,p(wp),

where C > 0 is a constant which only depends on m and LN(Ω) (one may take, for
example, C := m

c
max{LN(Ω), 1}). Thus, by (15), {wp} is bounded in Lq(Ω;Rd).

Since q > 1 we can extract a subsequence (not relabelled) such that wp ⇀ w weakly
in Lq(Ω;Rd), as p → ∞. Taking (14) and (16) into account, and in view of the
A-quasiconvexity and continuity of each fi(x, ·)q for LN − a.e. x ∈ Ω, we are in the
position to apply Proposition 2.2. We obtain that

∫

Ω

fi(x,w(x))
qdx ≤ lim inf

p→∞

∫

Ω

fi(x,wp(x))
qdx, (17)

for every i ∈ {1, · · · ,m}. On the other hand, for i ∈ {1, · · · ,m}, we have that



lim inf
p→∞

∫

Ω

m
∑

i=1

fi(x,wp(x))
qdx





1/q

≤ lim sup
p→∞





∫

Ω

m
∑

i=1

fi(x,wp(x))
qdx





1/q

. (18)
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Thus, in view of (17) and (18), we deduce that

Jm,q(w) ≤





m
∑

i=1

lim inf
p→∞

∫

Ω

fi(x,wp(x))
qdx





1

q

≤ lim sup
p→∞

Jm,q(wp) (19)

for all q ≥ 1. Next, for q < p, we have

Jm,q(wp) ≤
(

(

LN(Ω)
)1− q

p

m
∑

i=1

‖fi(·, wp(·))‖qLp(Ω)

) 1

q

. (20)

Putting ai := ‖fi(·, wp(·))‖pLp(Ω), i = 1, · · · ,m, in the inequality

(

m
∑

i=1

a
q

p

i

) 1

q

≤ m
1

q
− 1

p

(

m
∑

i=1

ai

) 1

p

,

which is valid for all a1, · · · , am ≥ 0, we obtain that

(

m
∑

i=1

‖fi(·, wp(·))‖qLp(Ω)

) 1

q

≤ m
1

q
− 1

p

(

m
∑

i=1

‖fi(·, wp(·))‖pLp(Ω)

) 1

p

= m
1

q
− 1

pJm,p(wp). (21)

Combining (20) and (21) we deduce that

Jm,q(wp) ≤
(

mLN(Ω)
)

1

q
− 1

p Jm,p(wp).

Thus, passing to lim sup as p → ∞, we have

lim sup
p→∞

Jm,q(wp) ≤
(

mLN(Ω)
)

1

q lim
p→∞

Jm,p(wp)

which, together with (19), gives

Jm,q(w) ≤
(

mLN(Ω)
)

1

q lim inf
p→∞

Jm,p(wp). (22)

Thus,

‖fi(·, w(·))‖Lq(Ω) ≤
(

mLN(Ω)
)

1

q lim inf
p→∞

Jm,p(wp) (23)

for every i ∈ {1, · · · ,m}. We now claim that fi(·, w(·)) ∈ L∞(Ω) for every i ∈
{1, · · · ,m}. Indeed, let x ∈ Ω be a Lebesgue point for fi(·, w(·)) ∈ L1(Ω). For any
ball B(x, r) ⊂ Ω, and for p > 1 sufficiently large, we have

∫

B(x,r)

fi(y, wp(y))dy ≤





∫

Ω

(fi(y, wp(y)))
p dy





1/p

(

LN(B(x, r))
)(p−1)/p

≤ Jm,p(wp)
(

LN(B(x, r))
)(p−1)/p

, (24)
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where we have used Hölder’s inequality. Letting p → ∞, we obtain

lim sup
p→∞

∫

B(x,r)

fi(y, wp(y))dy ≤ lim
p→∞

Jm,p(wp)LN(B(x, r)). (25)

Applying Proposition 2.2 again, we deduce that

∫

B(x,r)

fi(y, w(y))dy ≤ lim inf
p→∞

∫

B(x,r)

fi(y, wp(y))dy.

Combining this with (25), we have that

1

LN(B(x, r))

∫

B(x,r)

fi(y, w(y))dy ≤ lim
p→∞

Jm,p(wp).

Since LN -almost every x ∈ Ω is a Lebesgue point for fi(·, w(·)), passing to the limit
r → 0+ in the above inequality yields

fi(x,w(x)) ≤ lim
p→∞

Jm,p(wp), LN − a.e. x ∈ Ω.

Since i ∈ {1, · · · ,m} was arbitrary, and taking into account (15), it follows that
fi(·, w(·)) ∈ L∞(Ω) for every i ∈ {1, · · · ,m}, as claimed.

