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1. Continuous Selections

R̊adström [10] constructed vector spaces of formal Minkowski differences of non-
empty compact convex sets in a topological vector space; later his construction was
generalized to non-empty bounded closed convex subsets. In the locally convex situ-
ation, Hörmander [7] introduced the method of support functionals. Later Pinsker [9]
introduced and studied the lattice structure on these vector spaces. Even later this
framework was used in quasi-differential calculus (cf. e.g. [2], [4], [6], [8]), in partic-
ular for the study of non-smooth optimization problems. Somewhat surprisingly, if
we restrict this machinery to polytopes, we obtain a new construction of free vector
lattices (cf. [1] and [13]).

A continuous real functional on a real topological vector space V (i.e. a continuous
map f : V → R) is called a continuous selection of finitely many continuous func-
tionals f1, . . . , fn if f(x) ∈ {f1(x), . . . , fr(x)} holds for all x ∈ V . The selections of
f1, . . . , fr always form a lattice (in the order-theoretic sense) because the join (point-
wise maximum) f ∨f ′ and the meet (pointwise minimum) f ∧f ′ of two selections f, f ′

are selections. Since the continuous functionals also form a lattice, the continuous
selections of f1, . . . , fr form a (possibly empty) sublattice; of course, if f1, . . . , fr are
continuous themselves, so they belong to the lattice of continuous selections.

Now assume that all fi are distinct and also linear, and consider x ∈ V , 1 ≤ j ≤ r
with f(x) = fj(x), but f(x) 6= fi(x) for i 6= j. Let K◦(x) ∈ V be the subset of all y
with fi(y) < f(y) for all i with fi(x) < f(x) and fi(y) > f(y) whenever fi(x) > f(x).
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Then we have x ∈ K◦(x), and by continuity K◦(x) is open. By linearity, K◦(x) is
also convex and therefore connected, hence f coincides with fj on K◦(x) and we have
K◦(y) = K◦(x) for all y ∈ K◦(x). The closure K(x) of K◦(x) is the closed cone of all
y with fi(y) ≤ f(y) whenever fi(x) < f(x) and fi(y) ≥ f(y) whenever fi(x) > f(x).
We observe that there are only finitely many cones of the form K(x). Indeed, there
are at most n choices for i and for each fixed i there are only finitely many j 6= i
and only two possibilities fj(x) < f(x) and fj(x) > f(x) for each j; thus there are
at most 2r−1r such cones. Note that this is also true for n = 0; then the lattice is
empty. Moreover, the set of all x ∈ V for which all fi(x) are distinct is open and
dense in V ; thus V is the union of the finitely many cones of the form K(x).

Lemma 1.1. If f is a continuous selection of f1, . . . , fr, then for all x, y ∈ V there
exists a j ∈ Nr := {1, . . . , r} with fj(x) ≤ f(x) and fj(y) ≥ f(y).

Proof. The above representation of V as a union of finitely many closed cones yields
the existence of s ∈ N, λ0, . . . , λs ∈ R, i1, . . . , is ∈ Nr with 0 = λ0 < . . . < λs = 1
and f((1 − λ)x + λy) = fik((1 − λ)x + λy) for all k ∈ Ns, λ ∈ [λik−1

, λik ]. Now we
choose l ∈ Nn such that fil(y − x) is maximal. Then for all k ∈ Ns we get

(fil((1− λik)x+ λiky)− f((1− λik)x+ λiky))

− (fil((1− λik−1
)x+ λik−1

y)− f((1− λik−1
)x+ λik−1

y))

= fil((1− λik)x+ λiky)− fik((1− λik)x+ λiky)

− fil((1− λik−1
)x+ λik−1

y)) + fik((1− λik−1
)x+ λik−1

y)

= fil(((1− λik)x+ λiky)− ((1− λik−1
)x+ λik−1

y))

− fik(((1− λik)x+ λiky)− ((1− λik−1
)x+ λik−1

y))

= fil((λik − λik−1
)(y − x))− fik((λik − λik−1

)(y − x))

= (λik − λik−1
)(fil(y − x)− fik(y − x)) ≥ 0

because λik > λik−1
and fil(y − x) is maximal among all fik(y − x). So we obtain

fil((1− λik)x+ λiky)− f((1− λik)x+ λiky)

≤ fil((1− λi
k′
)x+ λi

k′
y)− f((1− λi

k′
)x+ λi

k′
y)

for all k, k′ ∈ Ns ∪ {0} with k ≤ k′, in particular

fil(x)− f(x) = fil((1− λi0)x+ λi0y)− f((1− λi0)x+ λi0y)

≤ fil((1− λil)x+ λily)− f((1− λil)x+ λily) = 0

≤ fil((1− λis)x+ λisy)− f((1− λis)x+ λisy) = fil(y)− f(y).

