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We prove higher integrability properties of solutions to variational problems of minimizing

/Q {eﬂnwmn) + g, u(@))] do (1)

where f is a convex function satisfying some additional conditions.

1. Introduction

In this paper we consider the properties of a solution @ to the problem of minimizing

/Q [/ IVu@D 4 g(2, u(x))] da. (2)

In general, in order to establish the validity of the Euler Lagrange equation for the
solution to this problem , i.e., in order to prove that, for every admissible variation
7, the equation

/ {ef(”w””)')f’(HVﬂ(fv)H)<%,W(fc>>+gu(ﬂf,ﬁ(x))n($)}dfc=0 3)

holds, one has preliminarly to prove that the integrand is in L', in particular, that

SUNVEOD £ (|Va(-)|) € Li,,. However, for Lagrangeans L growing faster than expo-
nential, the integrability of a term like

/Q L(|Vu(z)]) dx

does not imply the integrability of

/VL(HVu(x)H)dx
Q
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In fact, consider L(s) = e*’, so that L' = 2se®". For n = 1, the function £(-) whose
derivative is

€(t) = \/— In(jt] (| m¢]])3)

is such that ef'®* = —L s integrable on (—2, 1): however, for |t| small,
] 1n [¢]]2 22
! 2 1 3
O = s D)
VA Yrp—
e — n — —_—
[t](|nfe]f)z V2 V2t [ In ]

hence L'(£'(+)) is not locally integrable.

This problem does not occur when we are able to prove some additional regularity
properties of the solution 4. When ¢g = 0, by using a barrier as in [7], one can prove
that the gradient of the solution is in L>°(£2); alternatively, taking advantage of the
regularity properties of solutions to elliptic equations, as in [2] for the case L(t) = et
and in [4], [5] for the case L(t) = e/® under general assumptions on f, one proves
that the gradient of the solution is in Lj5.. Both these methods demand additional
smoothness assumptions: smoothness of the boundary and of the second derivative
of f, in the case of a barrier; smoothness of the second derivative of f in the other
case.

In the present paper we prove a higher integrability result for 4: our result is weaker
than the local boundedness of Vi, the result proved in [2], [4], [5]; however, it holds for
a larger class of functionals, where, possibly, the stronger boundedness result might
not hold. In fact, we do not assume further regularity on f besides its being convex
and differentiable: in particular, we do not assume the existence of a second derivative
of f, nor we assume its strict convexity. Moreover, we allow also a dependence on
x and on u, assuming that g is a standard Carathéodory function. Our method of
proof is based on a simple variation and on the properties of polarity.

2. Higher integrability

In what follows, 2 is a bounded open subset of RY. The function f* is the polar

or conjugate [6] of f, a possibly extended valued function. Moreover, since there

is no assumption of strict convexity of f, the map f* is convex but not necessarily

differentiable: its subgradient will be denoted by df*: it is a maximal monotone
1

map. In the Theorem that follows, we use the notation oF ) We mean 0 when

p ¢ Dom(0f*) and, when p € Dom(Jf*), we mean any selection from the set-valued
1

1 . . . . . . . ._
map p — cprays since saos s strictly decreasing, it is multi-valued at most on a

countable set, and any two selections will differ only on a set of measure zero.

Theorem 2.1. Let f : R — R be convex, differentiable, symmetric, f(0) = 0 and

assume that
/ h ! dp < o0
—_— p .
pof*(p)

Let g be differentiable with respect to u, and let g and g, be Carathéodory func-
tions, and assume that for every U there exists ay € Li,,. such that |v| < U implies
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1gu(z,0)| < ap(z). Let @ € u®+ Wy (Q) be a locally bounded solution to the problem
of minimizing

/ /U4 1 g, u(z))] d.

Then, for every function £ such that fQ e/ @) do < 0o, we have that

SIVOD (A NEC) € L ().