Letting q → ∞ in (23) we obtain that

‖fi(·, w(·))‖L∞(Ω) ≤ lim inf
p→∞

Jm,p(wp),

for all i ∈ {1, · · · ,m}. Hence

max
i∈{1,··· ,m}

‖fi(·, w(·))‖L∞(Ω) ≤ lim inf
p→∞

Jm,p(wp).

Finally, since fi(·, w(·)) ∈ L∞(Ω) for all i ∈ {1, · · · ,m}, (11) gives w ∈ L∞(Ω;Rd).
Moreover, since wp ∈ L1(Ω;Rd), Awp = 0, and wp ⇀ w weakly in L1(Ω;Rd), it
follows that Aw = 0. We conclude that (12) holds.

Let w ∈ L1(Ω;Rd), and consider the constant sequence {wp} ⊂ L1(Ω;Rd), wp := w
for all p ∈ N. To verify that (13) holds, we assume without loss of generality that
Jm,∞(w) < +∞. This implies that w ∈ L∞(Ω;Rd) and Aw = 0. Using the fact that
for each i ∈ {1, · · · ,m} we have fi(x,w(x)) ≤ ‖fi(·, w(·))‖L∞(Ω) for LN -a.e. x ∈ Ω,
we obtain that





∫

Ω

m
∑

i=1

fi(x,w(x))
pdx





1

p

≤
(

LN(Ω)
)

1

p

(

m
∑

i=1

‖fi(·, w(·))‖pL∞(Ω)

) 1

p

.
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Hence

Jm,p(wp) = Jm,p(w) ≤
(

LN(Ω)
)

1

p

(

m
∑

i=1

‖fi(·, w(·))‖pL∞(Ω)

) 1

p

≤
(

LN(Ω)
)

1

p

(

m · max
i∈{1,··· ,m}

‖fi(·, w(·))‖pL∞(Ω)

) 1

p

=
(

mLN(Ω)
)

1

p max
i∈{1,··· ,m}

‖fi(·, w(·))‖L∞(Ω) =
(

mLN(Ω)
)

1

p Jm,∞(w).

Passing to the limit supremum as p → ∞ we obtain

lim sup
p→∞

Jm,p(wp) ≤ Jm,∞(w),

and this concludes the proof. �

4. Variational characterization of the yield set of a polycrystal: two
model cases

In this section we specialize to the case where given a function B ∈ Lp
(

Ω;MN×N
)

the differential operator A is given by

AB := DivB =











divB(1)

divB(2)

...
divB(N)











,

where, for i = 1, · · · , N, B(i)(x) := (Bi1(x), Bi2(x), · · · , BiN(x)) stands for the i-th
row of the matrix B(x), x ∈ Ω. Thus, taking d = N2, and l = N, the differential
constraint AB = 0 can be written in the form

N
∑

k=1

A(k) ∂B

∂xk

= 0

provided that we define, for i, k = 1, · · · , N and j = 1, · · · , N2,

A
(k)
ij =

{

δi(j−(k−1)N) if (k − 1)N + 1 ≤ j ≤ kN

0 else,

where the symbol δij stands for the Kronecker’s delta. We note that the constant

rank condition (5) is satisfied since for every w ∈ SN−1 we have

ker(A(w)) =
{

V ∈ M
N×N : wV = 0

}

,

and thus dim(ker A(w)) = N2 −N.

We assume in what follows that the pointwise constraint (1) on the stress may be
written in the form

σ(x) ∈
{

η ∈ M
N×N
sym : fi(x, η) ≤ 1 for all i = 1, · · · ,m

}

, (26)
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where fi : Q×M
N×N
sym → R (i = 1, · · · ,m) are Carathéodory integrands satisfying our

hypotheses (9), (10), and (11). In this case the yield set of the polycrystal becomes

Keff =

{

η ∈ M
N×N
sym : ∃ σ ∈ L∞ (Q;MN×N

sym

)

such that η =

∫

Q

σ(x)dx, Div σ = 0,

fi(x, σ(x)) ≤ 1 LN−a.e. x ∈ Q, i = 1, · · · ,m
}

,

or, equivalently,

Keff =

{

η ∈ M
N×N
sym : ∃ σ ∈ L∞ (Q;MN×N

sym

)

such that

∫

Q

σ(x)dx = 0, Div σ = 0,

fi(x, σ(x) + η) ≤ 1 LN−a.e. x ∈ Q, i = 1, · · · ,m
}

. (27)