So for j := il we have fj(x) ≤ f(x) and fj(y) ≥ f(y).

The following result is essentially due to Bartels, Kuntz, and Scholtes [2] in the
finite-dimensional case:

Theorem 1.2. For finitely many continuous linear functionals, f1, . . . , fr, a func-
tional f belongs to the sublattice of V generated by f1, . . . , fr if and only if f is a
continuous selection of f1, . . . , fr.
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Proof. The “only if� part is obvious. For the “if� part we assume that f is a
continuous selection of continuous linear functionals f1, . . . , fn. For each x ∈ V
consider the set Jx of all j ∈ Nn with fj(x) ≤ f(x) and let hx be the join of the
(finitely many) fj with j ∈ Jx. Then each hx belongs to the lattice L generated by
f1, . . . , fr. As f is a selection, there exists an i ∈ Nn with f(x) = fi(x), and we
obviously have i ∈ Jx, hence hx(x) = f(x). Now Lemma 1.1 gives hx(y) ≥ f(y) for
all y ∈ V .

So for all x we have hx ≥ f in L (i.e. pointwise). Since there are only finitely many
subsets of Nr, only finitely many functionals occur as hx (for some x). Thus their
meet belongs to L and is greater than or equal to f ; it even coincides with f because
f(x) = hx(x), thus we have f ∈ L.

Note that linearity is essential in the above proof. Indeed, if f1, f2 : R → R are
defined by f1(x) := 0 and f2 := sinx for all x ∈ R, then we get infinitely (even
uncountably) many selections f by independently choosing ik ∈ [1, 2] and defining
f |[πk,π(k+1)] := fik |[πk,π(k+1)] for each k ∈ Z. Nevertheless, the lattice generated by f1,
f2 consists only of the four elements f1, f2, f1 ∧ f2, f1 ∨ f2.

So every continuous selection f of continuous linear functionals f1, . . . , fr is a non-
empty meet

∧
I∈I

∨
i∈I fi of non-empty joins

∨
i∈I fi for some subset I 6= ∅ of P(Nr)\

{∅}. For J, J ′ ∈ I, J ⊂ J ′ we always have
∨

i∈J fi ≤
∨

i∈J ′ fi; if J 6= J ′, we
therefore have

∧
I∈I

∨
i∈I fi =

∧
I∈I\{J ′}

∨
i∈I fi. If I has minimal cardinality in the

above representation, we see that I is an antichain, i.e. no member of I is properly
contained in another one. Thus the number of continuous selections of f1, . . . , fn is at
most as large as the number of non-empty antichains in P(Nn)\{∅}, i.e. of antichains
I ∈ P(Nn), i.e. f =

∨
I∈I

∧
i ∈ Ifi, these are all antichains except the two trivial

ones ∅ and {∅}.

It is well-known that in the free distributive lattice on r generators a1, . . . , an the
elements

∧
I∈I

∨
i∈I ai are different for different antichains I; therefore the cardinality

of the free distributive lattice is the number of non-empty antichains in P(Nr) \ {∅}
(cf. [3], p. 273). Obviously the lattice of all functionals V (and even every vector
lattice) is distributive; so we immediately get the following

Corollary 1.3. For linear functionals f1, . . . , fr on V , there is a unique lattice homo-
morphism from the free distributive lattice on r generators to the lattice of continuous
selections of f1, . . . , fr, and this homomorphism is always surjective. In particular,
the number of continuous selections of f1, . . . , fr is at most the number of non-empty
antichains in P(Nr) \ {∅}.

