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We prove higher integrability properties of solutions to variational problems of minimizing
∫

Ω

[

ef(‖∇u(x)‖) + g(x, u(x))
]

dx (1)

where f is a convex function satisfying some additional conditions.

1. Introduction

In this paper we consider the properties of a solution ũ to the problem of minimizing
∫

Ω

[

ef(‖∇u(x)‖) + g(x, u(x))
]

dx. (2)

In general, in order to establish the validity of the Euler Lagrange equation for the
solution to this problem , i.e., in order to prove that, for every admissible variation
η, the equation

∫

Ω

{

ef(‖∇ũ(x)‖)f ′(‖∇ũ(x)‖)
〈 ∇ũ(x)
‖∇ũ(x)‖ ,∇η(x)

〉

+ gu(x, ũ(x))η(x)

}

dx = 0 (3)

holds, one has preliminarly to prove that the integrand is in L1, in particular, that
ef(‖∇ũ(·)‖)f ′(‖∇ũ(·)‖) ∈ L1

loc. However, for Lagrangeans L growing faster than expo-
nential, the integrability of a term like

∫

Ω

L(‖∇u(x)‖) dx

does not imply the integrability of
∫

Ω

∇L(‖∇u(x)‖) dx.
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In fact, consider L(s) = es
2
, so that L′ = 2ses

2
. For n = 1, the function ξ(·) whose

derivative is

ξ′(t) =

√

− ln(|t|(| ln |t||) 3
2 )

is such that eξ
′(t)2 = 1

|t| | ln |t||
3
2
is integrable on (−1

2
, 1
2
); however, for |t| small,

ξ′(t)eξ
′(t)2 =

1

|t|(| ln |t||) 3
2

√

− ln(|t|(| ln |t||) 3
2 )

>
1

|t|(| ln |t||) 3
2

√

1

2
| ln |t|| = 1√

2|t| | ln |t||
,

hence L′(ξ′(·)) is not locally integrable.

This problem does not occur when we are able to prove some additional regularity
properties of the solution ũ. When g = 0, by using a barrier as in [7], one can prove
that the gradient of the solution is in L∞(Ω); alternatively, taking advantage of the

regularity properties of solutions to elliptic equations, as in [2] for the case L(t) = et
2
,

and in [4], [5] for the case L(t) = ef(t), under general assumptions on f , one proves
that the gradient of the solution is in L∞

loc. Both these methods demand additional
smoothness assumptions: smoothness of the boundary and of the second derivative
of f , in the case of a barrier; smoothness of the second derivative of f in the other
case.

In the present paper we prove a higher integrability result for ũ: our result is weaker
than the local boundedness of∇ũ, the result proved in [2], [4], [5]; however, it holds for
a larger class of functionals, where, possibly, the stronger boundedness result might
not hold. In fact, we do not assume further regularity on f besides its being convex
and differentiable: in particular, we do not assume the existence of a second derivative
of f , nor we assume its strict convexity. Moreover, we allow also a dependence on
x and on u, assuming that g is a standard Carathéodory function. Our method of
proof is based on a simple variation and on the properties of polarity.

2. Higher integrability

In what follows, Ω is a bounded open subset of RN . The function f ∗ is the polar

or conjugate [6] of f , a possibly extended valued function. Moreover, since there
is no assumption of strict convexity of f , the map f ∗ is convex but not necessarily
differentiable: its subgradient will be denoted by ∂f ∗: it is a maximal monotone
map. In the Theorem that follows, we use the notation 1

p∂f∗(p)
: we mean 0 when

p /∈ Dom(∂f ∗) and, when p ∈ Dom(∂f ∗), we mean any selection from the set-valued
map p → 1

p∂f∗(p)
: since 1

p∂f∗(p)
is strictly decreasing, it is multi-valued at most on a

countable set, and any two selections will differ only on a set of measure zero.

Theorem 2.1. Let f : R → R be convex, differentiable, symmetric, f(0) = 0 and

assume that
∫ ∞ 1

p∂f ∗(p)
dp <∞.