For η ∈ M
N×N
sym we consider the variational principle

jeffm,p(η) := inf















∫

Q

(

m
∑

i=1

fi(x,B(x) + η)p

)

dx





1/p

: B ∈ Lp
(

Q;MN×N
sym

)

,

∫

Q

B dx = 0, Div B = 0







. (28)

In view of our Theorem 3.1, well-known arguments in the theory of Γ-convergence
(see, e.g., [4] and [6]) imply, in particular, that for any η ∈ M

N×N
sym , jeffm,p(η) converges,

as p → ∞, to jeffm,∞(η) given by

jeffm,∞(η) := inf

{

max
1≤i≤m

ess sup
x∈Q

fi(x,B(x) + η) : B ∈ L∞ (Q;MN×N
sym

)

,

∫

Q

B(x) dx = 0, Div B = 0

}

. (29)

The effective yield set Keff can now be characterized in terms of the limiting varia-
tional principle jeffm,∞.

Theorem 4.1.

Keff =
{

η ∈ M
N×N
sym : jeffm,∞(η) ≤ 1

}

. (30)

Proof. Let η ∈ Keff. By (27), there exists σ ∈ L∞ (Q;MN×N
sym

)

such that
∫

Q
σ(x)dx =

0, Div σ = 0, and fi(x, σ(x) + η) ≤ 1 for LN−a.e. x ∈ Q, i = 1, · · · ,m. We have
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jeffm,∞(η) ≤ max1≤i≤m ess supx∈Q fi(x, σ(x) + η) ≤ 1. Conversely, let η ∈ M
N×N
sym be

such that

jeffm,∞(η) ≤ 1. (31)

Consider a sequence {σn} ⊆ L∞ (Q;MN×N
sym

)

such that Div σn = 0,
∫

Q
σn(x)dx = 0

for any n ∈ N, and

lim
n→∞

(

max
1≤i≤m

ess sup
x∈Q

fi(x, σn(x) + η)

)

= jeffm,∞(η). (32)

The coercivity condition (11) implies that the sequence {σn} is bounded in L∞(Q;

M
N×N
sym

)

. Thus, we may extract a subsequence of {σn} (not relabelled) such that

σn ⇀ σ weakly* in L∞ (Q;MN×N
sym

)

, with Div σ = 0, and
∫

Q
σ(x)dx = 0. Let x ∈ Q

be a Lebesgue point for each of the fi(·, σ(·) + η), i = 1, · · · ,m. By Proposition 2.2
we deduce that

∫

B(x,r)

fi(y, σ(y) + η)dy ≤ lim inf
n→∞

∫

B(x,r)

fi(y, σn(y) + η)dy, i = 1, · · · ,m,

for sufficiently small r > 0. Thus, (32) yields

1

LN(B(x, r))

∫

B(x,r)

fi(y, σ(y) + η)dy ≤ jeffm,∞(η).

Letting r → 0+, since almost every point x ∈ Q is a Lebesgue point for all fi(·, σ(·)+
η), i = 1, · · · ,m, we have that fi(x, σ(x) + η) ≤ jeffm,∞(η) for LN -a.e. x ∈ Q, i =

1, · · · ,m. Taking (31) into account, we deduce that η ∈ Keff. Thus, (30) holds. �

We now consider two well-known models (see, e.g., Kohn & Little [14], whose pre-
sentation we follow) for which our results are relevant.

4.1. Plane stress

We consider stresses given by

σ(x) =





σ11(x) σ12(x) 0
σ12(x) σ22(x) 0

0 0 0



 , x ∈ Ω ⊂ R
2. (33)

In plane stress the slip tensor is given by µ = 1
2
(m ⊗ n + n ⊗ m), where m ⊥

n, µ13 = µ23 = µ33 = 0. The slip tensor belongs to the space spanned by the tensors
µ(1) = 1

2

(

m(1) ⊗ n(1) + n(1) ⊗m(1)
)

and µ(2) = 1
2

(

m(2) ⊗ n(2) + n(2) ⊗m(2)
)

, with

m(1) = (1, 0, 0), n(1) = (0, 1, 0), m(2) =
(

1√
2
, 1√

2
, 0
)

, and m(2) =
(

1√
2
,− 1√

2
, 0
)

. In

what follows we identify the stress with the 2×2 upper-left corner of the 3×3 matrix
in (33). The yield set of the basic crystal has the form

K = KM1N1
:=
{

σ = (σij) ∈ M
2×2
sym : |σ12| ≤ M1, |σ11 − σ22| ≤ 2, |σ11 + σ22| ≤ N1

}

.
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If the rotation describing the orientations of the grain containing the point x ∈ Ω is
given by

R(x) =

(

cos θ(x) − sin θ(x)
sin θ(x) cos θ(x)

)

(34)

then the pointwise constraint (1) becomes

RT (x)σ(x)R(x) ∈ KM1N1
, (35)

or, equivalently,
(

σ11 cos
2 θ + σ12 sin 2θ + σ22 sin

2 θ σ12 cos 2θ − σ11−σ22

2
sin 2θ

σ12 cos 2θ − σ11−σ22

2
sin 2θ σ11 sin

2 θ(x)− σ12 sin 2θ + σ22 cos
2 θ

)

(x)

∈ KM1N1
.