The upper bound from Corollary 1.3 is attained for every r:

Proposition 1.4. For n ∈ N let p1, .., pn : Rn → R be the canonical projections,
i.e. pi((ξ1, . . . , ξn)

⊤) := ξi for all i ∈ Nn, ξ1, . . . , ξn ∈ R. Moreover, define pn+1 :=
−
∑n

i=1 pi, i.e. pn+1((ξ1, . . . , ξn)
⊤) := −

∑n

i=1 ξi for all (ξ1, . . . , ξn)
⊤ ∈ R

n. Then the
canonical lattice homomorphism from the free distributive lattice on n+1 generators
to the lattice of all continuous selections for p1, . . . , pn+1 is an isomorphism, in par-
ticular, the number of continuous selections is the number of non-empty antichains
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different from {∅} in P(Nn+1).

Proof. It suffices to show
∧

I∈I

∨
i∈I pi 6≤

∨
i∈J pi for all I ⊂ P(Nr+1) \ {∅}, J ∈

P(Nr+1) \ {∅} with I 6= ∅, ∅ /∈ I, J 6= ∅ and I 6⊂ J for all I ∈ I. Now let m be the
cardinality of J 6= ∅ and define x := (ξ1, . . . , ξn)

⊤ ∈ V by ξi := −m
n
for all i ∈ J ∩Nn

and ξi := 1 − m
n

for all i ∈ Nn \ J . Then we get pn+1(x) = −m
n

if n + 1 ∈ J and
pn+1(x) = 1− m

n
if n + 1 /∈ J . Then for each I ∈ I we have

∨
i∈I pi(x) = 1− m

n
> 0

since I 6⊂ J , but

∨

i∈J

pi(x) = −
m

n
< 0 <

∧

I∈I

∨

i∈I

pi(x) = 1−
m

n
,

proving our claim.

The sequence of numbers of all non-empty antichains in P(Nr) \ {∅} is no. A007153
in Sloane’s list [11]. No explicit formula and not even a recursion formula is known,
only some asymptotic statements and the values for n ≤ 8 are known; these values
are:

n number of antichains
0 0
1 1
2 4
3 18
4 166
5 7579
6 7828352
7 2414682040996
8 56130437228687557907786

2. Free Vector Lattices

We call a functional on V polyhedral if it is a continuous selection of finitely many
continuous linear functionals. Some authors as for instance Ewaldt [5] call these
functionals piecewise linear. Moreover, every polyhedral functional f is positively
homogeneous, i.e. f(αx) = αf(x) holds for all α ∈ R

+, x ∈ V . Every join, meet or
sum of two polyhedral functionals and every scalar multiple of a polyhedral functional
is polyhedral and the polyhedral functionals on V form a vector lattice under these
operations.

We call a functional f on V sublinear if f is positively homogeneous and subadditive
(i.e. f(x + y) ≤ f(x) + f(y) for all x, y ∈ V ). Obviously, a positively homogeneous
functional f on V is subadditive if and only if it is convex (i.e. f((1 − λ)x + λy ≤
(1− λ)f(x) + λf(y) for all x, y ∈ V , λ ∈ [0, 1]).

Theorem 2.1. For a functional f on V , the following statements are equivalent:

(i) f is polyhedral and subadditive.

(ii) f is a finite join of continuous linear functionals.
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If these equivalent statements are true, then there exist finitely meany polyhedral cones
in such that f is linear on each of them.

Proof. (i) ⇒ (ii)�: By Theorem 1.2, f is a continuous selection of some continuous
linear functionals f1, . . . , fr; w.l.o.g. we can choose r minimal. Then each fi coincides
with f on the polyhedral cone Ki := {x ∈ V | fi(x) ≤ fj(x) for j = 1, . . . , r}, which is
regularly closed by minimality, i.e. it is the closure of its interior; in particular it has
an interior point a. For a given x ∈ V we have a + α−1x ∈ Ki for some (sufficiently
large) positive real number α, thus also αa + x = α(a + α−1x) ∈ K. Then we get
f(αa+x) ≤ f(αa)+f(x) by subadditivity and f(αa) = fi(αa), f(αa+x) = fi(αa+x)
since αa, αa+ x ∈ K, hence

f(x) ≥ f(αa+ x)− f(αa) = fi(αa+ x)− fi(αa) = fi(αa+ x− αa) = fi(x).