Let g be differentiable with respect to u, and let g and gu be Carathéodory func-

tions, and assume that for every U there exists αU ∈ L1
loc such that |v| ≤ U implies
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|gu(x, v)| ≤ αU(x). Let ũ ∈ u0 +W 1,1
0 (Ω) be a locally bounded solution to the problem

of minimizing
∫

Ω

[

ef(‖∇u(x)‖) + g(x, u(x))
]

dx.

Then, for every function ξ such that
∫

Ω
ef(ξ(x)) dx <∞, we have that

ef(‖∇ũ(·)‖)f ′(‖∇ũ(·)‖)ξ(·) ∈ L1
loc(Ω).

The result applies, in particular, to the function ξ(x) = ‖∇ũ(x)‖, so that we have
ef(‖∇ũ(·)‖)f ′(‖∇ũ(·)‖)‖∇ũ(·)‖ ∈ L1

loc(Ω).

Examples. The map f(s) = s − 2
√
s+ 1 + 2 is convex, differentiable and of linear

growth. Its conjugate is the extended-valued function f ∗(p) = p2

1−|p|
for |p| < 1, = ∞

elsewhere. The conditions of the theorem are satisfied.

A map satisfying the assumption of the theorem is f(s) = 2es
1
2 (s

1
2 − 1) − s; then

f ∗′(p) = (ln(p+ 1))2 and
∫∞ 1

p(ln(p+1))2
dp <∞.

A map f that does not satisfy the assumption of the theorem is f(s) = 1
e
(es− s− 1);

in this case, we have f ∗′(p) = 1 + ln(p+ 1
e
).

Remark 2.2. In Theorem 2.1 we assume the solution ũ to be locally bounded. The
validity of this assumption can be guaranteed:

i) when g = 0, assuming that the boundary datum u0 is in L∞, through a standard
comparison result, noticing that, with the exception of the case f ≡ 0, ef(‖v‖)

is a strictly convex function of z.

ii) in general, assuming that there exist p ∈ R
+, α ∈ L1(Ω) and β ∈ R such that

u0 ∈W 1,p(Ω) and
|g(x, u)| ≤ α(x) + β|u|p.

In fact, with the exception of the case f ≡ 0, there are A and B > 0 such that that
f(t) ≥ A+Bt; hence, fix N∗ larger than sup{N, p}. For suitable constants, we have

∞ >

∫

Ω

[

ef(‖∇ũ(x)‖) + g(x, ũ(x))
]

dx ≥
∫

Ω

[

eA+B‖∇ũ(x)‖ − |α(x)| − |β||ũ(x)|p
]

dx

≥ A1 +B1‖∇ũ(x)‖N
∗

LN∗
(Ω) − |β|‖ũ‖p

Lp(Ω)

≥ A1 +B1‖∇ũ(x)‖N
∗

LN∗
(Ω) − C1‖uo‖pLp(Ω) − C1‖ũ− uo‖pLp(Ω).

By Poincaré’s inequality,

∞ > A2 +B1‖∇ũ(x)‖N
∗

LN∗
(Ω) − C2‖∇ũ−∇u0‖pLp(Ω).

By Holder’s inequality,

∞ > A2 +B1‖∇ũ(x)‖N
∗

LN∗
(Ω) − C3‖∇u0‖pLp(Ω) −D‖∇ũ‖p

LN∗
(Ω)
,

so that there are positive constants h and k such that

∞ > −h+ k‖∇ũ(x)‖N∗

LN∗
(Ω).
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Hence, ũ belongs to CB(Ω) ([1]).

The proof of Theorem 2.1 relies on directly comparing the value of the functional on
the solution ũ and on a variation ũ+ εv. For it, we shall need the following Lemmas.

Lemma 2.3. Let G : R → 2R be upper semicontinuous, strictly increasing and such

that G(0) = {0}. Assume that, for a selection g from G,
∫ ∞

g

(

1

s

)

ds <∞. (4)

Then, the implicit Cauchy problem

x(t) ∈ G(x′(t)), x(0) = 0

admits a solution x̃, positive on some interval (0, τ).