Taking N = 2, m = 3, this can be written in the form (26), where the functions
fi(i ∈ {1, 2, 3}) are defined by

f1(x, η) :=
1

M1

∣

∣

∣

∣

η12 cos(2θ(x))−
1

2
(η11 − η22) sin(2θ(x))

∣

∣

∣

∣

,

f2(x, η) :=
1

2
|(η11 − η22) cos(2θ(x)) + 2η12 sin(2θ(x))| ,

and

f3(x, η) :=
1

N1

|η11 + η22| .

With these choices our results apply. Indeed, it is easy to check that the functions
defined above satisfy our A-quasiconvexity condition (9) (fi(x, ·) is, in fact, convex
for all i ∈ {1, 2, 3}), and the growth condition (10). It remains to show that the
coercivity condition (11) holds as well. To this aim first note that for all x ∈ Ω and
η = (ηij)i,j=1,2 ∈ M

2×2
sym we have

|η12| ≤ M1f1(x, η) + f2(x, η), |η11 + η22| ≤ N1f3(x, η),

and

|η11 − η22| ≤ 2f2(x, η) + 2M1f1(x, η).

This gives

|η11| ≤
N1

2
f3(x, η) + f2(x, η) +M1f1(x, η),

and

|η22| ≤
N1

2
f3(x, η) + f2(x, η) +M1f1(x, η)

for all x ∈ Ω and η ∈ M
2×2
sym. It follows that

|η| ≤M1(2 +
√
2)f1(x, η) + (2 +

√
2)f2(x, η) +N1f3(x, η),

for all x ∈ Ω and η ∈ M
2×2
sym,

which yields (11), with c =
(

max{N1, 2 +
√
2, (2 +

√
2)M1}

)−1
.
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4.2. Antiplane shear

In antiplane shear the stress is given by

σ(x) =





0 0 σ13(x)
0 0 σ23(x)

σ31(x) σ32(x) 0



 , x ∈ Ω ⊂ R
2,

which corresponds to slip tensors µ = 1
2
(m ⊗ n + n ⊗ m), with µ11 = µ22 = µ33 =

µ12 = 0, belonging to the two-dimensional space spanned by µ(1) = 1
2
(e1⊗e3+e3⊗e1)

and µ(2) = 1
2
(e2 ⊗ e3 + e3 ⊗ e2), where e1, e2, and e3 are the vectors in the canonical

basis of R3. Assume that we are dealing with a crystal with a deficient supply of slip
systems, which in this case means that there are just four basic slip systems with slip
tensors ±µ(1),±µ(2) and critical stresses ±M,±1. After identifying the stress with a
vector field in the plane, the yield set of our basic crystal is

K = KM :=
{

σ = (σ1, σ2) ∈ R
2 : |σ1| ≤ M, |σ2| ≤ 1

}

.

For consistency, the rotations in (1) are taken such that they keep the x3-axis fixed,
and thus we may identify them with rotations of the x1x2-plane. The constraint (1)
then reads

RT (x)σ(x) ∈ KM , x ∈ Ω ⊂ R
2.

With R : Ω → SO(2) given by (34) and σ : Ω → R
2, σ(x) = (σ1(x), σ2(x))

T , this
means that we must have

|σ1(x) cos θ(x) + σ2(x) sin θ(x)| ≤ M,

and

|σ2(x) cos θ(x)− σ1(x) sin θ(x)| ≤ 1,

for all x ∈ Ω. These requirements can be written in the form (26) provided that we
choose N = m = 2, and that f1, f2 : Ω× R

2 → [0,+∞) are given by

f1(x, η) :=
1

M
|η1 cos θ(x) + η2 sin θ(x)| ,

and

f2(x, η) := |η2 cos θ(x)− η1 sin θ(x)| .

Again, our results apply: (9) and (10) hold, and it is immediate to verify that the

coercivity condition (11) is also satisfied, with c = (2max{M, 1})−1 .
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