This shows f ≥ fi for all i ∈ Nn, therefore f ≥
∨n

i=1 fi. Since f is a selection of the
fi, we even have f =

∨r

i=1 fi.

“(ii) ⇒ (i)� is obvious because all continuous linear functionals are polyhedral and
subadditive and because both polyhedral functionals and subadditive functionals are
closed under the formation of non-empty finite joins. Note that for n ≥ 1 the empty
join and the empty meet (i.e. least and largest element) of functionals do not exist.

Theorem 2.2. For a functional f on V the following statements are equivalent:

(i) f is polyhedral.

(ii) f belongs to the vector lattice generated by all continuous linear functionals on
V .

(iii) f is a difference of two subadditive polyhedral functionals.

(iv) There exist finitely many polyhedral cones such that their union is V and f is
linear on each of them.

Proof. (i) “⇒� (ii): Since f is a continuous selection of finitely many continuous
linear functionals, by Theorem 1.2 f belongs to the lattice generated by these linear
functionals, and (ii) follows.

“(ii) ⇒ (iii)�: It suffices to show that the mentioned differences form a lattice con-
taining all continuous linear functionals. Obviously all continuous linear functionals
belong to this set. The join of two continuous subadditive polyhedral functionals is
also continuous, polyhedral and subadditive. Thus for two differences f = g − h,
f ′ = g′ − h′ of continuous subadditive polyhedral functionals g, h, g′, h′ their join
f∨g = ((g+h′)∨(g′+h))−(h+h′) and their meet f∧f ′ = (g+g′)−((g+h′)∨(g′+h))
also belong to the set of these differences.

“(iii) ⇒ (iv)�: Assume f = g − h′ with g and g′ polyhedral and subadditive. By
Theorem 2.1 V is a union of finitely many polyhedral cones K1, . . . , Kr such that g
is linear in each Ki, and V is also the union of finitely many polyhedral K ′

1, . . . , Ks

on which h is linear. Then all Ki ∧K ′
j are also polyhedral cones with union V and

f = g − h is linear on each Ki ∧K ′
j.

“(iv) ⇒ (i)� is trivial.
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E. C. Weinberg [13] showed that every identity in the language of vector lattices
holds in all vector lattices provided it holds in R. K. Baker [1] concluded that the
free vector lattice on a set T is the vector lattice generated by all canonical projections
pt : R

T → R, in the vector lattice of all maps from R
T to R with pointwise structure.

Since the vector subspace generated by the canonical projections is the vector space
of all linear functionals R

T → R, which are continuous in the product topology of
R

T , we see from Theorem 2.2 that the vector sublattice generated by the canonical
projections is the vector lattice of continuous polyhedral functionals on R

T , which
we shall denote by F (T ) throughout the remainder of this paper. So we obtain the
following

Corollary 2.3. For every set T , F (T ) is the free vector lattice on T (with the canon-
ical projections as generators).

3. Formal Minkowski Differences

H. R̊adström [10] introduced vector spaces of formal differences of compact convex
sets in topological vector spaces; later this was generalized to bounded closed convex
sets. A. G. Pinsker [9] defined and investigated vector lattice structures on these
vector spaces. In order to keep this paper as self-contained as possible, we repeat
known facts with easy proofs in the locally convex situation; for details see [8]. We
shall work with support functionals (often called support functions) as suggested and
used by L. Hörmander [7].

Throughout the remainder of this paper, V will denote a Hausdorff locally convex
space. The Minkowski sum of two subsets A,B ⊂ V is the set A+ B := {x+ y|x ∈
A, y ∈ B}. If A,B are convex or bounded, then so is A + B, and A,B 6= ∅ implies
A+B 6= ∅. The Minkowski sum of two non-empty bounded closed convex sets A,B
need not be closed, but its closure A

.

+ B is again bounded, non-empty and convex.
The support functional of a non-empty bounded closed convex subset A ⊂ V is the
functional ρA on the dual space V ∗ (i.e. the vector space of all continuous linear
functionals V → R) defined by ρA(f) := sup{f(x)| x ∈ A} for all f ∈ V ∗. Observe
that it is essential that A is non-empty and bounded in order that the supremum
exists in R. By the Hahn-Banach Theorem points can be separated from closed
convex sets; therefore every non-empty bounded convex set A can be characterized
by linear inequalities; this gives A = {x ∈ V | ∀f ∈ V ∗ f(x) ≤ ρA(f)}.

