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We obtain a representation of unitarily invariant norm in terms of Ky Fan norms [1, p. 35]. Indeed
we obtain a more general result in the context of Eaton triple with reduced triple. Examples are
given.
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1. Introduction

A norm ‖ · ‖ : Rn → [0,+∞) is called a symmetric gauge function if it is invariant
under permutation of its entries and sign changes, i.e., for each x = (x1, . . . , xn) ∈ Rn

‖(±xσ(1), . . . ,±xσ(n))‖ = ‖x‖, for all σ ∈ Sn,

where Sn denotes the symmetric group on {1, . . . , n}. Such norms play an important
role in matrix analysis, because they correspond to unitarily invariant norms on
Cn×n, due to a well-known result of von Neumann [11]. A norm |||·||| : Cn×n → [0,+∞)
is said to be unitarily invariant if for each A ∈ Cn×n,

|||UAV ||| = |||A|||, for all U, V ∈ U(n).

According to von Neumann’s result there is one-one correspondence between the
unitarily invariant norms ||| · ||| on Cn×n and symmetric gauge functions. However the
correspondence has not been studied and no explicit representation of ||| · ||| in terms
of “elementary� symmetric gauge functions is given. The goal of this paper is to give
such a representation (see [6, 10] for related results on representing invariant norms).
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The Ky-Fan dominance theorem follows from our representation result. In order to
state our main results (in Section 3), we will first review some preliminary material
on finite reflection group and Eaton triple.

2. Finite reflection group

Let us recall some rudiments of finite reflection groups and our general references are
[2, 4, 7, 8]. Let W be an m-dimensional real vector space with inner product (·, ·). A
reflection sα on W is an element of the orthogonal group O(W ) on W , which sends
some nonzero vector α to its negative and fixes pointwise the hyperplane orthogonal
to α, that is,

sαλ := λ− (λ, α∨)α, λ ∈ W,

where

α∨ :=
2α

(α, α)
.

A finite group H generated by reflections is called a finite reflection group. A root

system of H is a finite set of nonzero vectors in W , denoted by Φ, such that {sα :
α ∈ Φ} generates H, and satisfies

(R1) Φ ∩ Rα = {±α} for all α ∈ Φ.

(R2) sαΦ = Φ for all α ∈ Φ.

The elements of Φ are called roots.

Given a total order < in W [7, p. 7] (there is one), λ ∈ W is said to be positive if
0 < λ. Now Φ+ ⊂ Φ is called a positive system if it consists of all those roots which
are positive relative to a given total order. Of course,

Φ = Φ+ ∪ Φ−

where Φ− = −Φ+. Now Φ+ contains [7, p. 8] a unique simple system ∆, that is, ∆ is
a basis for

W1 := spanΦ ⊂ W,

and each α ∈ Φ is a linear combination of ∆ with coefficients all of the same sign
(all nonnegative or all nonpositive). The vectors in ∆ are called simple roots and the
corresponding reflections are called simple reflections. The finite reflection group H
is generated by the simple reflections.

The closed convex cone

F := {λ ∈ W : (λ, α) ≥ 0 for all α ∈ ∆} (1)

is called a (closed) fundamental domain for the action of H on W associated with ∆.

Let
W0 := {x ∈ W : hx = x for all h ∈ H}

be the set of fixed points in W under the action of H. The reflection group H is said
to be essential relative to W if W0 = 0, i.e., there is no nonzero fixed point under
H. Clearly H is essential relative to W⊥

0 and indeed W1 = W⊥
0 .
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The root system Φ is irreducible, i.e., there does not exist a nonempty subset ∆1 ( ∆
satisfying (α, β) = 0 for all α ∈ ∆1 and β ∈ ∆ \∆1 [8, p. 27–28]. It is equivalent to
say that H is irreducible, i.e., H cannot be decomposed as H = H1 ×H2 where H1

and H2 are nontrivial finite reflection groups, or equivalently W contains no proper
H-invariant subspace. It is clear that if H is irreducible, then it is essential relative
to W except the trivial case dimW = 1 and H = {id}.

We denote the unique element inH of maximal length (relative to△, [7, p. 15–16]) by
ω0 ∈ H and it sends F onto −F and ω0 is called the longest element. If −id ∈ H, then
it is the longest element and H is essential relative to W . For an irreducible reflection
group H, −id ∈ H if and only if Φ is of type A1, Bk, D2k, E7, E8, F4, G2(2k), H3, H4

[8, p. 283]. Thus for a finite reflection group H essential to W , −id ∈ H if and only
if the irreducible components of H are of type A1, Bk, D2k, E7, E8, F4, G2(2k), H3,
H4.

