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1. Introduction

The interest of the theory of monotone operators is propelled by the number of
applications, in particular for variational inequalities and partial differential equa-
tions (see [1, 3, 9, 23]). Several approaches have established links between maximal
monotone operators and convex functions (see [5, 6, 8, 10, 12, 13, 15, 21, 22]). The
richness of the theory of monotone operators which has given rise to a great number
of works justifies an interest in these links. Recently many authors have explored
the use of convex representative functions in the study of monotone operators, e.g.,
[5, 6, 8, 12, 13, 15]. Roughly speaking the study of monotone operators is reduced
to the study of the convexification of the coupling function, restricted to the mono-
tone set. However, the bilinearity of the coupling function is sometimes a restrictive
assumption, and therefore the problem arises how to extend the theory of monotone
operators outside this context. Generalization of this assertion is in the framework
of abstract convexity.
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Abstract convexity has found many applications in the study of problem of mathe-
matical analysis and optimization. Also, it has found interesting applications to
the theory of inequalities (see [17, 18, 19, 20]). However, the development of abstract
convex analysis was mainly driven by applications to optimization (see [17]). The aim
of the present paper is to develop a theory of monotone operators in the framework
of abstract convexity. In fact, we give an abstract convex representation for maximal
abstract monotone operators, which extends the results of [8, 13].

The structure of the paper is as follows: In Section 2, we provide some preliminary
definitions and results related to abstract convexity. Definitions and properties of
abstract monotone operators and also some examples of maximal abstract monotone
operators are given in Section 3. In Section 4, we give an abstract convex represen-
tation for maximal abstract monotone operators.

2. Preliminaries

Let X and Y be two sets. Recall (see [2]) that a set valued mapping (multifunction)
from X to Y is a mapping F : X −→ 2Y , where 2Y represents the collection of all
subsets of Y. We define the domain and graph of F by

domF := {x ∈ X : F (x) 6= ∅},

and

G(F ) := {(x, y) ∈ X × Y : y ∈ F (x)},

respectively.

Let X be a set and L be a set of real valued functions l : X −→ R, which will be
called abstract linear. For each l ∈ L and c ∈ R, consider the shift hl,c of l on the
constant c

hl,c(x) := l(x)− c, (x ∈ X).

The function hl,c is called L-affine. Recall (see [17]) that the set L is called a set of
abstract linear functions if hl,c /∈ L for all l ∈ L and all c ∈ R \ {0}. The set of all
L-affine functions will be denoted by HL. If L is a set of abstract linear functions,
then hl,c = hl0,c0 if and only if l = l0 and c = c0.

If L is a set of abstract linear functions, then the mapping (l, c) −→ hl,c is a one-
to-one correspondence. In this case, we identify hl,c with (l, c), in other words, we
consider an element (l, c) ∈ L × R as a function defined on X by x −→ l(x) − c
(x ∈ X).

A function f : X −→ (−∞,+∞] is called proper if dom f 6= ∅, where dom f is defined
by

dom f := {x ∈ X : f(x) < +∞}.

Let F(X) be the set of all functions f : X −→ (−∞,+∞] and the function −∞.
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Recall (see [17]) that a function f ∈ F(X) is called H-convex (H = L, or H = HL)
if

f(x) = sup{h(x) : h ∈ supp (f,H)}, ∀ x ∈ X,

where

supp (f,H) := {h ∈ H : h ≤ f}

is called the support set of the function f, and h ≤ f if and only if h(x) ≤ f(x) for
all x ∈ X.

Example 2.1. Let X be a locally convex Hausdorff topological vector space. Let
L be the set of all real valued continuous linear functionals defined on X. Then,
f : X −→ (−∞,+∞] is an L-convex function if and only if f is lower semi-continuous
and sublinear. Also, f is an HL-convex function if and only if f is lower semi-
continuous and convex.

Now, we consider the coupling function 〈., .〉 : X×L −→ R is defined by 〈x, l〉 := l(x)
for all x ∈ X and all l ∈ L. For a function f ∈ F(X), define the Fenchel-Moreau
L-conjugate f ∗

L of f (see [17]) by

f ∗
L(l) := sup

x∈X

(l(x)− f(x)), l ∈ L.

The function f ∗∗
L,X := (f ∗

L)
∗
X is called the second conjugate (or biconjugate) of f, and

by definition we have

f ∗∗
L,X(x) := sup

l∈L

(l(x)− f ∗(l)), x ∈ X.

The following property of the conjugate function follows directly from the definition.

Fenchel-Young’s inequality: for a proper function f ∈ F(X), one has

f(x) + f ∗
L(l) ≥ l(x), ∀ x ∈ X; ∀ l ∈ L.