Proposition 3.1. The following statements hold for all non-empty bounded closed
convex subsets A,B ⊂ V :

(i) A ⊂ B ⇐⇒ ρA ≤ ρB.

(ii) ρ
A

.

+B
= ρA + ρB.

Proof. (i): "⇒" is trivial. "⇐": If ρA ≤ ρB, then for all x ∈ A we get f(x) ≤
ρA(f) ≤ ρB(f) for all f ∈ V ∗, hence x ∈ B.

(ii): For all x ∈ A, y ∈ B we have f(x + y) = f(x) + f(y) ≤ ρA(f) + ρB(f) =
(ρA + ρB)(f), and by continuity of f we get f(z) ≤ (ρA + ρB)(f) for all z ∈ A

.

+ B;
this gives ρ

A
.

+B
≤ ρA + ρB. On the other hand, for each f ∈ V ∗, ε > 0 there are

x ∈ A, y ∈ B with f(x) ≥ ρA(f) − ε, f(y) ≥ ρB(f) − ε, thus ρA(f) + ρB(f) ≤
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f(x) + ε+ f(y) + ε = f(x+ y) + 2ε ≤ ρ
A

.

+B
(f) + 2ε, since x+ y ∈ A+B ⊂ A

.

+ B,
proving our claim.

This leads to R̊adström’s cancellation law:

Proposition 3.2. For all non-empty bounded closed convex sets A,B,C ⊂ V , the
following assertions hold:

(i) If A
.

+ B ⊂ A
.

+ C, then B ⊂ C.

(ii) If A
.

+ B = A
.

+ C, then B = C.

Proof. (i): A
.

+ B ⊂ A
.

+ C ⇒ ρA + ρB = ρ
A

.

+B
≤ ρ

A
.

+C
= ρA + ρC ⇒ ρB ≤ ρC ⇒

A ⊂ B.

(ii) follows immediately from (i).

Here A 6= ∅ is essential, because ∅+B = ∅ = ∅+C holds for all B,C ⊂ V . R̊adström’s
original proof also works in topological vector spaces which are not locally convex;
our approach based on Hörmander needs local convexity in order to have enough
continuous linear functionals for point separation. The above construction allows us
to embed the additive monoid E+(V ) of non-empty bounded closed convex sets in V
into an abelian group E(V ), namely its Grothendieck group. The elements of E(V )
are all equivalence classes of pairs (A,B) of non-empty bounded closed convex sets,
where the equivalence relation “∼� is given by (A,B) ∼ (C,D) ⇐⇒ A+D = B+C.
The sum of the equivalence classes of (A,B) and of (C,D) is the equivalence class
of (A + C,B + D); the zero element is the equivalence class of ({0}, {0}), and the
inverse of the equivalence class of (A,B) is the equivalence class of (B,A). Moreover,
we obtain an embedding ι : E+(V ) → E(V ) by ι(A) always is the equivalence class of
(A, 0); then the equivalence class of an arbitrary pair (A,B) is ι(A)−ι(B). Pallaschke
and Urbański [8] are particularly interested in minimal pairs, i.e. pairs (A,B) such
that A = A′ and B = B′ follows for all pairs (A′, B′) with (A′, B′) ∼ (A,B), A′ ⊂ A,
B′ ⊂ B.

For λ ∈ R
+, we define λA := {λx;x ∈ A} for all A ∈ E+(V ) and λ(ι(A)− ι(B)) :=

ι(λA) − ι(λB) and −λ(ι(A) − ι(B)) := λ(ι(B) − ι(A)) for all pairs (A,B) of non-
empty bounded closed convex sets. Then we easily see that E(V ) is a real vector
space under these operations as already observed by R̊adström [10]. But note that the
construction does not work if we define −ι(A) := ι(−A) where −A := {−x|x ∈ A},
because then we do not get ι(A) + (−ι(A)) = 0 := ι({0}) in general. For A,B ∈
E+(V ), there always exists a join A ∨ B in E+(V ) (i.e. a least non-empty bounded
closed convex set containing A and B), namely the closure of the convex hull of A∪B.