Notice that the condition expressed by (4) is independent on the selection g; in fact,
G is multi-valued at most on countably many points, and the map s → 1

s
is strictly

monotonic.

Proof. Set γ = G−1: γ is single-valued, continuous and γ(0) = 0. We claim that for
every z > 0

∫

(0,z)

1

γ(y)
dy = z

1

γ(z)
+ meas(R),

where R = {(y, x) : 0 ≤ y ≤ z; 1
γ(z)

≤ x ≤ 1
γ(y)

}. In fact, we have also that R =

{(x, y) : 0 ≤ y ≤ γ−1( 1
x
); 1
γ(z)

≤ x < ∞}, so that meas(R) =
∫∞

1
γ(z)

γ−1( 1
y
)dy =

∫∞
1

γ(z)
g(1

s
)ds, that is finite by assumption.

Hence, the map Φ(x) =
∫ x

0
1

γ(y)
dy is well defined, differentiable, positive for x > 0

and Φ(0) = 0. Define x̃(t) implicitely by

Φ(x̃(t))− t = 0;

then, x̃ is a differentiable function, x̃(0) = 0 and x′(t) = γ(x(t)).

Let O ⊂⊂ Ω, set Oδ = O +B(0, δ) and let δ > 0 be such that Oδ is in Ω.

Lemma 2.4. Let f be as in Theorem 2.1. Then, for every non-negative ξ in L1(Oδ)
and U ∈ R, there exist η ∈ C1

c (Oδ) and K such that

f(ξ(1− εη) + ε‖∇η‖U)− f(ξ) ≤ εK.

Proof. Consider the function

G(z) = z
2U

∂f ∗
(

1
z

) . (5)

We claim that G satisfies the assumptions of Lemma 2.3. In fact, G(0) = {0} and
G is a strictly increasing multi-valued map (single-valued except on a countable set);
we have

G

(

1

x′

)

=
2U

x′∂f ∗(x′)
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so that, by the assumptions of Lemma 2.4, the condition of Lemma 2.3 is satisfied.

Consider x̃, the solution to x̃ ∈ G(x̃′), provided by Lemma 2.3. Define η as follows.
Let d(x) be the distance from a point x ∈ Oδ to ∂Oδ and set

η(x) = inf

{

1

x̃(δ)
x̃(d(x)), 1

}

so that, in particular, η = 1 on O. Almost everywhere, d is differentiable with
‖∇d‖ = 1 and, at a point of differentiability, we have

∇η(x) =







0 if d(x) > δ
1

x̃(δ)
x̃′(d(x))∇d(x) if d(x) < δ.

Hence, a.e., we have that ‖∇η‖ ≤ 1
x̃(δ)

x̃′(δ) and that, either ∇η = 0, or that

η =
1

x̃(δ)
x̃ =

1

x̃(δ)
x̃′

2U

∂f ∗( 1
x̃′
)
= ‖∇η‖h(x̃(δ)‖∇η‖)

with h(z) = 2U
∂f∗( 1

z
)
, an increasing function.

Set F (ε, ξ) = f((1− εη(x))ξ(x) + ε‖∇η(x)‖U). From the convexity of f , we obtain

F (ε, ξ)− f(ξ)

≤
{

εf ′(ξ(1− εη) + ε‖∇η‖U)[−ηξ + ‖∇η‖U ] if− ηξ + ‖∇η‖U > 0

εf ′(ξ)[−ηξ + ‖∇η‖U ] if− ηξ + ‖∇η‖U ≤ 0.

(6)

In the second case, take K to be 0. In the first case, we cannot have ∇η = 0, hence
we have, a.e., η = ‖∇η‖h(x̃(δ)‖∇η‖) and

f(ξ(1− εη) + ε‖∇η‖U)− f(ξ)

≤ ε‖∇η‖f ′(ξ(1− εη) + εηU)[−h(x̃(δ)‖∇η‖)ξ + U ].

In addition, from −ηξ + ‖∇η‖U > 0, we infer ξ ≤ U
h(x̃(δ)‖∇η‖)

, so that

ξ(1− εη) + ε‖∇η‖ ≤ U

h(x̃(δ)‖∇η‖) + ε‖∇η‖U

and

‖∇η‖f ′(ξ(1− εη) + εηU) ≤ ‖∇η‖f ′

(

U

h(x̃(δ)‖∇η‖) + ε‖∇η‖U
)

.