Let f : X −→ (−∞,+∞] be a function and x0 ∈ dom f. Recall (see [17]) that an
element l ∈ L is called an L-subgradient of f at x0 if

f(x) ≥ f(x0) + l(x)− l(x0), ∀ x ∈ X.

The set ∂Lf(x0) of all L-subgradients of f at x0 is called L-subdifferential of f at x0.
The subdifferential ∂Lf(x0) is non-empty (see [17]) if and only if x0 ∈ dom f and

f(x0) = max{h(x0) : h ∈ supp (f,HL)}.

In the following, we gather some results which will be used later.

Lemma 2.2 ([17], Theorem 7.1). Let f ∈ F(X). Then, f = f ∗∗
L,X if and only if f

is an HL-convex function.
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Lemma 2.3 ([17], Proposition 7.7). Let x0 ∈ X, f ∈ F(X) and l0 ∈ L. Then the
following assertions are equivalent:

(i) f(x0) + f ∗
L(l0) = l0(x0) (Fenchel-Young’s equality).

(ii) l0 ∈ ∂Lf(x0).

In the sequel, let X be a topological vector space. We assume that X is equipped
with a closed convex pointed cone S ⊂ X (the latter means that S ∩ (−S) = {0}).
We say x ≤ y or y ≥ x if and only if y − x ∈ S.

An extended real valued function f : X −→ [−∞,+∞] is called positively homoge-
neous (of degree one) if f(λx) = λf(x) for all x ∈ X and all λ > 0. The function f
is called increasing if x ≥ y =⇒ f(x) ≥ f(y).

Now, consider the function l : X ×X −→ [0,+∞] defined by

l(x, y) = max{λ ≥ 0 : λy ≤ x}, (x, y ∈ X),

(with the convention max ∅ := 0).

The function l has the following properties (see [7, 14]). In fact, for every x, y, x′, y′ ∈
X and every γ > 0, one has

l(γx, y) = γl(x, y), (1)

l(x, γy) =
1

γ
l(x, y), (2)

l(x, y) = +∞ =⇒ y ∈ −S, (3)

l(x, x) = 1 ⇐⇒ x /∈ −S, (4)

x ∈ S, y ∈ −S =⇒ l(x, y) = +∞, (5)

x ≤ x′ =⇒ l(x, y) ≤ l(x′, y), (6)

y ≤ y′ =⇒ l(x, y) ≥ l(x, y′). (7)

Define LS := {ly : y ∈ X \ (−S)}, where ly(x) := l(x, y) for all x ∈ X and all
y ∈ X. Note that ly is an increasing positively homogeneous (IPH) function for each
y ∈ X. Therefore, LS is a set of non-negative increasing positively homogeneous
(IPH) functions defined on X.

The following results for non-negative IPH functions have been proved in [7, 14].

Lemma 2.4. Let f : X −→ [0,+∞] be a function. Then the following assertions
are equivalent:

(i) f is IPH.

(ii) f(x) ≥ λf(y) for all x, y ∈ X and all λ > 0 such that λy ≤ x.

(iii) f(x) ≥ ly(x)f(y) for all x, y ∈ X with the convention (+∞)× 0 = 0.

Lemma 2.5. Let f : X → [0,+∞] be an IPH function and f(x) 6= 0,+∞. Then

∂LS
f(x) = {ly ∈ LS : ly(x) = f(x), f(y) = 1}.
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3. Abstract Monotone Operators

Assume that X is a set and L is a set of real valued functions l : X −→ R, which
is called abstract linear with the coupling function 〈., .〉 : X × L −→ R defined by
〈x, l〉 := l(x) for all x ∈ X and all l ∈ L. In the following, we present some definitions
and properties of abstract monotone operators (see [4, 11, 16]).

Definition 3.1. A set valued mapping T : X −→ 2L is called L-monotone operator
(or, abstract monotone operator) if

l(x)− l(x′)− l′(x) + l′(x′) ≥ 0 (8)

for all l ∈ Tx, l′ ∈ Tx′ and all x, x′ ∈ X.

If X is a Banach space with the dual space X∗ and L := X∗. Then, T is called
monotone operator in the classical case.

Definition 3.2. A set valued mapping T : X −→ 2L is called maximal L-monotone
operator (or, maximal abstract monotone operator) if T is L-monotone and T = T ′

for any L-monotone operator T ′ : X −→ 2L such that G(T ) ⊆ G(T ′).

Definition 3.3. A subset S of X ×L is called L-monotone (or, abstract monotone)
if

l(x)− l(x′)− l′(x) + l′(x′) ≥ 0, ∀ (x, l), (x′, l′) ∈ S.

Definition 3.4. A subset S of X × L is called maximal L-monotone (or, maximal
abstract monotone) if S is L-monotone and S = S ′ for any L-monotone set S ′ such
that S ⊆ S ′.