The result applies, in particular, to the function £(z) = ||Va(z)||, so that we have
JIVEOD L (IVa()NIVEC)] € Lipe ().

Examples. The map f(s) = s —2v/s+ 1 + 2 is convex, differentiable and of linear
growth. Its conjugate is the extended-valued function f*(p) = 12—% for |p| <1, = o0

elsewhere. The conditions of the theorem are satisfied.
1 1

A map satisfying the assumption of the theorem is f(s) = 2e%(s2 — 1) — s; then

A map f that does not satlsfy the assumptlon of the theorem is f(s) = (e —s—1);
in this case, we have f*(p) =1+ In(p+ 2).

Remark 2.2. In Theorem 2.1 we assume the solution u to be locally bounded. The
validity of this assumption can be guaranteed:

i) when g = 0, assuming that the boundary datum «° is in L>, through a standard

comparison result, noticing that, with the exception of the case f = 0, e/(I!I)
is a strictly convex function of z.
ii)  in general, assuming that there exist p € RT, o € L}(Q) and 3 € R such that
ug € WH?(Q) and
9z, w)] < alz) + Blul.

In fact, with the exception of the case f = 0, there are A and B > 0 such that that
f(t) > A+ Bt; hence, fix N* larger than sup{ N, p}. For suitable constants, we have

00 > / [ef(IIVﬂ(x)H) + g(x,ﬂ(:z:))] dx > / [6A+B||va(a:)H — |a(z)| — WHQ(%)M dr
Q Q

> Al + Bl||Vu( )

> Ay + By || Va()[|7

LN* @ — 1Bl q)

LN* « — Cl““o”ip(g) — Cilla — UOHIEP(Q)'
By Poincaré’s inequality,

00 > Ay + Bi||Va(z)| (Q — o[V — VUOHIL)/P(Q)

By Holder’s inequality,

— G| V|75 i) — DIVl
so that there are positive constants A and k such that

00 > —h + k||Vﬂ(m)HgN(Q)
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Hence, @ belongs to Cp(£2) ([1]).

The proof of Theorem 2.1 relies on directly comparing the value of the functional on
the solution @ and on a variation @+ cv. For it, we shall need the following Lemmas.

Lemma 2.3. Let G : R — 2R be upper semicontinuous, strictly increasing and such
that G(0) = {0}. Assume that, for a selection g from G,

< (1
/ g <—> ds < oo. (4)
s
Then, the implicit Cauchy problem
z(t) € G(2'(t)), z(0) =0
admits a solution T, positive on some interval (0, 7).
Notice that the condition expressed by (4) is independent on the selection g; in fact,

GG is multi-valued at most on countably many points, and the map s — % is strictly
monotonic.

Proof. Set v = G™!: v is single-valued, continuous and v(0) = 0. We claim that for
every z > 0

1 1
/ ——dy = z—— + meas(R),
(0,2)

v(y) v(2)
where R = {(y,z) : 0 < y < z; 7(12) <z < @} In fact, we have also that R =
{(z,y) : 0 <y < 7' (35 < @ < oo}, so that meas(R) = [ 77'(})dy =
v(z)

i g(%)ds, that is finite by assumption.

v(2)

Hence, the map ®(x) = fox ﬁdy is well defined, differentiable, positive for x > 0
and ®(0) = 0. Define z(t) implicitely by

O(z(t)) =t =0;
then,  is a differentiable function, (0) = 0 and 2/(t) = y(z()). O

Let O CC , set O = O + B(0,6) and let § > 0 be such that Oj is in Q.

Lemma 2.4. Let f be as in Theorem 2.1. Then, for every non-negative & in L*(Os)
and U € R, there exist n € C}(Os) and K such that

fE —en) +e||VnllU) — f(§) < eK.