A. G. Pinsker [9] proved A+ (B ∨ C) = (A+B) ∨ (A+ C) for all A,B,C ∈ E+(V )
and used this to introduce a lattice structure on E(V ). The order can be defined by
ι(A) − ι(B) ≤ ι(C) − ι(D) ⇐⇒ A + D ⊂ B + C; it follows from Proposition 3.2
that this gives a well defined order relation. E(V ) even becomes a vector lattice with
binary joins (ι(A) − ι(B)) ∨ (ι(C) − ι(D)) = ι((A +D) ∨ (B + C)) − ι(B +D) and
meets (ι(A)− ι(B)) ∧ (ι(C)− ι(D)) = ι(A+ C)− ι((A+D) ∨ (B + C)).

Theorem 3.3. There exists a unique linear map φ from E(V ) to the space W of
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all positively homogenous maps V ∗ → R, such that φ(ι(A)) = ρA holds for all A ∈
E+(V ); φ is even an injective vector lattice homomorphism (where W carries the
pointwise vector lattice structure). In particular, for A,B,C,D ∈ E+(V ) we always
have (A,B) ∼ (C,D) ⇐⇒ ρA − ρB = ρC − ρD. Moreover, φ−1(F (V )) is the
vector lattice of all ι(A)− ι(B) for polytopes A,B; thus φ restricts to a vector lattice
isomorphism from this vector lattice to F (V ).

Proof. The universal property of the Grothendieck group gives a unique additive
homomorphism φn : E(V ) → W such that φ(ι(A)) = ρA holds for all A ∈ E+(V ).
From the definition of the scalar multiplication we see that φ is linear. For all A,B ∈
E+(V ) we have

φ(ι(A)− ι(B)) = 0 ⇐⇒ ρA − ρB = 0 ⇐⇒ ρA = ρB

⇐⇒ A = B ⇐⇒ ι(A)− ι(B) = 0.

So the kernel of φ is {0}, hence φ is injective. In particular, for A,B,C,D ∈ E+(V )
we have

(A,B) ∼ (C,D) ⇐⇒ ι(A)− ι(B) = ι(C)− ι(D)

⇐⇒ φ(ι(A)− ι(B)) = φ(ι(C)− ι(D)) ⇐⇒ ρA − ρB = ρC − ρD.

For w ∈ W , φ(w) belongs to F (V ) if and only if φ(f) is a difference of two subadditive
polyhedral functionals by Theorem 2.2, i.e. of two finite joins of linear functionals
(by Theorem 2.1), i.e. of two support functionals of polytopes. Thus we have φ(w) =
ρA−ρB = φ(ι(A)−ι(B)), hence w = ι(A)−ι(B) for some polytopes A,B. By routine
inspection, φ is also a lattice homomorphism.

Maybe for A,B ∈ E(V ) one should call ρA − ρB the support functional of the pair
(A,B).

Proposition 3.4.

(i) ι preserves binary joins, i.e. ι(A∨B) = ι(A)∨ ι(B) holds for all A,B ∈ E+(V ).

(ii) For A,B ∈ E+(V ) with A∩B 6= ∅, ι(A∩B) = ι(A)∧ ι(B) holds if and only if
A ∪B is convex.

Proof. (i) follows immediately from the construction.

(ii): Since f ∨ g + f ∧ g = f + g holds in every vector lattice, from (i) we get
ι(A ∨ B) + (ι(A) ∧ ι(B)) = (ι(A) ∨ ι(B)) + (ι(A) ∧ ι(B)) = ι(A) + ι(B), hence
ι(A ∩ B) = ι(A) ∧ ι(B) is equivalent to ι(A ∨ B) + ι(A ∩ B) = ι(A) + ι(B). But
Urbański [12] showed that the latter holds if and only if A ∪B is convex.