Definition 3.5. Let T : X −→ 2L be a set valued mapping. Correspondence to
the mapping T define the L-Fitzpatrick function (or, abstract Fitzpatrick function)
ϕT : X × L −→ R̄ by

ϕT (x, l) := sup
l′∈Tx′, x′∈X

[l(x′) + l′(x)− l′(x′)− l(x)] + l(x) (9)

for all x ∈ X and all l ∈ L.

Lemma 3.6. Let T : X −→ 2L be a maximal L-monotone operator. Then

ϕT (x, l) ≥ l(x), ∀ x ∈ X; ∀ l ∈ L, (10)

with equality holds if and only if l ∈ Tx.

Proof. Since T is a maximal L-monotone operator, it follows that

sup
l′∈Tx′, x′∈X

[l(x′) + l′(x)− l′(x′)− l(x)] ≥ 0 (11)

for all x ∈ X and all l ∈ L. In view of (9), we obtain

ϕT (x, l) ≥ l(x), ∀ x ∈ X; ∀ l ∈ L. (12)
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Since T is maximal L-monotone, it follows from (8) and (11) that

sup
l′∈Tx′, x′∈X

[l(x′) + l′(x)− l′(x′)− l(x)] = 0

if and only if l ∈ Tx. This, together with (9) implies that ϕT (x, l) = l(x) if and only
if l ∈ Tx, and hence the proof is complete.

In the following, we give an example of a maximal L-monotone operator. We show
that LS-subdifferential of an IPH function is a maximal LS-monotone operator, where
LS defined in Section 2.

Theorem 3.7. Let f : X → [0,+∞] be an IPH function and f(x) 6= 0,+∞. Then,
∂LS

f is a maximal LS-monotone operator.

Proof. First, we show that ∂LS
f is an LS-monotone operator. To do this, let x, x0 ∈

X, ly ∈ ∂LS
f(x) and ly0 ∈ ∂LS

f(x0) (y, y0 ∈ X \(−S)) be arbitrary. Then, by Lemma
2.5, we have

ly(x) = f(x), f(y) = 1 and ly0(x0) = f(x0), f(y0) = 1. (13)

In view of Lemma 2.4, we conclude that

ly(t)f(y) ≤ f(t), ∀ t ∈ X,

and

ly0(t)f(y0) ≤ f(t), ∀ t ∈ X.

This, together with (13) implies that ly(t) ≤ f(t) and ly0(t) ≤ f(t) for all t ∈ X, and
hence

ly(x0) ≤ f(x0) and ly0(x) ≤ f(x). (14)

Now, it follows from (13) and (14) that

ly(x)− ly(x0)− ly0(x) + ly0(x0) = [f(x)− ly0(x)] + [f(x0)− ly(x0)] ≥ 0.

Hence, ∂LS
f is an LS-monotone operator.

Now, we show that ∂LS
f is maximal. To this end, let T : X −→ 2LS be any LS-

monotone operator such that G(∂LS
f) ⊆ G(T ). We show that T = ∂LS

f. It suffices
to prove that if (x0, ly0) ∈ G(T ), then (x0, ly0) ∈ G(∂LS

f); that is, ly0(x0) = f(x0)
and f(y0) = 1. Assume that (x0, ly0) ∈ G(T ) (x0 ∈ X, y0 ∈ X \ (−S)) be arbitrary.
Since T is LS-monotone and G(∂LS

f) ⊆ G(T ), it follows that

ly(x)− ly(x0)− ly0(x) + ly0(x0) ≥ 0, ∀ ly ∈ ∂LS
f(x); ∀ x ∈ X. (15)

Let λ > 1 and x = λx0. Then, in view of (15), we conclude that

ly0(x0) ≤ ly(x0). (16)
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Also, for 0 < λ < 1 and x = λx0, it follows from (15) that

ly(x0) ≤ ly0(x0). (17)

Therefore, (16) and (17) imply that

ly0(x0) = ly(x0), ∀ ly ∈ ∂LS
f(x0). (18)

Since ly(x0) = f(x0) for each ly ∈ ∂LS
f(x0), we deduce from (18) that ly0(x0) = f(x0).

On the other hand, let x ∈ X be arbitrary and replace x by λx (λ > 0) in (15).
Then, one has

[ly(x)− ly0(x)] ≥
1

λ
[ly(x0)− ly0(x0)], ∀ ly ∈ ∂LS

f(x); ∀ x ∈ X; ∀ λ > 0.

(Note that ∂LS
f(λx) = ∂LS

f(x) for all x ∈ X and all λ > 0.) Therefore, as λ −→ +∞,
we conclude that

ly0(x) ≤ ly(x), ∀ ly ∈ ∂LS
f(x); ∀ x ∈ X.