Let
∆ = {α1, . . . , αn},

that is, dimW1 = n. Let {λ1, . . . , λn} be the basis ofW1 dual to the basis {α
∨
1 , . . . , α

∨
n},

that is, (λi, α
∨
j ) = δij. Then

F =

{

n
∑

i=1

ciλi : ci ≥ 0

}

⊕W0.

3. Eaton triple and representation of G-invariant norms

Let V be a finite dimensional real inner product space with the inner product (·, ·).
Let G be a closed subgroup of the orthogonal group on V . The triple (V,G, F ) is an
Eaton triple [9, 13, 16, 17] if F ⊂ V is a nonempty closed convex cone such that

(A1) Gx ∩ F is nonempty for each x ∈ V .

(A2) maxg∈G(x, gy) = (x, y) for all x, y ∈ F .

By considering the equality case of Cauchy-Schwarz inequality, it is easy to see that
Gx∩F is a singleton set and we denote by F (x) the unique element in the singleton
set. For any nonzero α ∈ F , we define

‖A‖α = (α, F (A)).

Obviously ‖ · ‖α is G-invariant. One can extend the definition of ‖ · ‖α to nonzero
B ∈ V :

‖A‖B = (F (B), F (A)).

The Eaton triple (W,H,F ) is called a reduced triple of the Eaton triple (V,G, F ) if
it is an Eaton triple and W := spanF and H := {g|W : g ∈ G, gW = W} ⊂ O(W )
[17]. It turns out that H is a finite reflection group [12]. There is a simple system ∆
of H such that F in the Eaton triple (W,H,F ) coincides with (1). We choose such
∆ once and for all.

Theorem 3.1 ([19, Theorem 7]). Let (V,G, F ) be an Eaton triple with reduced

triple (W,H,F ) in which dimW > 1 and H is not trivial. Suppose that H ∼= H0×H1×
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· · · ×Hk is a decomposition of H into its irreducible components, where Hi = H|Wi
,

with H0 = {id}, i = 1, . . . , k, and W = W0 +W1 + · · · +Wk is an orthogonal sum.

Let α ∈ F be a nonzero vector. Then ‖ · ‖α : V → R defined by

‖x‖α := (α, F (x))

is a norm if and only if H is essential relative to W , pi(α) 6= 0, where pi : W → Wi

is the orthogonal projection onto Wi, for all i = 1, . . . , k, and ω0(α) = −α, where ω0

is the longest element of H.

Theorem 3.1 ensures that if H is irreducible and −id ∈ H, then every nonzero α ∈ F
yields a G-invariant norm ‖ · ‖α.

Recall that we fix a simple system ∆ = {α1, . . . , αn} of H so that F = {
∑n

i=1 ciλi :
ci ≥ 0} where {λ1, . . . , λn} is the basis of W dual to the basis {α∨

1 , . . . , α
∨
n}. So

λ1, . . . , λn form a “skeleton� of the cone F . We will show that ‖ · ‖λj
, j = 1, . . . , n,

also form a skeleton for the cone generated by the G-invariant norms on V . Indeed
it provides a representation for the G-invariant norms in terms of ‖ · ‖λj

.

Theorem 3.2. Let (V,G, F ) be an Eaton triple with reduced triple (W,H,F ). Sup-

pose that the finite reflection group H is irreducible and −id ∈ H. The function

p : V → R is a G-invariant norm on V if and only if there exists a sequence of

nonzero vectors {p(k)}∞k=1 in Rn of nonnegative entries such that

p(x) = sup
k≥1

n
∑

j=1

p
(k)
j ‖x‖λj

,

where n := dimW .

Proof. By Theorem 3.1, each ‖ · ‖λj
is a norm on V since λj ∈ F is nonzero. So the

sufficiency is clear.

Suppose that p is aG-invariant norm on V . Fix a nonzero vector a ∈ V . By the Hahn-
Banach theorem [15, p. 58], there exists a linear functional (pa, ·) ∈ V ∗ (0 6= pa ∈ V )
such that (pa, x) ≤ p(x) for all x ∈ V and (pa, a) = p(a). Define L : V → R by

L(x) := (F (pa), F (x)), for all x ∈ V.

Since (pa, x) ≤ p(x) for all x ∈ V and p is G-invariant, L(x) ≤ p(x) for all x ∈ V
and L(a) = p(a). Recall that {λ1, . . . , λn} is the basis of W = W1 dual to the basis
{α∨

1 , . . . , α
∨
n}. So z =

∑n

j=1(z, α
∨
j )λj for each z ∈ V . Therefore

L(x) = (F (pa), F (x)) =
n

∑

j=1

(F (pa), α
∨
j )(λj, F (x)) =

n
∑

j=1

(F (pa), α
∨
j )‖x‖λj

.