The intersection of two intervals A,B ⊂ R is an interval and thus convex whenever
A ∩ B 6= ∅; so for V = R, ι preserves all existing meets. But it is easy to find two
compact convex sets (even polytopes) in R

2 with non-empty intersection and non-
convex union; therefore ι does not preserve binary meets for V = R

2. This leads
to counterexamples to the analogue A + (B ∩ C) = (A + B) ∩ (A + C) of Pinsker’s
formula, even with B∩C 6= ∅. Moreover, note that for every V and for all non-empty
bounded closed convex sets B,C ⊂ V (possibly with B ∩ C = ∅) there even exists a
polytope A with (A+B) ∩ (A+ C) 6= ∅.
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4. Virtual Polytopes

Now we shall study formal Minkowski differences (i.e. equivalence classes of pairs) of
polytopes; G. Ewald [5] calls them virtual polytopes. Here we define a polytope in
V as a convex hull of an non-empty finite set; in particular, every polytope is non-
empty and finite-dimensional, i.e. contained in a finite-dimensional subspace of V .
By definition, polytopes in V are non-empty finite unions of single points in E(V ),
thus also in E+(V ) by Proposition 3.4. In particular, the join of two polytopes is also
a polytope. For A,B ∈ E+(V ) with A ∩ B 6= ∅, it follows that A ∩ B is a meet of
A and B in E+(V ), i.e. a largest non-empty bounded closed convex set contained in
both A and B; if A and B are polytopes, then so is A ∩ B. For A,B ∈ E+(V ) with
A∩B = ∅, A and B have no common lower bound and thus no meet in E+(V ). For a
finite-dimensional Hausdorff space V , polytopes are the same as non-empty bounded
polyhedra, where a polyhedron is a finite intersection of affine half-spaces, i.e. a
set defined by finitely many linear non-strict linear inequalities. But in an infinite-
dimensional Hausdorff locally convex space no finite intersection of half-spaces (closed
or not) is bounded.

The support functional of a singleton {x} (where x ∈ V ) is the evaluation map
V ∗ → R, f 7→ f(x); it is well-known that point evaluations coincide with the lin-
ear functionals V ∗ → R which are continuous in the weak*-topology. Thus from
Theorems 2.1 and 2.2 we get the following

Proposition 4.1.

(i) A functional on V ∗ is a support functional of a polytope if and only if it is
subadditive and polyhedral in the weak*-topology.

(ii) A functional on V ∗ is a difference of two support functionals of polytopes if and
only if it is polyhedral in the weak*-topology.

For a set T we denote the free vector space on T by R
(T ); it has a basis indexed by T .

We endow R
(T ) with the finest locally convex topology; then all linear functionals on

R
(X) are continuous. For every (xt)t∈T ∈ R

T there is a unique linear functional that
maps the t-th basis element to xt; this gives a the canonical vector space isomorphism
R

T → (R(T ))∗; this is even a homeomorphism, where RT carries the product topology
and (R(T ))∗ carries the weak*-topology. Now Proposition 4.1 together with Corollary
2.3 gives the following

Theorem 4.2. The free vector lattice F (T ) on a set T is canonically isomorphic to
the subspace of E(R(T )) consisting of all differences of support functionals of polytopes.

Example 4.3. If V is an irreflexive Banach space, then there exists no topology T
on V ∗ such that the support functionals of non-empty bounded closed convex sets
are exactly those sublinear functionals on V ∗ which are continuous in T . Indeed,
in such a topology the operator norm on V norm must be continuous because it is
the support functional of the unit ball of V , which is obviously non-empty, bounded,
closed and convex. But then it easily follows that T must be at least as fine as the
topology induced by the operator norm, and every functional which is continuous in
the operator norm is also continuous in T . But since V is irreflexive, there exists an
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element θ ∈ V ∗∗ in the bidual, which is not a point evaluation. Now θ : V ∗ → R is
linear and thus in particular sublinear. Moreover θ is continuous under the operator
norm and therefore in T . On the other hand, it is easy to see that θ is not a support
functional of a non-empty bounded closed convex subset of V .

Acknowledgements. I am indebted to J. Grzybowski, W. Hochstättler and D. Pal-

laschke for some helpful remarks.
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[12] R. Urbański: Pairs of sets with convex union, Collect. Math. 48 (1997) 791–798.

[13] E. C. Weinberg: Free lattice ordered abelian groups II, Math. Ann. 159 (1965) 217–222.