Since for each x ∈ X and each ly ∈ ∂LS
f(x) we have ly(x) = f(x), then it follows

that
ly0(x) ≤ f(x), ∀ x ∈ X. (19)

This implies that y0 /∈ −S. Because if y0 ∈ −S, then in view of (5) we obtain
+∞ = ly0(0) ≤ f(0) = 0, and this is a contradiction. Thus, by (4) and (19) we have

1 = ly0(y0) ≤ f(y0). (20)

Since ly0(x0) = f(x0), it follows from the definition of ly0 that f(x0)y0 = ly0(x0)y0 ≤
x0. This implies that f(x0)f(y0) ≤ f(x0) because f is increasing. Since 0 < f(x0) <
+∞, then we have f(y0) ≤ 1, and hence by (20) we get f(y0) = 1. Consequently,
(x0, ly0) ∈ G(∂LS

f), and the proof is complete.

From now on, let X be a set and L be a set of real valued abstract linear functions
l : X −→ R defined on X. Assume that 0 ∈ L. We consider the coupling function
〈., .〉 : X × L −→ R defined by 〈x, l〉 := l(x) for all x ∈ X and all l ∈ L. Let

K := X × L and L∗ := L×X. (21)

Define the coupling function 〈., .〉∗ : K × L∗ −→ R by

〈(x′, l′), (l, x)〉∗ := l(x′) + l′(x), ∀ (x′, l′) ∈ K; ∀ (l, x) ∈ L∗. (22)

We can consider an element (l, x) ∈ L∗ as a function defined on K by

(l, x)(x′, l′) := 〈(x′, l′), (l, x)〉∗, ∀ (x′, l′) ∈ K,

and an element (x, l) ∈ K as a function is defined on L∗ by

(x, l)(l′, x′) := 〈(x, l), (l′, x′)〉∗, ∀ (l′, x′) ∈ L∗.
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Note that the coupling function 〈., .〉∗ is symmetric, that is

〈(x′, l′), (l, x)〉∗ = 〈(l, x), (x′, l′)〉∗, for all (x′, l′) ∈ K, and all (l, x) ∈ L∗.

It is easy to check that L∗ and K are sets of abstract linear functions. Indeed, if
there exist (l0, x0) ∈ L∗ and c0 ∈ R \ {0} such that h(l0,x0),c0 ∈ L∗, where h(l0,x0),c0 :=
(l0, x0)− c0, then h(l0,x0),c0 = (l, x) for some (l, x) ∈ L∗. It follows that

l0(x
′) + l′(x0)− c0 = l(x′) + l′(x), ∀ (x′, l′) ∈ K. (23)

Since 0 ∈ L, put l′ = 0 in (23). Thus, we have

l0(x
′)− c0 = l(x′), ∀ x′ ∈ X,

and so l0− c0 = l on X. Since L is a set of abstract linear functions, we conclude that
l0 = l and c0 = 0. This is a contradiction, because c0 6= 0. Hence, h(l,x),c /∈ L∗ for all
(l, x) ∈ L∗ and all c ∈ R \ {0}. Therefore, L∗ is a set of abstract linear functions. By
a similar argument, K is also a set of abstract linear functions.

In the following, we give an example of an HL∗-convex function such that its subdif-
ferential is a maximal L∗- monotone operator.

Let X be a conic set and L be a conic set of positively homogeneous functions
l : X −→ (−∞,+∞] defined on X. (A set C is called conic if λC ⊂ C for all λ > 0.)
Let K := X × L, and L∗ := L×X. Define the coupling function 〈., .〉∗ on K × L∗ as
in (22). It is worth noting that each element of L∗ as a function defined on K is a
positively homogeneous function. Moreover, L∗ is a set of abstract linear functions.

It is easy to check that if a function h : K −→ (−∞,+∞] is an L∗-convex function,
then h is a positively homogeneous function. Also, by [17], Proposition 7.15], a
positively homogeneous function h : K −→ (−∞,+∞] is L∗-convex if and only if it
is HL∗-convex.

Theorem 3.8. Let h : K → (−∞,+∞] be an L∗-convex function. Then, for each
p ∈ K, we have

∂L∗h(p) = {l∗ ∈ L∗ : h(p) = 〈p, l∗〉∗; 〈q, l∗〉∗ ≤ h(q), ∀ q ∈ K}.

Proof. By definition we have

∂L∗h(p) = {l∗ ∈ L∗ : 〈q, l∗〉∗ − 〈p, l∗〉∗ ≤ h(q)− h(p), ∀ q ∈ K} (p ∈ K).