So

L(x) =
n

∑

j=1

p(j)a ‖x‖λj
≤ p(x) for all x ∈ V, L(a) = p(a)
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where p
(j)
a := (F (pa), α

∨
j ) ≥ 0 for all j and they cannot be all zero since pa 6= 0.

Now take a dense and countable subset {ak}
∞
k=1 of V \ {0}. For j = 1, . . . , n and for

all k ≥ 1, set

p
(k)
j := p(j)ak

≥ 0

and they are not all zero for a fixed k. Then for k ≥ 1

n
∑

j=1

p
(k)
j ‖x‖λj

≤ p(x) for all x ∈ V,
n

∑

j=1

p
(k)
j ‖ak‖λj

= p(ak).

Set

q(x) := sup
k≥1

n
∑

j=1

p
(k)
j ‖x‖λj

, x ∈ V.

Clearly q(x) ≤ p(x) for all x ∈ V . Therefore q is a norm and thus continuous. Finally
since q(ak) = p(ak) for all k ≥ 1, we have q = p.

We thus have the following dominance result which extends Ky Fan’s dominance
theorem [1, p. 93].

Corollary 3.3. With the assumption of Theorem 3.2 let x, y ∈ V . Then p(x) ≤ p(y)
for all G-invariant norm p(·) if and only if ‖x‖λj

≤ ‖y‖λj
for all j = 1, . . . , n.

Example 3.4. (a) Let G := U(n)⊗U(n) which acts on Cn×n via (U⊗V )(A) = UAV
for all U, V ∈ U(n) where U(n) is the unitary group. Let F be the cone of nonnegative
diagonal matrices with diagonal entries in descending order. Then (Cn×n, G, F ) is an
Eaton triple with reduced triple (W,H,F ) where W is the space of diagonal matrices
which can be identified with Rn. With the identification, H = Sn n (Z/2Z)n the
semidirect product of the symmetric group and (Z/2Z)n (sign changes), i.e., H is of
type Bn. So H acts on Rn by permuting the entries of x ∈ Rn and changing signs.

TheG-invariant norm is simply a unitarily invariant norm. With the cone F identified
as a subset of Rn, we have

∆ = {e1 − e2, e2 − e3, . . . , en−1 − en, en}

and λj =
∑j

i=1 ei, j = 1, . . . , n − 1, λn = 1
2

∑n

i=1 ei. Thus each unitarily invariant
norm ‖ · ‖ can be represented as

‖A‖ = sup
k≥1

n
∑

j=1

p
(k)
j ‖A‖j, A ∈ Cn×n,

where {p(k)}∞k=1 is a sequence of nonzero vectors in Rn of nonnegative entries. Here
‖A‖j is the sum of the largest j singular values of |A|, j = 1, . . . , n − 1, i.e., Ky
Fan j-norm, and ‖A‖n = 1

2

∑n

i=1 |si(A)|, where si(A) denotes the ith largest singular
value of A. Then Corollary 3.3 yields Ky Fan dominance theorem.

We remark that the result is also true for Cp×q.
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(b) If we choose V = Rn (n ≥ 2) and G = Sn n (Z/2Z)n, then F is the set of all
nonnegative n-tuples with descending entries. Then (V,G, F ) = (W,G, F ) and

‖x‖ = sup
k≥1

n
∑

j=1

p
(k)
j ‖x‖j, x ∈ Rn,

where {p(k)}∞k=1 is a sequence of nonzero vectors in Rn. Here ‖x‖j is the sum of the
largest j entries of |x|, j = 1, . . . , n− 1 and ‖x‖n = 1

2

∑n

i=1 |xi|.

Example 3.5. When V = R2n (n ≥ 2) and G = S2n n (Z/2Z)2n−1 the semidirect
product of the symmetric group S2n and (Z/2Z)2n−1 (even number of sign changes),
i.e., G is of type D2n. So G acts on R2n by permuting the entries of x ∈ R2n and
even number of changing signs. Let

∆ = {e1 − e2, e2 − e3, . . . , e2n−1 − e2n, e2n−1 + e2n}.

So λj =
∑j

i=1 ei, j = 1, . . . , 2n− 2, λ2n−1 =
1
2

∑2n−1
i=1 ei − e2n, λ2n = 1

2

∑2n
i=1 ei. Thus

each G-invariant norm ‖ · ‖ can be represented as

‖x‖ = sup
k≥1

2n
∑

j=1

p
(k)
j ‖x‖j, x ∈ R2n,

where ‖x‖j is the sum of the largest j entries of |x|, if 1 ≤ j ≤ 2n− 2,

‖x‖2n−1 =
2n
∑

j=1

|xi| − 2 min
i=1,...,2n

|xi|, ‖x‖2n =
1

2

2n
∑

i=1

|xi|.

We have similar result for special orthogonal invariant norm on Rn×n .
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