There exists σ such that, for ‖∇η‖ < σ, we have U
h(x̃(δ)‖∇η‖)

+ ε‖∇η‖U ≤ 2U
h(x̃(δ)‖∇η‖)

.

For those x such that ‖∇η(x)‖ < σ, recalling (5),

‖∇η‖f ′

(

U

h(x̃(δ)‖∇η‖) + ε‖∇η‖U
)

≤ ‖∇η‖f ′

(

2U

h(x̃(δ)‖∇η‖)

)

= ‖∇η‖f ′

(

∂f ∗

(

1

x̃(δ)‖∇η‖

))

=
1

x̃(δ)
= K.

It is left to consider the case ‖∇η‖ ≥ σ: in this case, ξ ≤ U
h(x̃(δ)σ)

and the result

follows from the boundedness of ‖∇η‖.
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Lemma 2.5. Let ψ non negative and such that

∫

O

ψef(ψ)f ′(ψ) ≤M.

Then, for any ξ such that
∫

O
ef(ξ) is bounded, we have that

∫

O

ξef(ψ)f ′(ψ)

is bounded.

Proof. a) Consider the strictly increasing function z(t) = f ′(t)ef(t) and call t = i(z)
its inverse, so that we have

z = ef(i(z))f ′(i(z)). (7)

We have that i(v) → ∞ as v → ∞. Define the function φ as φ(z) = i(z)z, hence, in
terms of t,

φ(f ′ef(t)) = tf ′ef(t). (8)

b) We wish to compute the polar g∗ of the function g(b) = ef(b). Define bz implicitely,
setting

z = g′(bz) = ef(bz)f ′(bz),

and notice that the previous equality defines bz uniquely and we have bz = i(z), where
i is defined in a). Then

g∗(z) = sup
b

bz − g(b) = bze
f(bz)f ′(bz)− ef(bz) = bzz − ef(bz) = i(z)z − ef(i(z))

so that, by (8) and (7), g∗(z) ≤ φ(f ′(bz)e
f(bz)) = φ(f ′(i(z))ef(i(z))) = φ(z).

For any t and b, we have

bf ′(t)ef(t) = bv(t) ≤ g∗(v(t)) + g(b) ≤ φ(v(t)) + g(b).

Set, in the previous inequality, t = ψ and b = ξ. From the definition of φ, we obtain

ξf ′(ψ)ef(ψ) ≤ φ(f ′(ψ)ef(ψ)) + ef(ξ)

= ψf ′(ψ)ef(ψ) + ef(ξ).

From the assumptions of the Lemma, the proof is completed.

Proof of Theorem 2.1. In the proof, we shall first prove the higher integrability
result for the special case where ξ(·) = ‖∇ũ(·)‖ and then extend this result to the
general case.

a) Let O and Oδ as before. Set U = sup{|ũ(x)| : x ∈ Oδ}. Since ũ is a minimum, for
every variation v we have

∫

Ω

[

ef(‖∇ũ(x)+ε∇v‖) + g(x, ũ(x) + εv(x))
]

dx ≥
∫

Ω

[

ef(‖∇ũ(x)‖) + g(x, ũ(x))
]

dx.
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set v = −ηũ, so that ∇v = −ũ∇η − η∇ũ and |v| ≤ U . For ε > 0 (and ε < 1), we
obtain

∫

Ω

(

ef(‖∇ũ(x)(1−εη)−εũ∇η‖) − ef(‖∇ũ(x)‖)

ε

)

dx

≥ −
∫

Ω

g(x, ũ(x) + εv(x))− g(x, ũ(x))

ε
.

(9)

b) By Lemma 2.3, η can be defined so that, for some K ≥ 0, we have:

f(‖∇ũ(1− εη)− εũ∇η‖)− f(‖∇ũ‖)
≤ f(‖∇ũ‖(1− εη) + εU‖∇η‖)− f(‖∇ũ‖) ≤ εK.