Therefore, for each l∗ ∈ ∂L∗h(p), we have

〈q, l∗〉∗ − 〈p, l∗〉∗ ≤ h(q)− h(p), ∀ q ∈ K. (24)

Let λ > 1 and q = λp. Then by (24) and positive homogeneity of h and l∗ we
obtain h(p) ≥ 〈p, l∗〉∗. By a similar argument, for 0 < λ < 1 and q = λp, we get
h(p) ≤ 〈p, l∗〉∗, and so we have h(p) = 〈p, l∗〉∗. Thus, the result follows.

Theorem 3.9. Let h : K −→ (−∞,+∞] be an L∗-convex function. Then, ∂L∗h is
a maximal L∗-monotone operator.
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Proof. Let p, q ∈ K, l∗ ∈ ∂L∗h(p) and l0
∗ ∈ ∂L∗h(q) be arbitrary. Then we have

〈p, l∗〉∗ = h(p), 〈r, l∗〉∗ ≤ h(r), ∀ r ∈ K, (25)

and
〈q, l0

∗〉∗ = h(q), 〈r, l0
∗〉∗ ≤ h(r), ∀ r ∈ K. (26)

It follows from (25) and (26) that [h(q)− 〈q, l∗〉∗] ≥ 0 and [h(p)−〈p, l0
∗〉∗] ≥ 0. This,

together with 〈p, l∗〉∗ = h(p) and 〈q, l0
∗〉∗ = h(q) implies that

〈p, l∗〉∗ − 〈q, l∗〉∗ − 〈p, l0
∗〉∗ + 〈q, l0

∗〉∗

= [h(p)− 〈p, l0
∗〉∗] + [h(q)− 〈q, l∗〉∗]

≥ 0,

and hence ∂L∗h is an L∗-monotone operator.

Now, we show that ∂L∗h is maximal. To this end, let T : K −→ 2L
∗

be any L∗-
monotone operator such that G(∂L∗h) ⊆ G(T ). We show that T = ∂L∗h. It suffices
to prove that if (p0, l0

∗) ∈ G(T ), then (p0, l0
∗) ∈ G(∂L∗h); that is, 〈p0, l0

∗〉∗ = h(p0)
and 〈q, l0

∗〉∗ ≤ h(q) for all q ∈ K. Assume that (p0, l0
∗) ∈ G(T ) be arbitrary. Since T

is L∗-monotone and G(∂L∗h) ⊆ G(T ), it follows that

〈q, l∗〉∗ − 〈p0, l
∗〉∗ − 〈q, l0

∗〉∗ + 〈p0, l0
∗〉∗ ≥ 0, ∀ l∗ ∈ ∂L∗h(q); ∀ q ∈ K. (27)

Let λ > 1 and q = λp0. Then, in view of (27), we conclude that

〈p0, l0
∗〉∗ ≤ 〈p0, l

∗〉∗. (28)

Also, for 0 < λ < 1 and q = λp0, it follows from (27) that

〈p0, l0
∗〉∗ ≥ 〈p0, l

∗〉∗. (29)

Therefore, (28) and (29) imply that

〈p0, l0
∗〉∗ = 〈p0, l

∗〉∗, ∀ l∗ ∈ ∂L∗h(p0). (30)

Since 〈p0, l
∗〉∗ = h(p0) for each l∗ ∈ ∂L∗h(p0), we deduce from (30) that 〈p0, l0

∗〉∗ =
h(p0).

On the other hand, let q ∈ K be arbitrary and replace q by λq (λ > 0) in (27). Then,
one has

[〈q, l∗〉∗−〈q, l0
∗〉∗] ≥

1

λ
[〈p0, l

∗〉∗−〈p0, l0
∗〉∗], ∀ l∗ ∈ ∂L∗h(q); ∀ q ∈ K; ∀ λ > 0. (31)

(Note that ∂L∗h(λq) = ∂L∗h(q) for all q ∈ K and all λ > 0.) Therefore, as λ −→ +∞
in (31), we conclude that

〈q, l0
∗〉∗ ≤ 〈q, l∗〉∗, ∀ l∗ ∈ ∂L∗h(q); ∀ q ∈ K. (32)

Since for each q ∈ K and each l∗ ∈ ∂L∗h(q) we have 〈q, l∗〉∗ = h(q), then it follows
from (32) that 〈q, l0

∗〉∗ ≤ h(q) for all q ∈ K, and hence (p0, l0
∗) ∈ G(∂L∗h), which

completes the proof.
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4. Maximal Abstract Monotone Operators

In this section, we give a representation for maximal abstract monotone operators by
abstract convex functions, which extends the results of [8, 13]. Let K, L∗ and the
coupling function 〈., .〉∗ be as defined by (21) and (22), respectively. Denote by

P(HL∗) := {h : K −→ (−∞,+∞] : h is a proper HL∗-convex function}

the set of all proper HL∗-convex functions defined on K. For each h ∈ P(HL∗), define

T (h) := {(x, l) ∈ K : h(x, l) ≤ l(x)},

and denote by δT (h) the indicator function of T (h) which is defined on K as follows

δT (h)(x, l) :=

{

0, if (x, l) ∈ T (h)

+∞, otherwise,

for each (x, l) ∈ K. Define the transpose operator t : K −→ L∗ by t(x, l) := (l, x) for
all (x, l) ∈ K.