Proof. Consider the function
2U
G(2) = 2—~- (5)
of(3)
We claim that G satisfies the assumptions of Lemma 2.3. In fact, G(0) = {0} and
G is a strictly increasing multi-valued map (single-valued except on a countable set);

we have . -
“ (5) = or ()
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so that, by the assumptions of Lemma 2.4, the condition of Lemma 2.3 is satisfied.

Consider Z, the solution to & € G(&'), provided by Lemma 2.3. Define 7 as follows.
Let d(x) be the distance from a point x € Os to d0s and set

n(z) = 1nf{ﬁx(d(x)), 1}

so that, in particular, n = 1 on O. Almost everywhere, d is differentiable with
|Vd|| =1 and, at a point of differentiability, we have

0 if d(z) > ¢

Vi) = Lfc’ x x) ifd(w
70) (d(x))Vd(z) if d(z) <.

Hence, a.e., we have that ||V < ~(5) 7'(0) and that, either Viy = 0, or that
1 1 2U

1= 55 = 5 i = IVIREOI)
with h(z) = 3 f ( 7, an increasing function.
Set F(e,&) = f((1 —en(x))é(x) + €||Vn(x)||U). From the convexity of f, we obtain
F(e, &) — f(¢)
< {6]”(5(1 —en) + || VllU)[=ng + IVnllU] if —ng+ [[VnllU >0 (6)
ef'(©)=n& + VnllU] if =& +[[Vnl|U < 0.

In the second case, take K to be 0. In the first case, we cannot have Vn = 0, hence
we have, a.e., n = || Vn||h(Z(5)||Vn|) and

fE( —en) +e|Vnl|U) — f(£)
< el Vnllf'(€(1 = en) +enl)[=h(z(5)IVn]))€ + U].

In addition, from —né + ||Vn||U > 0, we infer £ < W so that
(1 —en) + |Vl < = o [Vl
— h(z(6)[[Vnl])
and -
Unllf'(€(1 —en) +enU) < ||Vl f’ <~—+5 Vn U).
IVl (&( ) ) < [Vl MEGINZD IVl

There exists o such that, for ||Vn| < o, we have W +el|Vn||U < 5
For those z such that [|[Vn(z)|| < o, recalling (5),

| . , 2
197 (oo + E1910) < 1908 (i )

It is left to consider the case ||[Vn|| > o: in this case, £ <

(6 )||V77||)

U
h(z(8)o)
follows from the boundedness of || Vn]]. O

and the result
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Lemma 2.5. Let 1) non negative and such that

/ ¢€f(¢) !
O

Then, for any & such that fo el© is bounded, we have that

/ gl p
o

Proof. a) Consider the strictly increasing function z(t) = f'(t)ef® and call t = i(z)
its inverse, so that we have

18 bounded.

2=l f1(i(2)). (7)
We have that i(v) — oo as v — oo. Define the function ¢ as ¢(z) = i(z)z, hence, in
terms of t,

o(f'e! V) = tf'el0. (8)

b) We wish to compute the polar g* of the function g(b) = e/®). Define b, implicitely,
setting

z = g,(bz) = ef(bZ)f,(bz)a

and notice that the previous equality defines b, uniquely and we have b, = i(z), where
i is defined in a). Then

g"(z) =supbz — g(b) = bzef(bz)f’(bz) —efb:) = p 5 — f02) = i(2)z — ef(2)
b

so that, by (8) and (7), g*(2) < ¢(f'(b.)e’ ™)) = o (f(i(2))e! ) = 6(2).

For any t and b, we have

bf'()e! = bu(t) < g*(v(1) + g(b) < B(v(t)) + g(b).