(10)

Set F (ε,∇ũ) = f((1− εη(x))‖∇ũ(x)‖+ ε‖∇η(x)‖U). From (9), we have

−
∫

Ω

g(x, ũ(x) + εv(x))− g(x, ũ(x))

ε

≤
∫

Ω

(

eF (ε,∇ũ) − ef(‖∇ũ(x)‖)

ε

)

dx

=

∫

Ω

(

eF (ε,∇ũ)−εK+εK − ef(‖∇ũ(x)‖)

ε

)

dx

=

∫

Ω

eF (ε,∇ũ)−εK

[

eεK − ef(‖∇ũ(x)‖)−F (ε,∇ũ)+εK)

ε

]

dx

=

∫

Ω

eF (ε,∇ũ)−εK

[

eεK − 1 + 1− ef(‖∇ũ(x)‖)−F (ε,∇ũ)+εK)

ε

]

dx.

The previous inequality can be written as
∫

Ω

eF (ε,∇ũ)−εK

[

eεK − 1

ε

]

dx+

∫

Ω

g(x, ũ(x) + εv(x))− g(x, ũ(x))

ε
(11)

≥
∫

Ω

eF (ε,∇ũ)−εK

[

ef(‖∇ũ‖)−(F (ε,∇ũ)−εK) − 1

ε

]

dx.

c) From (10) we infer that F (ε,∇ũ) − εK ≤ f(‖∇ũ(x)‖); moreover, eεK−1
ε

≤ KeK .
In addition,

∣

∣

∣

∣

g(x, ũ(x) + εv(x))− g(x, ũ(x))

ε

∣

∣

∣

∣

= |gu(x, uε,x)ηũ(x)|

for some value uε,x in the interval of extremes ũ(x) and ũ(x)− εη(x)ũ(x), so that

|gu(x, uε,x)η(x)ũ(x)| ≤ [αU(x)]U.

Hence, the left hand side of (11) is bounded by some M , independent of ε.

d) Consider the right hand side. For some tε,x in the interval of extremes ‖∇ũ‖ and
(1− εη)‖∇ũ‖+ ε‖∇η‖U , we have

f((1− εη)‖∇ũ‖+ ε‖∇η‖U)− f(‖∇ũ‖) = εf ′(tε,x)(−η‖∇ũ‖+ ‖∇η‖U).
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As ε → 0, tε,x → ‖∇ũ(x)‖ pointwise, so that f ′(tε,x) converges to f ′(‖∇ũ(x)‖);
moreover, f(‖∇ũ‖)− (F (ε,∇ũ)− εK) = −εf ′(tε,x)(−η‖∇ũ‖+ ‖∇η‖U) + εK =
−εf ′(‖∇ũ‖)(−η‖∇ũ‖+ ‖∇η‖U) + εK + εo(1), so that

ef(‖∇ũ‖)−(F (ε,∇ũ)−εK) − 1

ε

converges pointwise to K + f ′(‖∇ũ‖)(η‖∇ũ‖ − ‖∇η‖U). In addition, by (10), εK −
f((1− εη)‖∇ũ‖+ ε‖∇η‖U) + f(‖∇ũ‖) ≥ 0, so that the integrand at the right hand
side is non negative. Finally, pointwise, eF (ε,∇ũ)−εK → ef(‖∇ũ(x)‖). Hence, applying
Fatou’s lemma, we obtain

∫

Ω

ef(‖∇ũ‖) [K + f ′(‖∇ũ‖)(η‖∇ũ‖ − ‖∇η‖U)] ≤M.

Since K + f ′(‖∇ũ‖)(η‖∇ũ‖ − ‖∇η‖U) ≥ 0, and ∇η = 0 and η = 1 on O, we have
obtained that

∫

O

‖∇ũ‖ef(‖∇ũ‖)f ′(‖∇ũ‖) ≤M1. (12)

This proves the result for the case ξ = ‖∇ũ‖. An application of Lemma 2.5 completes
the proof.

Notice that ũ does not have to be a minimizer: a local minimizer would do.
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