Now, let H(K) be defined as follows

H(K) := {h ∈ P(HL∗) : h(x, l) = [(〈., .〉+ δT (h))
∗
L∗ ◦ t](x, l), ∀ (x, l) ∈ K}. (33)

Note that for each h ∈ H(K), we have T (h) 6= ∅. Indeed, if T (h) = ∅, then 〈., .〉 +
δT (h) = +∞ on K, and hence h = −∞ on K.

Remark 4.1. Let S be any non-empty subset of K. Then the L-Fitzpatrick function
ϕS associated with S is an HL∗-convex function on K. Indeed, by Definition 3.5, we
have

ϕS(x, l)

= sup
(x′,l′)∈S

[l(x′) + l′(x)− l′(x′)]

= sup
(x′,l′)∈S

[〈(x, l), (l′, x′)〉∗ − l′(x′)]

= sup{〈(x, l), (l′, x′)〉∗ − c : ((l′, x′), c) ∈ supp (ϕS, HL∗)}

for all (x, l) ∈ K, and hence the result follows.

Definition 4.2. We say that an HL∗-convex function (or, abstract convex function)
h : X × L −→ (−∞,+∞] represents an L-monotone operator T : X −→ 2L if

h(x, l) ≥ l(x), ∀ x ∈ X; ∀ l ∈ L,

with equality holds when l ∈ Tx.

In view of Lemma 3.6 and Remark 4.1, we see that if T : X −→ 2L is a maximal L-
monotone operator, then ϕT , the L-Fitzpatrick function associated with T, represents
T.
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Remark 4.3. Let h ∈ P(HL∗) and cT (h) := 〈., .〉 + δT (h). Then, (cT (h))
∗
L∗ ◦ t is an

HL∗-convex function and (cT (h))
∗
L∗ ◦ t = ϕT (h). Indeed, we have

[(cT (h))
∗
L∗ ◦ t](x, l)

= (cT (h))
∗
L∗(l, x)

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − l′(x′)− δT (h)(x
′, l′)]

= sup
(x′,l′)∈T (h)

[l(x′) + l′(x)− l′(x′)]

= ϕT (h)(x, l),

for all (x, l) ∈ K. This, together with Remark 4.1 implies that (cT (h))
∗
L∗ ◦ t is an

HL∗-convex function and (cT (h))
∗
L∗ ◦ t = ϕT (h).

Lemma 4.4. Let S : X −→ 2L be a maximal L-monotone operator and ϕS be the
L-Fitzpatrick function associated with S. Then, ϕS ∈ H(K).

Proof. Since S is an L-monotone operator, it follows that

ϕS(x, l) = l(x), ∀ (x, l) ∈ G(S).

Also, because of S is maximal, we have

ϕS(x, l) > l(x), ∀ (x, l) ∈ K \G(S),

and hence G(S) = T (ϕS). Therefore, we have

ϕS(x, l)

= sup
(x′,l′)∈G(S)

[l(x′) + l′(x)− l′(x′)]

= sup
(x′,l′)∈T (ϕS)

[l(x′) + l′(x)− l′(x′)]

= sup
(x′,l′)∈K

[l(x′) + l′(x)− (〈., .〉+ δT (ϕS))(x
′, l′)]

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − (〈., .〉+ δT (ϕS))(x
′, l′)]

= (〈., .〉+ δT (ϕS))
∗
L∗(l, x)

= [(〈., .〉+ δT (ϕS))
∗
L∗ ◦ t](x, l), ∀ (x, l) ∈ K.

This, together with Remark 4.1 implies that ϕS ∈ H(K).

Proposition 4.5. We have

(1) h(x, l) ≥ l(x) for all (x, l) ∈ K and all h ∈ H(K).

(2) h∗
L∗(l, x) ≥ l(x) for all (x, l) ∈ K and all h ∈ H(K).

Proof. Suppose that h ∈ H(K) and (x, l) ∈ K are arbitrary.
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(1). It is clear that if (x, l) /∈ T (h), then (1) holds. Assume that (x, l) ∈ T (h).
Therefore, by Fenchel-Young’s inequality and h ∈ H(K), we have

2h(x, l)

= h(x, l) + h(x, l)

= (h+ δT (h))(x, l) + (〈., .〉+ δT (h))
∗
L∗(l, x)

≥ 〈(x, l), (l, x)〉∗

= 2l(x).