Set, in the previous inequality, t = ¥ and b = £. From the definition of ¢, we obtain

EF ()e! W) < o(f' <w> >) +e/®
= ¢ f/()e! ™) + e,

From the assumptions of the Lemma, the proof is completed. O

Proof of Theorem 2.1. In the proof, we shall first prove the higher integrability
result for the special case where () = ||Va(-)|| and then extend this result to the
general case.

a) Let O and Os as before. Set U = sup{|u(z)| : z € Os}. Since @ is a minimum, for
every variation v we have

/ [ef(”Vﬂ(:r)JrerH) + gz, a(z) +€U(xm dr > / [ef(HVa(m)ll) +g(x’a(a;))} dx.
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set v = —na, so that Vo = —aVn —nVa and |v| < U. For ¢ > 0 (and € < 1), we

obtain
el IVa(z)1—en)—eavnl)) _ of([Va(x)l)
A ) e
Q €

_ _ (9)
o _ / g(x, a(x) + ev(z)) — g(z, u(x))
> ., 5 :
b) By Lemma 2.3,  can be defined so that, for some K > 0, we have:
SVl —en) —eaVnl) — f([Val]) (10)

< J(IVall(t = en) + eU[[Vall) = f(IVal]) < eK.

Set F(e,Va) = f((1 —en(z))||Va(z)|| + || Vn(z)||U). From (9), we have
_/ g(x, a(x) + ev(x)) — g(z, u(z))
0

€

SFETD) _ f(IVa))
( )
Q g
/ eF(E,Vﬂ)*EKJrEK _ ef(HVﬂ(x)H) y
= s
Q £

_ / eF(s,Vﬁ)sz |:65K _ ef(|Vﬁ(m))—F(5,Vﬂ)+EK):| "
QO £

_ / eF(a,Vﬁ)—aK |:66K —14+1— 6f(V11(a:)||)—F(a,V1l)+aK):| .
Q 19

IN

The previous inequality can be written as

/eF(e’W)EK {65[{_—1} dx+/ g(z, u(z) +ev(x)) — g(z, u(z)) (11)
Q Q

9 €

IVl =(F(EeVa)-<K) _
> /eF(E,Vﬂ)—EK |:€ (IVal)—(F(e,Va)—e 1:| .
@ €

¢) From (10) we infer that F'(e, Vi) — eK < f(||Va(z)||); moreover, eai—1 < KeX.
In addition,

'g(lﬂ u(z) + ev(z)) — g(z, afz))
€

] — |gul, e, i)

for some value u., in the interval of extremes u(x) and @(z) — en(x)a(x), so that

|9u (2, e 2 )0 () ()] < [ay(2)]U.
Hence, the left hand side of (11) is bounded by some M, independent of .

d) Consider the right hand side. For some ?. ., in the interval of extremes ||Val|| and
(1 —en)||Val + ¢[|Vn||U, we have

S =en)|Val +el[VnllU) = f(IVal) = ef'(ta) (=l V] + [[Vn||U).
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As e — 0, t., — ||Va(z)| pointwise, so that f'(¢..) converges to f'(||Va(z)|]);
moreover, f(|[Vall) = (F(e, Vi) —eK) = —ef'(tea)(=nl|Val| + [[VH[|U) + e K =
—ef'(IVal)(=nlIVal + [[Vnl|U) + K + €o(1), so that

efIVal)—=(F(e,Va)—eK) _ q

€

converges pointwise to K + f'(||Val|)(n||Val — ||Vn||U). In addition, by (10), eK —
F((L=en)||Val + | Vnl|U) + £(|Va]) > 0, so that the integrand at the right hand
side is non negative. Finally, pointwise, e (&:V#)—K IVa@)I) | Hence, applying
Fatou’s lemma, we obtain

L of

/Qef(IIVﬂ) (K + f'(IVal)(mlVal — IVal|U)] < M.

Since K + f'(||Va|)(n|Val — [[Vn||U) > 0, and Vi = 0 and n = 1 on O, we have
obtained that

/ |Vl UV (| al) < M. (12)
(0]

This proves the result for the case £ = ||Va/|. An application of Lemma 2.5 completes
the proof. O

Notice that @ does not have to be a minimizer: a local minimizer would do.
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