(2). By (1) and h ∈ H(K), we have

h∗
L∗(l, x)

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − h(x′, l′)]

≥ sup
(x′,l′)∈T (h)

[〈(x′, l′), (l, x)〉∗ − h(x′, l′)]

≥ sup
(x′,l′)∈T (h)

[〈(x′, l′), (l, x)〉∗ − l′(x′)]

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − (〈., .〉+ δT (h))(x
′, l′)]

= (〈., .〉+ δT (h))
∗
L∗(l, x)

= h(x, l)

≥ l(x),

which completes the proof.

Theorem 4.6. Let h ∈ H(K). Define

S := {(x, l) ∈ K : h(x, l) = l(x)}.

Then, we have

(1) S = {(x, l) ∈ K : h∗
L∗(l, x) = l(x)}.

(2) S is a maximal L-monotone subset of K.

(3) Let ϕS be the L-Fitzpatrick function associated with S. Then
(i) ϕS(x, l) ≥ l(x) for all (x, l) ∈ K.
(ii) (ϕS)

∗
L∗(l, x) ≥ l(x) for all (x, l) ∈ K.

(iii) (ϕS)
∗
L∗(l, x) = l(x) if and only if (x, l) ∈ S.

Proof. (1). Let (x, l) ∈ S be fixed and arbitrary. Then h(x, l) = l(x), and so
(x, l) ∈ T (h). We have also (l, x) ∈ L∗, and so 〈(x′, l′), (l, x)〉∗ = l′(x) + l(x′) for all
(x′, l′) ∈ K. Now, define the function g on K by

g(x′, l′) := 〈(x′, l′), (l, x)〉∗ − 〈(x, l), (l, x)〉∗ + h(x, l), ∀ (x′, l′) ∈ K. (34)

It follows that

g(x′, l′)

= 〈(x′, l′), (l, x)〉∗ − l(x)

= l(x′) + l′(x)− l(x), ∀ (x′, l′) ∈ K.
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Since (x, l) ∈ T (h), it follows from the definition of T (h) and h ∈ H(K) that

g(x′, l′)

= l(x′) + l′(x)− l(x)

≤ sup
(x,l)∈T (h)

[l(x′) + l′(x)− l(x)]

= sup
(x,l)∈K

[l(x′) + l′(x)− (〈., .〉+ δT (h))(x, l)]

= sup
(x,l)∈K

[〈(x, l), (l′, x′)〉∗ − (〈., .〉+ δT (h))(x, l)]

= (〈., .〉+ δT (h))
∗
L∗(l′, x′)

= h(x′, l′), ∀ (x′, l′) ∈ K.

This implies that g ≤ h on K. In view of (34) we get (l, x) ∈ ∂L∗h(x, l). Therefore,
by Lemma 2.3, we have

h(x, l) + h∗
L∗(l, x) = 〈(x, l), (l, x)〉∗ = 2l(x),

and hence h∗
L∗(l, x) = l(x).

Conversely, suppose that (x, l) ∈ K and h∗
L∗(l, x) = l(x). Then, by Proposition 4.5(1)

and the proof of Proposition 4.5(2), we conclude that

l(x)

= h∗
L∗(l, x)

≥ (〈., .〉+ δT (h))
∗
L∗(l, x)

= h(x, l)

≥ l(x).

It follows that h(x, l) = l(x). This completes the proof of (1).

(2). For L-monotonicity of S, suppose that (x, l), (x′, l′) ∈ S are arbitrary. Then,
h(x, l) = l(x) and h(x′, l′) = l′(x′), and so (x, l), (x′, l′) ∈ T (h). Thus, by Fenchel-
Young’s inequality we have

l(x)− l(x′)− l′(x) + l′(x′)

= l(x) + h(x′, l′)− l(x′)− l′(x)

= (〈., .〉+ δT (h))(x, l) + (〈., .〉+ δT (h))
∗
L∗(l′, x′)− l(x′)− l′(x)

≥ 0,

and hence S is L-monotone.

Now, we show that S is maximal L-monotone. Let (x, l) ∈ K be arbitrary and

l(x)− l(x′)− l′(x) + l′(x′) ≥ 0, ∀ (x′, l′) ∈ S.
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This, together with Proposition 4.5(1) implies that

l(x) (35)

≥ sup
(x′,l′)∈S

[l(x′) + l′(x)− l′(x′)]

= sup
h(x′,l′)=l′(x′)

[l(x′) + l′(x)− l′(x′)]

= sup
h(x′,l′)≤l′(x′)

[l(x′) + l′(x)− l′(x′)]

= sup
(x′,l′)∈T (h)

[l(x′) + l′(x)− l′(x′)]

= sup
(x′,l′)∈K

[l(x′) + l′(x)− (〈., .〉+ δT (h))(x
′, l′)]

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − (〈., .〉+ δT (h))(x
′, l′)]

= (〈., .〉+ δT (h))
∗
L∗(l, x)

= h(x, l)

≥ l(x).

Thus, we have h(x, l) = l(x), and hence (x, l) ∈ S. This proves that S is maximal
L-monotone, and completes the proof of (2).

(3 ). By (2), we have S is a maximal L-monotone subset of K. Therefore, it follows
from Lemma 4.4 that ϕS ∈ H(K). Hence, by Proposition 4.5, we conclude that (i)
and (ii) hold. Now, we prove (iii). By maximality of S, it follows from Lemma 3.6
that

ϕS(x, l) = l(x) ⇐⇒ (x, l) ∈ S. (36)

Then, for arbitrary (x, l) ∈ K, we have

ϕS(x, l)

= sup
(x′,l′)∈S

[l(x′) + l′(x)− l′(x′)]

= sup
(x′,l′)∈S

[l(x′) + l′(x)− ϕS(x
′, l′)]

≤ sup
(x′,l′)∈K

[l(x′) + l′(x)− ϕS(x
′, l′)]

= sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − ϕS(x
′, l′)]

= (ϕS)
∗
L∗(l, x).

This, together with (i) implies that

(ϕS)
∗
L∗(l, x) ≥ ϕS(x, l) ≥ l(x), ∀ (x, l) ∈ K. (37)

Further, if (x, l) ∈ S, then the definition of ϕS yields

ϕS(x
′, l′)

≥ l(x′) + l′(x)− l(x)

= 〈(x′, l′), (l, x)〉∗ − l(x), ∀ (x′, l′) ∈ K.
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This implies that

l(x)

≥ sup
(x′,l′)∈K

[〈(x′, l′), (l, x)〉∗ − ϕS(x
′, l′)]

= (ϕS)
∗
L∗(l, x), ∀ (x, l) ∈ S.

This, together with (36) and (37) implies that

(ϕS)
∗
L∗(l, x) = l(x) ⇐⇒ (x, l) ∈ S,

which completes the proof.

Theorem 4.7. Let S : X −→ 2L be a maximal L-monotone operator. Then there
exists h ∈ H(K) such that

G(S) = {(x, l) ∈ K : h(x, l) = l(x)}.

Proof. Since S is a maximal L-monotone operator, it follows from Lemma 4.4 and
the proof of Lemma 4.4 that ϕS ∈ H(K) and G(S) = T (ϕS), where ϕS is the L-
Fitzpatrick function associated with S. Let h := ϕS. Thus, in view of Proposition
4.5, we have

{(x, l) ∈ K : h(x, l) = l(x)}

= {(x, l) ∈ K : ϕS(x, l) = l(x)}

= {(x, l) ∈ K : ϕS(x, l) ≤ l(x)}

= {(x, l) ∈ K : (x, l) ∈ T (ϕS)}

= {(x, l) ∈ K : (x, l) ∈ G(S)}

= G(S),

which completes the proof.

Corollary 4.8. Let S : X −→ 2L be a set valued mapping. Then S is maximal
L-monotone if and only if there exists h ∈ H(K) such that

G(S) = {(x, l) ∈ K : h(x, l) = l(x)}.

Proof. This is an immediate consequence of Theorem 4.6 and Theorem 4.7.

Remark 4.9. Let X be a Banach space with the dual space X∗ and the duality
product 〈., .〉 : X ×X∗ −→ R is defined by

〈x, x∗〉 := x∗(x), ∀ x ∈ X; ∀ x∗ ∈ X∗.

We indentify the dual space of X ×X∗ with X∗ ×X, under the pairing

〈(x, x∗), (y∗, y)〉∗ := 〈x, y∗〉+ 〈y, x∗〉,

for all (x, x∗) ∈ X ×X∗ and all (y∗, y) ∈ X∗ ×X.
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Let K := X ×X∗ and L∗ := X∗ ×X. Let

HL∗ := {((l, x), c) : (l, x) ∈ L∗, c ∈ R}

be the set of all continuous affine functions defined on K. Therefore, we have every
function h ∈ P(HL∗) is proper, lower semi-continuous and convex (see [17]). More-
over, Theorem 4.6 and Theorem 4.7 remain valid. Consequently, Corollary 4.8 gives
us a convex representation for maximal monotone operators which was obtained in
[8, 13] in the classical setting.
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